On the Use of the Haloetherification Method to Synthesize Fully Functionalized Disaccharides

Richard W. Friesen and Samuel J. Danishefsky*

Department of Chemistry, Yale University, New Haven, Connecticut 06511 (Received in Canada 28 April 1989)

Synthetic routes to the fully functionalized, α -linked disaccharides 19, 21 and 25 are described starting from a common intermediate, the iodo acetate 15. This substance was in turn prepared via a haloetherification reaction between the allal derivative 13, the galactose alcohol 14 and an "iodonium" equivalent.

In the most important of the glycosylation protocols used to date, the oxidation levels of both the glycosyl donor and glycosyl acceptor are not altered.¹ An interesting exception to this pattern is the strategy of coupling a glycal (1) to a suitably differentiated glycosyl acceptor (2) through a haloetherification reaction of the type discovered and developed by Lemieux² and Thiem³. In this process the glycosyl donor (i.e., the glycal) is oxidized en route to dissacharide 3 (see eq. 1).

Our interest in this sort of reaction initially arose from our research on the Lewis acid catalyzed diene-aldehyde cyclocondensation reaction. As a consequence of those studies, glycals which are susceptible to a wide range of structural modification at C₆ and C₄, can be synthesized in two steps (see eq. 2).⁴ In our total synthesis of avermectin A_{1a}, the cyclocondensation methodology was used to generate the L-oleandrose residues.^{5a,b,c} These residues were combined and joined (in two ways) to the aglycone using haloetherification strategies.

One of the attractions of the haloetherification approach is that it leads quite stereoselectivity to the formation of a $2-\beta$ -halo- $1-\alpha$ -glycoside through the apparent trans diaxial addition of "halonium" and alkoxy residues across the glycal double bond. Recently a major advance in the haloetherification was achieved in our laboratory.⁶ By judicious selection of the protecting groups, it is possible to order the sense of oxidative coupling of two different glycals. This is seen in the coupling of glycals 4 and 5 to afford 6 (Scheme 1). The principle seems to be that the iodonium equivalent attacks that glycal which bears ether rather than ester protecting groups. Since only glycal 5 has the free hydroxyl function which allows it to serve as the glycosyl acceptor, the sense of disaccharide formation is, in effect, dictated. Compound 6 upon conversion (two steps) to di-TBS ether 7 functions exclusively as the glycosyl donor with respect to glycal 8. Trisaccharide 9 is the sole product.

Scheme I

The one feature of the iodoglycosylation route which has proven to be unsatisfactory is the difficulty associated with converting the 2- β -iodo-1- α -glycoside product (cf. 10) to a disaccharide bearing a 2-hetero function (Scheme II). The only generally encountered products derived from the transformation of systems of the type 10 have been 2-desoxydisaccharides (cf. 11) (via the action of various tinhydrides).⁷ For reasons which are not completely clear, attempted $S_N 2$ -like displacements (cf. 10 to12) of the C_2 - β -iodo function by oxygen or nitrogen based nucleophiles have been either totally unproductive or have been attended by unacceptably low yields.^{8,9}

Scheme II

In this paper we present an approach which circumvents the apparent nonsusceptibility of systems of the type 10 to intermolecular displacement. Two lines of inquiry were investigated. For each of these departures the starting material was the D-allal derivative $13.^{10}$ Reaction of 13 with N-iodosuccinimide and glycosyl acceptor 14^{11} afforded 15 (71%, Scheme III). A comparable result (68%) was achieved using

Scheme III*

^aReaction Conditions: (i) NIS, MeCN, 4A powdered molecular sieves; (ii) !(*sym*-collidine)₂ClO₄, CH₂Cl₂, 4A sieves; (iii) NaOMe, MeOH, 0°C to rt; (iv) NaN₃, DMF, 90-95°C, 3 days; (v) PhCOCl, pyridine, 50°C; (vi) H₂, Pd/C, EtOAc. I(sym-collidine)₂ClO₄ as the oxidative coupling reagent.¹² Treatment of 15 with sodium methoxide-methanol gave, in 98% yield, the α -oxirane 16.¹³ The latter undergoes smooth azidolysis to provide 17 (92%). That nucleophilic attack of azide on the oxirane had indeed occurred at C₂ in accord with the Furst-Plattner rules¹⁴ was confirmed by inspection of the ¹H NMR spectrum of 18 (in C₆D₆). H³ was observed as a triplet (δ 5.62) with J = 2.9 Hz. Had S_N2 epoxide opening been effected at C₃, the resulting methine proton at C₃ would be expected to have a much larger coupling to the vicinal protons at C₄ and C₂ (trans-diaxial relationships). Compound 17 was converted via 18 to the novel α -linked 2-deoxy-2-aminoaltrose derivative 19 (85%).

An alternative sequence leading to the α -linked mannose precursor 21 started with the reaction of 17 with triflic anhydride to afford 20 (Scheme IV). The axial triflate suffered smooth displacement through the action of sodium benzoate in the presence of tetra-N-butylammonium bisulfate in benzene/water. Compound 21 was thus obtained in 77% yield, accompanied by ca. 18% of 22. The methine proton, H³, exhibited the expected doublet of doublets (δ 5.76, J = 3.9, 10.2 Hz) in the ¹H NMR spectrum of 21 (in CDCl₃).

Scheme IV[#]

^aReaction Conditions: (i) Tf₂O, pyridine, 0°C to rt; (ii) PhCO₂Na, ⁿBu₄NHSO₄, PhH, H₂O, reflux.

A route was also developed to the α -linked mannose disaccharide 24 (Scheme V). This started with the treatment of 15 with zinc in ethanol to give a 95% yield of the reductive elimination product 23. The latter, on treatment with catalytic osmium tetroxide, afforded a single diol 24, which upon acetylation gave rise to 25. Inspection of the ¹H NMR spectrum of 25 (in C₆D₆) indicated that the bis-hydroxylation had occurred stereoselectively on the β -face of the C₂-C₃ olefin. Thus, the C₃ proton (δ 5.92) is coupled to H² and H⁴ with coupling constants of 3.5 and 9.8 Hz, respectively. A much smaller J_{3,4} value would be expected (axial-equatorial relationship) had α -face functionalization been operative.

Scheme V*

^aReaction Conditions: (i) Zn, EtOH(95%), reflux; (ii) OsO₄(catalytic), NMO, acetone, H₂O; (iii) Ac₂O, Et₃N, DMAP, CH₂Cl₂.

In summary, it has been demonstrated here that the use of allal derivative 13 is a promising one in terms of synthesizing certain kinds of oligosaccharides. It allows one to take advantage of the stereospecificity and operational simplicity of the iodoetherification route to disaccharides, while providing a capability to introduce common hetero based functionalities in common stereochemical patterns at C_2 and C_3 .

Of course, we well recognize that it would be preferable if technology could be developed to achieve the oxidative coupling of glycals wherein the axial substituent entered at C_2 could be directly replaced with external nucleophiles. This goal is being addressed, as are additional applications of the oxidative coupling of glycals.

Experimental Section

General Procedure. Combustion analyses were performed by Galbraith Laboratories, Inc. Infrared spectra were recorded on a Perkin Elmer 1420 Ratio Recording Infrared Spectrophotometer. Low resolution and high resolution mass spectra were determined on a Hewlett-Packard 5985 quadrapole mass spectrometer and a Kratos MS80RFA spectrometer, respectively. High field NMR spectra were recorded on a Bruker WM-250 NMR instrument. Flash chromatography was performed on EM Science Kieselgel 60 (230-400 mesh) eluting with the indicated solvent systems. I(sym-collidine)₂ClO₄ was prepared according to the procedure of Lemieux¹². N-iodosuccinamide was recrystallized from dioxane-CCl4.

1,2;3,4-Di-O-isopropylidene-6-O-(3-O-acetyl-4,6-O-benzylidene-2-deoxy-2-iodo- α -D-altropyranosyl)- α -D-galactopyranose 15.

To a stirred solution of 3-O-acety1-4,6-O-benzylidene-D-allal 13 (344.4 mg, 1.25 mmol) and 1,2;3,4-di-O-isopropylidene-a-D-galactopyranose 14 (356.9 mg, 1.37 mmol) in dry acetonitrile (7 mL, 0.18M) was added approximately 350 mg of 4A powdered molecular sieves. The mixture was stirred for 30 min at room temperature and then N-iodosuccinamide (421.9 mg, 1.87 mmol) was added. After being stirred for 15h, the mixture was filtered and ethyl acetate (100 mL) and 10% aqueous $Na_2S_2O_3$ (100 mL) were added. The organic phase was removed and the aqueous phase was extracted with ethyl acetate (2X50 mL). The combined organics were dried (MgSO₄) and concentrated. Chromatography of the residual oil (hexanes:ethyl acetate. 2:1 v/v) provided the iodo acetate 15 (590.2 mg; 71%) as a foam: $[\alpha]_D^{23}$ -10.1° (c 0.51, CHCl₃); IR (CHCl₃) 3010, 1735, 1380, 1235, 1125, 1070, 1005 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 1.33, 1.35, 1.46 and 1.54 (s each, 3H each), 2.13 (s, 3H), 3.62 (dd, 1H, J=6.3, 10.5 Hz), 3.82 (dd, 1H, J=6.3, 10.4 Hz), 3.83 (t, 1H, J=9.5 Hz), 3.96 (ddd, 1H, J=1.9, 6.3, 6.3 Hz), 4.22 (dd, 1H, J=1.9, 8.0 Hz), 4.32-4.39 (m, 2H), 4.46 (dd, 1H, J=4.8, 9.5 Hz). 4.50-4.55 (m, 2H), 4.64 (dd, 1H, J=2.6, 8.0 Hz), 5.13 (s, 1H), 5.27 (t, 1H, J=2.6 Hz), 5.55 (d, 1H, J=5.0 Hz), 5.65 (s, 1H), 7.35-7.52 (m, 5H); ¹³C NMR (63 MHz, CDCl₃) δ 20.9, 22.4, 24.5, 24.9, 26.0, 26.1, 59.5, 66.3, 67.0, 69.1, 70.5, 70.7, 71.1, 71.2, 73.2, 96.4, 101.8, 102.0, 108.5, 109.4, 126.2, 128.2, 129.1, 137.2, 170.5; Anal. calcd. for C₂₇H₃₅IO₁₁: C, 48.95; H, 5.32; Found: C, 48.95; H, 4.93.

In a similar procedure, employing 595.8 mg (2.16 mmol) of glycal 13, 673.5 mg (2.59 mmol) of alcohol 14 and 1.12 g of I(sym-collidine)₂ClO₄ in CH₂Cl₂ (30 mL, 0.07M), 976.9 mg (68%) of the iodo acetate 15 was obtained.

1,2;3,4-Di-O- isopropylidene-6-O-(2,3-anhydro-4,6-O-benzylidene- α -D-allopyranosyl)- α -D-galactopyranose 16.

To a cold (0°C) stirred solution of the iodo acetate 15 (200.0 mg, 0.30 mmol) in anhydrous methanol (5 mL) was added sodium methoxide (32.4 mg, 0.60 mmol) and the resulting solution was stirred for 1h at 0°C and 1h at room temperature. The mixture was concentrated and subjected to chromatography (hexanes:ethyl acetate, 3:2 v/v) to provide the epoxide 16 (146.2 mg; 98%) as a colorless foam: $[\alpha]_D^{23}$ +21.9° (c 0.72, CHCl₃); IR (CHCl₃) 3010, 1380, 1070 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 1.34, 1.37, 1.46 and 1.56 (s each, 3H each), 3.52-3.56 (m, 2H), 3.68 (t, 1H, J=10.0 Hz), 3.81 (dd, 1H, J=8.6, 10.3 Hz), 3.86 (dd, 1H, J=6.2, 10.3 Hz), 3.96 (d, 1H, J=9.1 Hz), 4.05-4.17 (m, 2H), 4.26 (dd, 1H, J=5.0, 10.0 Hz), 4.33 (dd, 1H, J=2.4, 5.0 Hz), 4.37 (dd, 1H, J=1.8, 8.0 Hz), 4.64 (dd, 1H, J=2.4, 8.0 Hz), 5.10 (m, 1H), 5.52 (d, 1H, J=5.0 Hz), 5.58 (s, 1H), 7.33-7.57 (m, 5H); ¹³C NMR (63 MHz, CDCl₃) δ 24.5, 24.8, 26.0, 26.1, 50.5, 53.1, 60.1, 65.9, 66.9, 68.8, 70.56, 70.64, 70.8, 77.9, 94.8, 96.3, 102.6, 108.5, 109.1, 126.2, 128.2, 129.1, 137.2; Anal. calcd. for C₂₅H₃₂O₁₀: C, 60.97; H, 6.55; Found: C, 61.11; H, 6.83.

1,2;3,4-Di-O-isopropylidene-6-O-(2-azido-2-deoxy-4,6-O-benzylidene- α -D-altropyranosyl)- α -D-galactopyranose 17.

A stirred solution/suspension of epoxide 16 (80.0 mg, 0.16 mmol) and sodium azide (52.7 mg, 0.81 mmol) in dry DMF (1 mL) was heated at 90-95°C for 72h. After 24h and 48h, respectively, more sodium azide (21.1 mg, 0.32 mmol) was added. The mixture was cooled to room temperature, water (10 mL) and ether (10 mL) were added, and the organic phase was separated. The aqueous phase was extracted with (3X20 mL) and the combined organics were washed with water (2X5 mL), dried ether Chromatography of the residual oil (hexanes:ethyl acetate, (MgSO₄) and concentrated. 2:1 v/v) provided the azido alcohol 17 (80.1 mg; 92%) as a colorless foam: $[\alpha]_D^{23}$ +6.20 (c 0.64, CHCl₃); IR (CHCl₃) 3500, 3010, 2110, 1380, 1070 cm⁻¹; ¹H NMR (250 MHz. CDCl₃) δ 1.34, 1.36, 1.47 and 1.54 (s each, 3H each), 3.22 (d, 1H, J=8.7 Hz), 3.70 (dd, 1H, J=5.0, 10.1 Hz), 3.79-4.05 (m, 5H), 4.16 (dm, 1H, J=8.7 Hz), 4.24-4.37 (m, 4H), 4.64 (dd, 1H, J=2.4, 7.8 Hz), 4.92 (s, 1H), 5.56 (d, 1H, J=5.0 Hz), 5.65 (s, 1H), 7.33-7.57 (m, 5H); 13C NMR (63 MHz, CDCl₃) & 24.4, 24.8, 25.9, 26.0, 58.4, 61.9, 65.9, 66.7, 67.7, 68.9, 70.6, 70.8, 71.1, 75.9, 96.2, 98.0, 102.2, 108.6, 109.5, 126.2, 128.1, 129.0, 137.2; FAB-MS, m/e 536 (M+H)+; Anal. calcd. for C25H33N3O10: C,56.07; H, 6.21; N, 7.85; Found: C, 55.88; H. 6.13: N. 7.68.

1,2;3,4-Di-O-isopropylidene-6-O-(2-azido-2-deoxy-3-O-benzoyl-4,6-O-benzylidene-α-D-altropyranosyl)-α-D-galactopyranose 18.

A stirred solution of the azido alcohol 17 (117.0 mg, 0.22 mmol) and benzoyl chloride (0.13 mL, 1.1 mmol) in pyridine (5 mL) was heated at 50°C for 2h. The reaction mixture was diluted with CH₂Cl₂ (20 mL) and washed with saturated aqueous copper(II) sulfate (2X30 mL). The aqueous phase was extracted with CH₂Cl₂ (3X10 and the combined organics were dried (MgSO₄) mL) and concentrated. Chromatography of the residual oil (hexanes: ethyl acetate, 3:1 v/v) provided the benzoate 18 (119.5 mg; 86%) as a colorless foam: $[\alpha]_D^{23}$ +14.8° (c 0.23, CHCl₃); IR (CHCl₃) 3010, 2920, 2110, 1720, 1385, 1270, 1070 cm⁻¹; ¹H NMR (250 MHz, C₆D₆) δ 1.02, 1.06, 1.34 and 1.42 (s each, 3H each), 3.50 (t, 1H, J=10.4 Hz), 3.74 (dd, 1H, J=7.9, 9.4 Hz), 3.88-3.94 (m, 3H), 4.00 (dd, 1H, J=5.9, 9.5 Hz), 4.10-4.19 (m, 3H), 4.36 (dd, 1h, J=2.3, 7.9 Hz), 4.57 (dt, 1H, J=5.1, 10.0 Hz), 4.71 (s, 1H), 5.28 (s, 1H), 5.45 (d, 1H, J=5.0 Hz), 5.62 (t, 1H, J=2.9 Hz), 7.00-7.20 (m, 6H), 7.51 (m, 2H), 8.27 (m, 2H); 13 C NMR (63) MHz, CDCl₃) & 24.4, 24.9, 26.0, 26.1, 59.5, 60.2, 65.7, 66.5, 68.2, 69.2, 70.5, 70.6, 70.7, 74.1, 96.3, 98.3, 102.2, 108.6, 109.3, 126.1, 128.2, 128.5, 129.1, 129.87, 129.92, 133.2, 137.2, 165.9; Exact mass calcd. for C₃₂H₃₈O₁₁N₃ [(M+H)⁺,CI-HRMS]: 640.2507; Found: 640.2510.

1,2;3,4-Di-O-isopropylidene-6-O-(2-amino-2-deoxy-3-O-benzoyl-4,6-O-benzylidene- α -D-altropyranosyl)- α -D-galactopyranose 19.

A solution/suspension of the azido benzoate 18 (55.5 mg, 0.087 mmol) and 10% palladium on carbon (22 mg) in ethyl acetate (3 mL) was stirred under an atmosphere of hydrogen (1 atm) for 1h. The mixture was filtered through Celite, washing with The filtrate was dried (MgSO₄) and concentrated. ether. Chromatography of the residual oil (ethyl acetate) provided the amino benzoate 19 (52.6 mg; 99%) as a colorless foam: [a]_D²³ +54.9° (c 0.82, CHCl₃); IR (CHCl₃) 3385, 3310, 2995, 2940, 1715, 1600, 1450, 1385, 1278, 1115, 1074 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) § 1.22, 1.34, 1.41 and 1.50 (s each, 3H each), 1.40-1.65 (br, 2H), 3.52 (d, 1H, J=2.6 Hz), 3.64 (t, 1H, J=8.7 Hz), 3.79-4.02 (m, 4H), 4.18 (dd, 1H, J=3.0, 9.5 Hz), 4.29 (dd, 1H, J=2.3, 5.0 Hz), 4.35-4.53 (m, 3H), 4.75 (s, 1H), 5.36 (t, 1H, J=2.6 Hz), 5.51 (d, 1H, J=5.0 Hz), 5.63 (s, 1H), 7.27-7.60 (m, 8H), 8.10 (m, 2H); ¹³C NMR (63 MHz, CDCl₃) δ 24.3, 24.9, 25.9, 26.2, 52.7, 59.6, 65.8, 66.1, 69.4, 70.36, 70.44, 70.7, 71.4, 74.2, 96.2, 101.9, 102.1, 108.5, 109.1, 126.1, 128.2, 128.4, 129.0, 129.7, 130.4, 132.8, 137.3, 165.9; Exact mass calcd. for C₃₂H₄₀O₁₁N [(M+H)⁺, CI-HRMS]: 614.2602; Found: 614.2618.

1,2;3,4-Di-O-isopropylidene-6-O-(2-azido-2-deoxy-3-O-benzoyl-4,6-O-benzylidene-α-D-mannopyranosyl)-α-D-galactopyranose 21.

To a cold (0°C), stirred solution of the azido alcohol 17 (110.0 mg, 0.21 mmol) and pyridine (0.2 mL, 2.5 mmol) in CH_2Cl_2 (5 mL) was added triflic anhydride (0.1 mL, 0.59 mmol). The solution was stirred at 0°C for 10 min and 30 min at room temperature and then water (10 mL) was added. The organics were separated and the aqueous phase was extracted with CH_2Cl_2 (2X10 mL). The combined organics were dried (MgSO₄) and concentrated. The crude triflate **20** exhibited: IR (CHCl₃) 3010, 2110, 1725, 1220, 1070 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 1.35, 1.37, 1.47 and 1.56 (s each, 3H each), 3.70-3.90 (m, 3H), 3.99-4.06 (m, 2H), 4.13 (d, 1H, J=3.1 Hz), 4.27-4.40 (m, 4H), 4.66 (dd, 1H, J=2.5, 8.0 Hz), 4.96 (s, 1H), 5.10 (br t, 1H, J=2.5 Hz), 5.54 (d, 1H, J=5.0 Hz), 5.63 (s, 1H), 7.35-7.51 (m, 5H).

The crude material was dissolved in benzene (10 mL) and water (2 mL). Sodium benzoate (200 mg, 1.39 mmol) and tetra-N-butylammonium bisulfate (100 mg, 0.29 mmol) were added. The resulting mixture was refluxed for 21h and then cooled to room temperature. Water (10 mL) was added and the mixture was extracted with ether (3X20 mL). The combined ethereal extracts were dried (MgSO₄) and concentrated. Chromatography of the residual oil (hexanes:ethyl acetate, 4:1 v/v) provided two compounds. The less polar material, the enol ether 22 (19.6 mg; 18%) was not fully characterized but exhibited: IR (CHCl₃) 3010, 2110, 1725, 1685, 1385, 1070 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) & 1.35, 1.36, 1.47 and 1.57 (s each, 3H each), 3.65 (br d, 1H, J=5.5 Hz), 3.74-3.94 (m, 3H), 4.00 (br t, 1H, J=6.6 Hz), 4.25 (dd, 1H, J=1.7, 7.8 Hz), 4.35 (dd, 1H, J=2.5, 5.1 Hz), 4.40-4.51 (m, 2H), 4.64 (dd, 1H, J=2.8, 8.1 Hz), 5.00 (s. 1H), 5.35 (d, 1H, J = 5.5 Hz), 5.55 (d, 1H, J = 5.4 Hz), 5.60 (s, 1H), 7.35-7.60 (m, 5H).

The more polar substance, the azido benzoate 21 (100.6 mg; 77%), was obtained as a colorless foam: $[\alpha]_D^{23}$ +17.8° (c 0.59, CHCl₃); IR (CHCl₃) 3010, 2110, 1725, 1270, 1070 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 1.35, 1.37, 1.46 and 1.59 (s each, 3H each), 3.75 (dd, 1H, J=7.6, 10.0 Hz), 3.82-3.91 (m, 2H), 4.00-4.09 (m, 2H), 4.22 (t, 1H, J=9.7 Hz), 4.29-4.36 (m, 4H), 4.66 (dd, 1H, J=2.4, 7.9 Hz), 4.95 (d, 1H, J=1.1 Hz), 5.55 (d, 1H, J=5.0 Hz), 5.61 (s, 1H), 5.77 (dd, 1H, J=3.9, 10.1 Hz), 7.29-7.50 (m, 7H), 7.60 (m, 1H), 8.13 (m, 2H); ¹³C NMR (63 MHz, CDCl₃) δ 24.6, 24.9, 26.0, 26.2, 62.5, 64.2, 65.9, 66.7, 68.7, 70.5, 70.68, 70.73, 70.9, 76.3, 96.3, 99.3, 101.8, 108.7, 109.5, 126.1, 128.1, 128.4, 128.9, 129.4, 130.0, 133.3, 137.2, 165.6; FAB-MS, m/e 640 (M+H)⁺; Anal. calcd. for C₃₂H₃₇N₃O₁₁: C, 60.09; H, 5.83; N, 6.57; Found: C, 60.07; H, 6.15; N, 6.25.

1,2;3,4-Di-O-isopropylidene-6-O-(2,3-di-O-acetyl-4,6-O-benzylidene- α -D-mannopyranosyl)- α -D-galactopyranose 25.

To a stirred solution of the iodo acetate 15 (24.8 mg, 0.037 mmol) in 95% ethanol (2 mL) was added powdered zinc (45 mg, 0.67 mmol) and the resulting mixture was refluxed for 18h. After cooling to room temperature, the mixture was filtered through Celite, washing with ether. The filtrate was concentrated and redissolved in ether and washed with 10% aqueous Na₂S₂O₃. The ethereal layer was dried (MgSO₄) and concentrated. The crude olefin 23 exhibited: IR (CHCl₃) 3010, 1720, 1380, 1070 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 1.34, 1.37, 1.47 and 1.56 (s each, 3H each), 3.75-3.94 (m, 4H), 4.04-4.16 (m, 2H), 4.28-4.34 (m, 3H), 4.63 (dd, 1H, J=2.4, 7.9 Hz), 5.08 (br s, 1H), 5.52 (d, 1H, J=5.0 Hz), 5.58 (s, 1H), 5.75 (dt, 1H, J=10.3, 2.4 Hz), 6.12 (br d, 1H, J= 10.3 Hz), 7.34-7.54 (m, 5H).

To a stirred solution of the crude olefin 23 and NMO (5 mg, 0.043 mmol) in acetone (1 mL) was added 0.01 mL of a 0.157 M aqueous solution of osmium tetroxide (0.0016 mmol). The resulting mixture was stirred for 22h and then 2 drops of water, 2 drops of saturated aqueous sodium bisulfite and fluorisil were added and stirred for 45min.

The mixture was filtered through Celite, washing with ethyl acetate. The filtrate was dried (MgSO₄), concentrated and redissolved in CH₂Cl₂ (1 mL). Triethylamine (0.03 mL. 0.22 mmol), DMAP (0.5 mg, 0.004 mmol) and acetic anhydride (0.02 mL, 0.21 mmol) were added and the resulting solution was stirred for 1h. Water (10 mL) and CH₂Cl₂ (10 mL) were added and the organic phase was separated. The aqueous phase was extracted with CH2Cl2 (2X10 mL) and the combined organics were dried (MgSO4) and concentrated. Chromatography of the residual material (hexanes:ethyl acetate, 3:1 v/v) provided the bis acetate 25 (11.6 mg; 52%) as a colorless foam: $[\alpha]_D^{23}$ -12.2° (c 0.50, CHCl₃); IR (CHCl₃) 3010, 2920, 1745, 1373, 1250, 1070 cm⁻¹; ¹H NMR (250 MHz. C_6D_6) δ 1.07, 1.19, 1.46, 1.50, 1.69 and 1.77 (s each, 3H each), 3.65 (t, 1H, J=9.7 Hz), 3.84 (dd, 1H, J=6.9, 10.2 Hz), 3.97 (dd, 1H, J=6.0, 10.2 Hz), 4.06 (dd, 1H, J=1.8, 9.7 Hz), 4.17-4.31 (m, 5H), 4.49 (dd, 1H, J=2.3, 7.9 Hz), 4.97 (d, 1H, J=1.4 Hz), 5.44 (s, 1H), 5.49(d, 1H, J=5.0 Hz), 5.83 (dd, 1H, J=1.5, 3.5 Hz), 5.92 (dd, 1H, J=3.5, 9.8 Hz), 7.10-7.25 (m, 3H), 7.60 (m, 2H); ¹³C NMR (63 MHz, CDCl₃) & 20.8, 24.4, 24.9, 25.9, 26.1, 63.9, 65.8, 66.1, 66.9, 68.4, 68.7, 70.0, 70.6, 70.7, 76.1, 96.2, 99.0, 101.9, 108.7, 109.3, 126.2, 128.2, 129.0, 137.2, 169.7; Anal. calcd. for C₂₉H₃₈O₁₃: C, 58.58; H, 6.44; Found: C, 58.63;

H, 6.40.

Acknowledgements: We wish to thank the National Institutes of Health (PHS grant AI 16943) for financial support of this work. I.W. Killam and NSERC Postdoctoral Fellowships to R.W.F. are gratefully acknowledged. NMR spectra were obtained through the auspices of the Northeast Regional NSF/NMR facility at Yale University, which was supported by NSF Chemistry Division Grant CHE 7916210.

References and Notes

- For two recent reviews of glycosylation see: (a) Paulsen, H. Angew. Chemie Int. Ed. Engl. 1982, 21, 155. (b) Schmidt, R.R. Angew. Chemie. Int. Ed. Engl. 1986, 25, 212.
- For earlier work in this field see: (a) Lemieux, R.U.; Can. J. Chem. 1964, 42 1417.
 (b) Lemieux, R.U.; Fraser-Reid, B.; Can. J. Chem. 1965, 43, 1460. (c) Lemieux, R.U.; Morgan, A.R. Can. J. Chem. 1965, 43, 2190.
- cf inter alia. (a) Thiem, J.; Karl, H.; Schwentner, J. Synthesis 1978, 696. (b) Thiem, J.; Elvers, J.; J. Chem. Ber. 1979, 112, 818. (c) Thiem, J.; Ossowski, P.; J. Carbohydr. Chem. 1984, 3, 287. (d) Thiem, J.; Prahst, A.; Wendt, T.; Liebigs Am. Chem. 1986, 1044. (e) Thiem, J. in Trends in Synthetic Carbohydrate Chemistry, Horton, D.; Hawkins, L.D.; McGarvey, G.L.(Eds.), ACS Symposium Series #386, American Chemical Society, Washington, D.C., 1989, Chapter 8.
- 4. Danishefsky, S.J. Aldrichimica Acta 1986, 19, 59.
- (a) Danishefsky, S.J.; Armistead, D.M.; Wincott, F.E.; Selnick, H.G.; Hungate, R. J. Am. Chem. Soc. 1987, 109, 8117. (b) Danishefsky, S.J.; Selnick, H.G.; Armistead, D.M.; Wincott, F.E. J. Am. Chem. Soc. 1987, 109, 8119. (c) Danishefsky, S.J.; Armistead, D.M.; Wincott, F.E.; Selnick, H.G.; Hungate, R. J. Am. Chem. Soc. 1989, 111, 2967.

- 6. Friesen, R.W.; Danishefsky, S.J. J. Am. Chem. Soc., in press.
- 7. See references 2(b) and 5(c) and references therein.
- For a recent study on the displacement of the triflate group in benzyl 3-Obenzyl-4,6-O-benzylidene-2-O-trifluoromethanesulfonyl-α-D-mannopyranoside, see: Karpiesiuk, W.; Banaszek, A.; Zamojski, A. Carbohydr. Res. 1989, 186, 156.
- 9. For a discussion on the inertness of pyranoside 2-sulfonates (α-anomer) in displacements, see: Richardson, A.C. Carbohydr. Res. 1969, 10, 395.
- 10. Collins, P.M. (Ed.) Carbohydrates, Chapman and Hall Ltd., New York, 1987, p. 16.
- 11. Reference 10, p. 197.
- 12. For the preparation of this reagent and its use in haloetherification reactions, see reference 3 and 4.
- 13. For a review of the preparation and reactions of monosaccharide epoxides, see: Newth, F.H. Quart. Rev. 1959, 13, 30.
- 14. Hough, L.; Richardson, A.C. in *Rodd's Chemistry of Carbon Compounds*, Vol. I^F, Coffey, S. (Ed.), Elsvier, Amsterdam, **1967**, p.370.