

Available online at www.sciencedirect.com

Inorganica Chimica Acta

Inorganica Chimica Acta 362 (2009) 833-838

www.elsevier.com/locate/ica

First example of an imine addition to coordinated isonitrile

Konstantin V. Luzyanin^{a,b}, M. Fátima C. Guedes da Silva^{a,c}, Vadim Yu. Kukushkin^{b,d,*}, Armando J.L. Pombeiro^{a,*}

^a Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

^b Department of Chemistry, St. Petersburg State University, 198504 Stary Petergof, Russian Federation

^c Universidade Lusófona de Humanidades e Tecnologias, ULHT Lisbon, Campo Grande, 376, 1749-024 Lisbon, Portugal

^d Institute of Macromolecular Compounds of the Russian Academy of Sciences, V. O. Bolshoi Pr. 31, 199004 St. Petersburg, Russian Federation

Received 10 December 2007; accepted 10 February 2008 Available online 20 February 2008

Dedicated to Professor Bernhard Lippert as a sign of appreciation of his contributions to the platinum group metal chemistry.

Abstract

The interplay between cis-[PtCl₂{ $CNC_6H_3(2,6-Me_2)$ }_] and Ph₂C=NH results in the addition of benzophenone imine to one isonitrile ligand to yield the aminoimino-carbene cis-[PtCl₂{ $CNC_6H_3(2,6-Me_2)$ }{ $C(N=CPh_2)N(H)C_6H_3(2,6-Me_2)$ }]. The formulation of the latter compound is based on the coherent ¹H and ¹³C{¹H} NMR and ESI-MS data. This adduct is not stable in solution even at room temperature leading to diamino-carbene cis-[PtCl₂{ $CNC_6H_3(2,6-Me_2)$ }{ $C(NH_2)N(H)C_6H_3(2,6-Me_2)$ }], which is, formally, the product of the addition of ammonia to one isonitrile ligand in cis-[PtCl₂{ $CNC_6H_3(2,6-Me_2)$ }].

Keywords: Isonitriles; Platinum(II) complexes; Imine; Nucleophilic addition; Aminoimino-carbene; Diamino-carbene

1. Introduction

Activation of unsaturated substrates by their coordination to metal centers, especially those molecules whose reactivity is not strongly pronounced, e.g., dinitrogen, nitriles or isonitriles, is currently a research area of a paramount importance [1-9]. The activation provided by metal centers can promote chemical transformations that are not feasible for the metal-free species [4-9].

Among the reactions of coordinated nitriles and isonitriles, special attention has been dedicated to their coupling with various types of nucleophiles, for instance, bearing HN donor centers; these reactions give a great variety of new ligated species with C–N bonds [4]. In this context, the additions of ammonia, primary or secondary amines to metal-complexed RCN [4] and RNC molecules [8] are well documented and this interplay brings about formation of the amidine NH=C(R)NR'R'' and the amino-carbene C(NR'R'')N(H)R ligands, respectively.

In contrast to the additions of nucleophiles with sp³-N donor centers, interaction of RCN and RNC ligands with sp²-N nucleophiles such as imines is much less explored. Indeed, although the coupling between nitriles and imines [10–14] and heteroimines [15–19] at Pt centers has recently been observed by some of us, the corresponding reactions of metal-bound *isonitriles and imines* have never been reported up to date. In this work, we extended our previous studies on the addition of sp²-N nucleophiles to platinumbound nitriles to other Pt-ligated unsaturated substrates, *viz.* isonitriles RN \equiv C, and found the first example of RNC–imine integration to furnish an imino-carbene moiety. Isonitriles are isoelectronic with nitriles and since long have been the object of attention of some of us, namely toward their activation by coordination [7–9,20–30].

^{*} Corresponding authors. Present address: Department of Chemistry, St.Petersburg State University, 198504 Stary Petergof, Russian Federation.

E-mail addresses: kukushkin@VK2100.spb.edu (V.Yu. Kukushkin), pombeiro@ist.utl.pt (A.J.L. Pombeiro).

2. Experimental

2.1. Materials and instrumentation

Solvents were obtained from commercial sources and used as received, while chloroform was conventionally dried over CaCl₂. Benzophenone imine (Aldrich) was used without additional purification. The complex cis/trans-[PtCl₂(EtCN)₂] was prepared as previously described [31]. C, H, and N elemental analyses were carried out by the Microanalytical Service of the Instituto Superior Técnico. ESI⁺ mass-spectra were obtained on VARIAN 500-MS LC ion trap mass spectrometer. Infrared spectra (4000-400 cm⁻¹) were recorded on a BIO-RAD FTS 3000MX instrument in KBr pellets. 1D (¹H, ¹³C{¹H}, ¹⁹⁵Pt) NMR spectra and 2D (¹H, ¹H-COSY, ¹H, ¹³C-HMQC, ¹H, ¹³C-HSQC and ¹H, ¹³C-HMBC) NMR correlation experiments were recorded on Bruker Avance II+ 400 and 500 MHz (UltraShield[™] Magnets) spectrometers at ambient temperature. ¹⁹⁵Pt NMR chemical shifts are given relatively to $K_2[PtCl_6]$ (0.0 ppm).

2.2. Synthetic work

2.2.1. Synthesis of cis- $[PtCl_2\{CNC_6 H_3(2,6-Me_2)\}_2]$ (II)

A suspension of *cis/trans*-[PtCl₂(EtCN)₂] (0.38 g, 1 mmol) in CHCl₃ (20 mL) was refluxed for ca. 5 min until complete dissolution of the starting material, whereupon a solution of C \equiv NC₆H₃(2,6-Me₂) (0.26 g, 2 mmol) in CHCl₃ (5 mL) was added. In ca. 5 min after the addition, a bright yellow precipitate started to release. The reaction mixture was refluxed for 3 h giving a bright yellow precipitate under a yellow supernatant solution. The precipitate was filtered off, washed with one portion of cold acetone (10 °C; 5 mL) and with three 15-mL portions of diethyl ether and dried in vacuo at 20-25 °C. An additional amount of II was obtained upon evaporation of the filtrate from the reaction mixture to ca. 1/2 and followed by the addition of diethyl ether (5 mL). Total yield is 90%, based on Pt. Anal. Calc. for C₁₈H₁₈N₂Cl₂Pt: C, 40.92; H, 3.43; N, 5.30. Found: C, 40.80; H, 3.24; N, 5.42%. ESI+-MS, m/z: 529 [M+H]. IR spectrum (selected bands), cm⁻¹: 2920 m v(C-H), 2205, 2230 s v(C=NR), 830 m $\delta(C-H)$ (aryl). ¹H NMR spectrum in CDCl₃, δ : 2.50 and 2.51 (s, 6*H*, Me), 7.17–7.33 (m, 3*H*, aryls). ¹³C{¹H} NMR in CDCl₃, δ : 18.8 (Me), 128.5, 128.6, 130.7, 131.1, 136.2 (aryls), 117.4 (br, C \equiv NR). ¹⁹⁵Pt NMR in CDCl₃, δ : -2230 (120 Hz).

2.2.2. Reaction between **II** and $Ph_2C=NH$ taken in equimolar amounts

A solution of Ph₂C=NH (0.018 g, 0.10 mmol) in CHCl₃ (5 mL) was added to a suspension of II (0.053 g, 0.10 mmol) in CHCl₃ (10 mL) and the reaction mixture was refluxed for *ca*. 2 h until homogenization forming a bright yellow solution with some opalescence. The solution was filtered off from small undissolved impurities, evaporated to dryness at 20–25 °C under a stream of dry N₂,

and the yellow residue formed was washed with two 10mL portions of diethyl ether and dried in air at 20-25 °C. The obtained solid residue (mixture of III and IV) was analyzed by ESI-MS, NMR and IR methods. ESI⁺-MS, m/z: 748 $[M_{III}+K]^+$, 728 $[M_{IV}+H]^+$, 691 $[M_{III}-Cl+OH]^+$, 545 [M_{IV}]. ESI⁻, *m*/*z*: 748 [M_{III}+K]⁻, 708 [M_{III}-H]⁻, 364 $[M_{III}+OH]^{2-}$. ¹H NMR spectrum in CDCl₃, δ : 2.08 (s, Me), 2.12 (s, Me), 6.10–7.54 (m, aryls). $^{13}C{^{1}H}$ NMR in CDCl₃, *δ*: 9.5 (Me), 11.5 (Me), 127.8, 128.3, 128.4, 128.5, 128.7, 128.8, 129.6, 130.0, 131.7, 132.4, 134.3, 135.7 (aryls; Supplementary Fig. 1S), 172.4 (N=CPh₂), 196.2 (C=N). IR spectrum (selected bands), cm^{-1} : 3228 mw v(N-H), 3187 mw v(N–H), 2220 s v(C≡N), 2196 s v(C≡N), 1652 s v(C=N), 1619 s v(C=N), 1605 s v(C=N), 1598 s v(C=N), 1475 s v(C=C), 782 s $\delta(C-H)$, 775 s $\delta(C-H)$. Slow evaporation of an acetone solution of the obtained solid in air at 20-25 °C for 1 d gives crystals of IV suitable for Xray diffraction along with some non-crystalline material.

2.2.3. Interaction of cis- $[PtCl_2\{CNC_6H_3(2,6-Me_2)\}_2]$ and $Ph_2C=NH$ in 1:2 molar ratio

A solution of $Ph_2C=NH$ (0.036 g, 0.20 mmol) in CHCl₃ (5 mL) was added to a suspension of II (0.053 g, 0.10 mmol) in CHCl₃ (10 mL) and the reaction mixture was refluxed for *ca*. 2 h until homogenization forming a bright yellow solution. This solution was evaporated to dryness at 20–25 °C under a stream of dry N₂, and the yellow solid residue formed was washed with two 10-mL portions of diethyl ether and dried in air at room temperature. Slow evaporation of an acetone solution of the obtained solid in air at 20–25 °C for 1 d leads to crystals of V suitable for X-ray diffraction.

 $[PtCl{CNC_6H_3(2,6-Me_2)}]{C(NH_2)N(H)C_6H_3(2,6-Me_2)}$ Me_2) { $(Ph_2C=NH)$] Cl**(V)**. Anal. Calc. for C₃₁H₃₂N₄Cl₂Pt: C, 51.24; H, 4.44; N, 7.71. Found: C, 51.34; H, 4.67; N, 7.53%. IR spectrum (selected bands), cm⁻¹: 3284 mw v(N−H), 2196 s v(C≡N), 1652 w v(C=N), 1620 s v(C=N), 1598 s v(C=N), 1473 s v(C=C), 775 s δ (C–H). ESI⁺-MS, m/z: 691 $[M_{cation}-H]^+$. ¹H NMR spectrum in $(CD_3)_2CO$, δ : 2.32 (s, 6H, Me), 2.46 (s, 6H, Me), 7.10–7.78 (m, 16H, aryls). ¹³C{¹H} NMR in (CD₃)₂CO, *δ*: 18.5 and 19.2 (Me), 119.2, 121.8, 128.9, 129.3, 130.2, 138.3, 140.2, 143.2 (aryls), 118.8 (C=NR), 179.2 (N= CPh_2), 194.6 (C=N). ¹⁹⁵Pt NMR in (CD₃)₂CO, δ : -2014 (120 Hz).

2.3. X-ray structure determinations

Intensity data for complexes IV and V were collected using a Bruker AXS-KAPPA APEX II diffractometer using graphite monochromated Mo K α radiation. Data was collected at 150 K using omega scans of 0.5° per frame and a full sphere of data was obtained. Cell parameters were retrieved using Bruker SMART software and refined using Bruker SAINT on all the observed reflections. Absorption corrections were applied using SADABS. Structure was solved by direct methods by using the SHELXS-97 package [32] and refined with SHELXL-97 [33] with the WINGX graphical user interface [34]. All hydrogens were inserted in calculated positions. Least square refinement with anisotropic thermal motion parameters for all the non-hydrogen atoms and isotropic for the remaining atoms gave $R_1 = 0.0299$ (IV) and 0.0390 (V). The maximum and minimum peaks in the final difference electron density maps are close to the platinum atoms.

3. Results and discussion

For this study we addressed, on one hand, the platinum(II) isonitrile complex cis-[PtCl₂{ $CNC_6H_3(2,6-Me_2)$ }] and, on the other hand, benzophenone imine, Ph₂C=NH, which represents a stable imine useful as a model for reactivity studies [10–14].

A common method for preparation of isonitrile complexes of the type cis-[PtCl₂(CNR)₂] employs "the Magnus salts" [Pt(CNR)₄][PtCl₄], obtained from K₂[PtCl₄] and RNC in water, followed by thermolysis of [Pt(CNR)₄][PtCl₄] to furnish *cis*-[PtCl₂(CNR)₂] [35]. Other synthetic routes leading to cis-[PtX₂(CNR)₂] are also known and they include, e.g., substitution of two X⁻ ligands in $K_2[PtX_4]$ (X = Cl [36], SCN [37]) or replacement of 1,5-cyclooctadiene in cis-[PtCl₂(COD)] [38] with RNC. In our study, the complex cis-[PtCl₂{ $CNC_6H_3(2,6-Me_2)$ }] (II) was prepared by substitution of the propiononitrile ligands from cis/trans-[PtCl₂(EtCN)₂] (I) (containing ca. 80% of the *cis* isomer; based on the data of ¹H NMR spectroscopy) with $C \equiv NC_6H_3(2,6-Me_2)$. Thus, the reaction of I with $C \equiv NC_6H_3(2,6-Me_2)$ in a molar ratio 1:2 in CHCl₃ upon reflux for ca. 2 h results in formation of II, which was isolated in *ca*. 90% yield; the mixture, based on ${}^{1}\text{H}$ NMR spectroscopy data, contains ca. 95% of the cisisomer.

Complex II was characterized by elemental analyses, ESI mass-spectrometry, IR, ¹H and ¹³C{¹H} NMR spectroscopies. In the IR spectrum, II shows no $v(N \equiv C)$ vibrations from the starting nitrile complex (2314 and 2342 cm⁻¹) [31], but the spectrum displays two very strong stretches at 2205 and 2230 cm⁻¹, corresponding to $v(C \equiv N)$ of the isonitrile ligands. The latter bands allow the assignment of the *cis*-configuration of II because usually in the corresponding symmetric *trans*-forms only one $v(C \equiv N)$ signal is observed [35]. In the ¹⁹⁵Pt NMR spectrum measured in CDCl₃, one resonance emerges at -2031 ppm and it corresponds to the sole isomer, while in the ¹³C{¹H} spectrum, a weak and very broad (due to the unresolved ¹³C-¹⁹⁵Pt coupling) signal at *ca*. 117 ppm, corresponding to the Pt-bound isonitrile moiety is observed.

The interaction between the isonitrile species in II and Ph₂C=NH has been studied in CDCl₃ by ¹H and ¹³C{¹H} NMR and ESI-MS and it was found that this interplay results in the previously unreported addition of an imine to one isonitrile ligand leading to the aminoimino-carbene complex $cis-[PtCl_2 \{CNC_6H_3(2, 6-Me_2)\}$ - $\{C(N=CPh_2)N(H)C_6H_3(2,6-Me_2)\}$ (III) (Scheme 1). Thus, after mixing equimolar amounts of II and Ph₂C=NH, only one signal (ca. 178 ppm) corresponding to δ (C=N) from the free unreacted Ph₂C=NH was observed in the low-field region (150-200 ppm) of the ¹³C{¹H} spectrum. After heating of the reaction mixture at 55 °C for 2 h, two new signals emerge (at ca. 196 and 172 ppm) and they belong to the C=N(H)R and $N=CPh_2$ imine moieties from the newly formed $C(N=CPh_2)N(H)C_6H_3(2,6-Me_2)$ ligand. The inspection of the low-field region of the ${}^{13}C{}^{1}H$ spectrum (Fig. 1S; see Supplementary material) of this reaction mixture allows the recognition not only of the resonances from those groups (including corresponding aryl/phenyl signals from carbene and imine species), but also of the aryl/phenyl resonances of the unreacted isonitrile ligand, and of the free Ph₂C=O originating from the hydrolysis of Ph₂C=NH (this was proved upon addition of commercially available Ph₂C=O to a sample of a reaction solution and repeated run of the spectrum). The ¹H and ¹³C{¹H} peak assignment performed using the conventional 2D 1 H, 1 H-COSY, 1 H, 13 C-HMQC/ 1 H, 13 C-HSQC, and ¹H,¹³C-HMBC correlation experiments supports the formulation of III. ESI⁺ and ESI⁻ mass-spectra of the reaction mixture measured after heating for 2 h shows the presence of the molecular ion and certain fragmentation peaks, whose isotopic patterns are in a good agreement with the calculated ones (ESI⁺-MS, m/z: 748 [M+K]⁺, 691 $[M-Cl+OH]^+$; ESI ⁻-MS, m/z: 748 $[M+K]^-$, 708 $[M-H]^{-}$, 364 $[M+OH]^{2-}$).

In the experiment, we also observed that **III** is not stable in solution, even at room temperature, and it is gradually converts to the diamino-carbene complex *cis*-[PtCl₂-{ $CNC_6H_3(2,6-Me_2)$ }{ $C(NH_2)N(H)C_6H_3(2,6-Me_2)$ }] (**IV**); all our attempts to isolate **III** as a solid failed. Complex **IV** (Fig. 1) is at least formally a known product of the addi-

Scheme 1.

tion of ammonia to a Pt-bound isonitrile [8] and it could be formed by one of the following routes: (i) hydrolytic decomposition of **III** with formation of **IV** and liberating of the free Ph₂C=O, (ii) nucleophilic attack on platinumbound RNC by ammonia, formed upon the hydrolysis of the free Ph₂C=NH. However, the current system does not allow the discrimination between these routes.

The influence of the molar ratio between the reactants (II and Ph₂C=NH) on the composition of products in the final reaction mixture and on the reaction rates in different solvents was additionally studied. Thus, when the molar ratio was 1:1, the reaction mixture after 2 h refluxing comprised III and IV in *ca.* equal proportions, while after 12 h under reflux it contained *ca.* 80% of IV. After one week at 20–25 °C, the reaction mixture contained *ca.* 50% of IV, along with some yet unidentified by-products. When the reaction was performed in a 1:2 molar ratio, [PtCl{*C*NC₆H₃(2,6-Me₂)}{*C*(NH₂)N(H)C₆H₃(2,6-Me₂)} (Ph₂C=NH)]Cl (V), containing one coordinated benzophenone imine ligand was the isolated solid in *ca.* 80% yield.

The identification of III–V was performed using ESI-MS, 1D (1 H, 13 C{ 1 H}) and 2D (1 H, 1 H-COSY, 1 H, 13 C-HMQC, 1 H, 13 C-HSQC, and 1 H, 13 C-HMBC) NMR experiments and X-ray diffraction (for IV and V). In addition, V was isolated in a pure form and characterized by elemental analyses (C, H, N).

The structures of IV and V have been determined by Xray single-crystal diffraction (Figs. 2 and 3), and represent the first crystallographic evidence for the ammonia-isonitrile coupling products ligated to a Pt^{II} center. In the crystal unit of IV, two similar molecules are detected. In IV, the chlorides are in the cis-position [Pt(1)-Cl(11) 2.3228(16), Pt(1)-Cl(12) 2.366(2) Å] and one isonitrile $CNC_6H_3(2,6-$ Me₂) and one diamino-carbene $C(NH_2)N(H)C_6H_3(2,6-$ Me₂) complete the slightly distorted square planar environment [Cl(11)-Pt(1)-C(1) 177.38(18)°, Cl(12)-Pt(1)-C(11) $179.07(17)^{\circ}$]. The newly formed diamino-carbene ligand is in the *E*-configuration, and the Pt– $C_{carbene}$ [Pt(1)–C(11) 1.983(7) Å] bond distance is in a good agreement with that previously observed in the related complex [Pt{ η^2 -(S,S')- $S_2C = C(C(O)Me) (CNBu^t) (C(NEt_2)(NHBu^t)) [2.053(2) Å]$ [39], while the C_{carbene}-N [C(11)-N(11) 1.295(8)] distance is slightly shorter than that in the former $[1.334(3) \text{ \AA}]$ [39]. The C(1)–N(1) triple bond of the unreacted isonitrile

Fig. 2. Thermal ellipsoid view of complex **IV** with atomic numbering scheme. Thermal ellipsoids are drawn with 50% probability. Selected bond lengths (Å) and angles (°): Pt(1)-C(1) 1.884(6), Pt(1)-C(11) 2.3228(16), C(1)-N(1) 1.152(9), Pt(1)-C(11) 1.983(7), C(11)-N(10) 1.333(9), C(11)-N(11) 1.295(8), N(11)-C(12) 1.435(10), N(1)-C(101) 1.385(9), Pt(1)-C(1)-N(1) 175.8(7), Cl(11)-Pt(1)-C(1) 177.38(18), Cl(12)-Pt(1)-C(11) 179.07(17), C(1)-N(1)-C(101) 170.5(6), C(11)-N(11)-C(12) 128.0(6).

Fig. 3. Thermal ellipsoid view of complex V with atomic numbering scheme. Thermal ellipsoids are drawn with 50% probability. Selected bond lengths (Å) and angles (°): Pt(1)–C(1) 1.890(7), Pt(1)–C(2) 1.995(6), Pt(1)–Cl(1) 2.3613(15), Pt(1)–N(3) 2.038(6), C(1)–N(1) 1.151(9), C(2)–N(2) 1.330(8), N(3)–C(3) 1.279(9), C(2)–N(22) 1.310(8), N(1)–C(11) 1.415(9), N(2)–C(21) 1.441(8), Cl(1)–Pt(1)–(C2) 179.13(17), C(1)–Pt(1)–N(3) 171.6(3), Pt(1)–C(1)–N(1) 172.2(6), Pt(1)–C(2)–N(2) 119.8(4), Pt(1)–N(3)–C(3) 135.6(5), C(1)–N(1)–C(11) 175.2(7), C(2)–N(2)–C(21) 125.2(6).

moiety [1.152(9) Å] is of a typical value for platinum complexes containing the $CNC_6H_3(2,6-Me_2)$ ligand, e.g., as reported in $[Pt{\eta^2-(S,S')-S_2C= C{C(O)Me}_2}{CNC_6H_3-(2,6-Me_2)}_2]$ [1.152(3) Å] [39]. All other bond lengths are of normal values and agree with those observed in related platinum(II) aminocarbene and isonitrile complexes [8,9].

The coordination polyhedron of V is a slightly distorted square plane [Cl(1)-Pt(1)-(C2) 179.13(17)°, C(1)-Pt(1)-N(3) 171.6(3)°]. In V, the chloride is in the *trans* position to the diamino-carbene ligand $C(NH_2)N(H)C_6H_3(2,6 Me_2$), with the coordinated benzophenone imine $Ph_2C=NH$ and one isonitrile $CNC_6H_3(2,6-Me_2)$ completing the coordination environment. The carbene ligand is in the E-configuration and both Pt-Ccarbene [Pt(1)-C(2) 1.995(6) Å] and $C_{carbene} - N [C(2) - N(2) 1.330(8) Å]$ distances are in a good agreement with those previously observed in the related diamino-carbene complex [Pt-{ η^2 -(*S*,*S'*)-S₂C=C(C(O)Me){(CNBu^t){C(NEt₂)(NHBu^t)}] [2.053(2) and 1.334(3) Å, correspondingly] [39]. The C(1)-N(1) triple bond of the isonitrile ligand [1.151(9) Å] is of a normal value for the triple CN bond and coherent with that observed in the related isocyanide platinum complex $[Pt{\eta^2-(S,S')-S_2C=C{C(O)Me}_2}{CNC_6H_3(2,6-Me_2)}_2]$ [1.152(3) Å] [39]. The Pt(1)–N(3) distance [2.038(6) Å]between the metal atom and the ligated Ph₂C=NH agrees with that reported in the related (benzophenone imine)Pt^{II} complexes, e.g., [PtCl₂(Ph₂C=NH)(R₂SO)][2.017-2.024 Å] [40]. In the Ph₂C=NH moiety, the distance C(3)-N(3) [1.279(9) Å] is of a typical C=N bond, and its value correlates with that in $[PtCl_2(Ph_2C=NH)(R_2SO)]$ [1.26–1.29 Å] [40]. All other bond lengths are of normal values and they agree with those reported for related platinum(II) aminocarbene and isonitrile complexes [8,9].

In both complexes IV and V, the C=N(H)C_{aryl} moiety of the diamino-carbene ligands is roughly planar and the C=N bond has a double bond character, what is accounted for by the greater weight of the form $^{-}C(=N^{+}HR)(NH_{2})$ relatively to $^{-}C(NHR)(=N^{+}H_{2})$.

4. Conclusions

To summarize, we observed the first example of reaction between a Pt-bound isonitrile and an imine, i.e., Ph₂C=NH, which results in the addition of the latter to the former speto give the aminoimino-carbene complex cies cis-[PtCl₂{ $CNC_6H_3(2,6-Me_2)$ }{ $C(N=CPh_2)N(H)C_6H_3(2,6-Me_2)$ } Me₂)}](III). This addition product is not stable in solution, even at room temperature, and it converts to cis- $[PtCl_{2} \{CNC_{6}H_{3}(2,6-Me_{2})\} \{C(NH_{2})N(H)C_{6}H_{3}(2,6-Me_{2})\}]$ (IV). Further works of our group in this direction will be focused on the extension of this type of reaction to other imines and isonitriles with the aim to discover more chemically stable systems and to investigate their properties.

Acknowledgments

This work has been partially supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal, and its POCI 2010 program (FEDER funded). K.V.L. express gratitude to FCT and the POCI program (FEDER funded), Portugal, for a fellowship (Grant SFRH/BPD/ 27094/2006) and V.Y.K. is grateful to the FCT (Cientista Convidado/Professor at the Instituto Superior Técnico, Portugal). This work has also been supported by the Russian Fund for Basic Research (Grant 06-03-32065).

Appendix A. Supplementary material

CCDC 670267 and 670268 contain the supplementary crystallographic data for *cis*-[PtCl₂{ $CNC_6H_3(2,6-Me_2)$ }-{ $C(NH_2)N(H)C_6H_3(2,6-Me_2)$ }] and [PtCl{ $CNC_6H_3(2,6-Me_2)$ }-{ $C(NH_2)N(H)C_6H_3(2,6-Me_2)$ }(Ph₂C=*N*H)]Cl. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ica.2008.02.026.

References

- A.J.L. Pombeiro, V.Yu. Kukushkin, Ligand reactivity: general introduction, 2nd ed., in: A.B.P. Lever (Ed.), Comprehensive Coordination Chemistry, vol. 1, Elsevier, New York, 2004, p. 585 (Chapter 1.29).
- [2] J.A. Davies, C.M. Hockensmith, V.Yu. Kukushkin, Yu.N. Kukushkin, Synthetic Coordination Chemistry: Principles and Practice, World Scientific, Singapore, New Jersey, 1996, p. 492.
- [3] A.J.L. Pombeiro, V.Yu. Kukushkin, Reactions of coordinated nitriles, 2nd ed., in: A.B.P. Lever (Ed.), Comprehensive Coordination Chemistry, vol. 1, Elsevier, 2004, p. 639 (Chapter 1.34).
- [4] V.Yu. Kukushkin, A.J.L. Pombeiro, Chem. Rev. 102 (2002) 1771.
- [5] N.A. Bokach, V.Yu. Kukushkin, Russ. Chem. Rev. 74 (2005) 164.
- [6] R.A. Michelin, M. Mozzon, R. Bertani, Coord. Chem. Rev. 147 (1996) 299.
- [7] A.J.L. Pombeiro, R.L. Richards, Coord. Chem. Rev. 104 (1990) 13.
- [8] R.A. Michelin, A.J.L. Pombeiro, M.F.C. Guedes da Silva, Coord. Chem. Rev. 218 (2001) 75.
- [9] A.J.L. Pombeiro, M.F.C. Guedes da Silva, R.A. Michelin, Coord. Chem. Rev. 218 (2001) 43.
- [10] D.A. Garnovskii, V.Yu. Kukushkin, M. Haukka, G. Wagner, A.J.L. Pombeiro, J. Chem. Soc., Dalton Trans. (2001) 560.
- [11] N.A. Bokach, V.Yu. Kukushkin, M. Haukka, J.J.R. Fraústo da Silva, A.J.L. Pombeiro, Inorg. Chem. 42 (2003) 3602.
- [12] P.V. Gushchin, N.A. Bokach, K.V. Luzyanin, A.A. Nazarov, M. Haukka, V.Yu. Kukushkin, Inorg. Chem. 46 (2007) 1684.
- [13] G.H. Sarova, N.A. Bokach, A.A. Fedorov, M.N. Berberan-Santos, V.Yu. Kukushkin, M. Haukka, J.J.R. Fraústo da Silva, A.J.L. Pombeiro, Dalton Trans. (2006) 3798.
- [14] N.A. Bokach, T.V. Kuznetsova, S.A. Simanova, M. Haukka, A.J.L. Pombeiro, V.Yu. Kukushkin, Inorg. Chem. 44 (2005) 5152.
- [15] P.F. Kelly, A.M.Z. Slawin, J. Chem. Soc., Chem. Commun. (1999) 1081.
- [16] N.A. Bokach, V.Yu. Kukushkin, P.F. Kelly, M. Haukka, A.J.L. Pombeiro, Dalton Trans. (2005) 1354.
- [17] N.A. Bokach, M.R.J. Elsegood, K.E. Holmes, P.F. Kelly, V.Yu. Kukushkin, A.V. Makarycheva-Mikhailova, J. Parr, A.J.L. Pombeiro, J.M. Stonehouse, Phosphorus, Sulfur, Silicon Relat. Elem. 179 (2004) 983.
- [18] A.V. Makarycheva-Mikhailova, N.A. Bokach, V.Yu. Kukushkin, P.F. Kelly, L.M. Gilby, M.L. Kuznetsov, K.E. Holmes, M. Haukka, J. Parr, J.M. Stonehouse, M.R.J. Elsegood, A.J.L. Pombeiro, Inorg. Chem. 42 (2003) 301.
- [19] A.V. Makarycheva-Mikhailova, S.I. Selivanov, N.A. Bokach, V.Yu. Kukushkin, P.F. Kelly, A.J.L. Pombeiro, Russ. Chem. Bull., Int. Ed. (2004) 1681.
- [20] A.J.L. Pombeiro, Polyhedron 8 (1989) 1595.
- [21] A.J.L. Pombeiro, M.F.C. Guedes da Silva, J. Organomet. Chem. 617–618 (2001) 65.

- [22] Y. Wang, J.J.R. Fraústo da Silva, A.J.L. Pombeiro, M.A. Pellinghelli, A. Tiripicchio, R.A. Henderson, R.L. Richards, J. Chem. Soc., Dalton Trans. (1995) 1183.
- [23] R.A. Henderson, A.J.L. Pombeiro, R.L. Richards, J.J.R. Fraústo da Silva, Y. Wang, J. Chem. Soc., Dalton Trans. (1995) 1193.
- [24] M.F.C. Guedes da Silva, J.J.R. Fraústo da Silva, A.J.L. Pombeiro, M.A. Pellinghelli, A. Tiripicchio, J. Chem. Soc., Dalton Trans. (1996) 2763.
- [25] M.F.C. Guedes da Silva, P.B. Hitchcock, D.L. Hughes, K. Marjani, A.J.L. Pombeiro, R.L. Richards, J. Chem. Soc., Dalton Trans. (1997) 3725.
- [26] Y.-Y. Tong, J.J.R. Fraústo da Silva, A.J.L. Pombeiro, G. Wagner, R. Herrmann, J. Organomet. Chem. 552 (1998) 17.
- [27] S.S.P.R. Almeida, M.F.C. Guedes da Silva, J.J.R. Fraústo da Silva, A.J.L. Pombeiro, J. Chem. Soc., Dalton Trans. (1999) 467.
- [28] L. Zhang, M.P. Gamasa, J. Gimeno, R.J. Carbajo, F. López-Ortiz, M.F.C. Guedes da Silva, A.J.L. Pombeiro, Eur. J. Inorg. Chem. (2000) 341.
- [29] M.F.C. Guedes da Silva, M.A.N.D.A. Lemos, J.J.R. Fraústo da Silva, A.J.L. Pombeiro, M.A. Pellinghelli, A. Tiripicchio, J. Chem. Soc., Dalton Trans. (2000) 373.

- [30] M.L. Kuznetsov, A.J.L. Pombeiro, Dalton Trans. (2003) 738.
- [31] V.Yu. Kukushkin, Å. Oskarsson, L.I. Elding, Inorg. Synth. 31 (1997) 279.
- [32] G.M. Sheldrick, Acta Crystallogr., Sect. A 46 (1990) 467.
- [33] G.M. Sheldrick, SHELXL-97, University of Gottingen, Germany, 1997.
- [34] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
- [35] F. Bonati, G. Minghetti, J. Organomet. Chem. 24 (1970) 247.
- [36] H.J. Keller, R. Lorentz, H.H. Rupp, J. Weiss, Z. Naturforsch., Teil B 27 (1972) 631.
- [37] Yu.N. Kukushkin, L.V. Vrublevskaya, T.S. Isachkina, S.I. Bakhireva, Zh. Neorg. Khim. 23 (1978) 2457.
- [38] R.A. Michelin, L. Zanotto, D. Braga, P. Sabatino, R.J. Angelici, Inorg. Chem. 27 (1988) 85.
- [39] J. Vicente, M.T. Chicote, S. Huertas, Inorg. Chem. 42 (2003) 4268.
- [40] Y.Yu. Scaffidi-Domianello, A.A. Nazarov, M. Haukka, M. Galanski, B.K. Keppler, J. Schneider, P. Du, R. Eisenberg, V.Yu. Kukushkin, Inorg. Chem. 46 (2007) 4469.