
This article was downloaded by: [McMaster University] On: 30 October 2014, At: 13:14 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl20

Synthesis and Crystal Structure of [5-Chloro-2-(4-nitrobenzyloxy)-phenyl]-(4-chlorophenyl) Methanone

S. Neetha^a, T. D. Venu^b, M. A. Sridhar^a, J. Shashidhara Prasad^a & S. Shashikanth^b

^a Department of Studies in Physics , University of Mysore , Mysore, India

^b Department of Studies in Chemistry , University of Mysore , Mysore, India Published online: 03 Jun 2009.

To cite this article: S. Neetha , T. D. Venu , M. A. Sridhar , J. Shashidhara Prasad & S. Shashikanth (2009) Synthesis and Crystal Structure of [5-Chloro-2-(4-nitro-benzyloxy)-phenyl]-(4-chloro-phenyl) Methanone, Molecular Crystals and Liquid Crystals, 503:1, 143-150, DOI: <u>10.1080/15421400902841551</u>

To link to this article: http://dx.doi.org/10.1080/15421400902841551

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with

primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

Synthesis and Crystal Structure of [5-Chloro-2-(4-nitrobenzyloxy)-phenyl]-(4-chloro-phenyl) Methanone

S. Neetha¹, T. D. Venu², M. A. Sridhar¹, J. Shashidhara Prasad¹, and S. Shashikanth²

¹Department of Studies in Physics, University of Mysore, Mysore, India ²Department of Studies in Chemistry, University of Mysore, Mysore, India

The title compound, $C_{20}H_{13}Cl_2NO_4$, crystallizes in the monoclinic crystal system and space group P2₁/n with cell parameters a = 9.434(2)Å, b = 13.167(3)Å, c = 15.087(4)Å, $\beta = 105.289(8)^{\circ}$, V = 1807.7(7)Å³ for Z=4. The structure exhibits intermolecular hydrogen bonds of the type C-H...O.

Keywords: benzophenone; crystal structure; hydrogen bond

INTRODUCTION

Benzophenone is a prototypical aromatic carbonyl compound that has been extensively studied [1] and are usually obtained from natural products and by synthetic methods. The great importance of these substances is fundamentally due to the diverse biological and chemical properties that they possess [2–11]. Subsequently, benzophenones are frequently used in medicine and industry [12–17]. The proficiency of benzophenone analogues as chemotherapeutic agent especially as anti-inflammatory is well documented [18]. Several scientists have reported benzophenon analogues as an effective anti-inflammatory agents [19–22]. Recently, synthesis and structural activity relationship of benzophenones as a novel class of p38 MAP kinase inhibitors with high anti-inflammatory activity has been reported [23].

Functionalized phenols, such as 2-hydroxy benzophenones, represent important building blocks in organic and medicinal chemistry

Address correspondence to J. Shashidhara Prasad, Department of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India. E-mail: jsp@physics. uni-mysore.ac.in

[24,25]. The in vitro and in vivo studies of novel nitro- and aminosubstituted benzophenones have been investigated as potential anticancer agents with low cytotoxicity [26]. In continuation of the search for new molecules with anti-inflammatory activity, encouraged us to integrate p-nitro phenyl moiety in benzophenone framework, which possess well-documented anti-inflammatory activity.

SYNTHESIS AND METHOD OF CRYSTALLIZATION

4-Chloro-benzoic acid 4-chloro-phenyl ester (3) was synthesized by benzoylation of 4-chloro-phenol (1) with 4-chloro benzoyl chloride (2) using 10% sodium hydroxide solution. (5-Chloro-2-hydroxyphenyl)-(4-chloro-phenyl)-methanone (4) was synthesized by Fries rear-rangement of the above ester in presence of anhydrous aluminium chloride. A mixture of 4 (1g, 4.41 mmol) and 4-nitro benzyl bromide (0.95 g, 4.41 mmol) was refluxed in dry acetone for 5 h, in the presence of anhydrous potassium carbonate (1.83 g, 13.25 mmol). The reaction mass was cooled, and the solvent was removed under reduced pressure. The residual mass was triturated with ice-cold water to remove potassium carbonate and then extracted with dichloromethane $(3 \times 20 \text{ ml})$. The organic layer was washed with 10% sodium hydroxide solution $(3 \times 10 \text{ ml})$ followed with water wash $(3 \times 15 \text{ ml})$ and then dried over anhydrous sodium sulfate and evaporated to dryness under reduced pressure to obtain the crude solid, which recrystallization with ethanol yielded [5-chloro-2-(4-nitro-benzyloxy)-phenyl]-(4-chloro-phenyl) methanone (5) as pale yellow crystals, the yield was good.

C,H,N analysis: Calculated %: C: (73.12), H: (5.30), N: (3.88). Found %: C: (73.06), H: (5.28), N: (3.80). ¹H NMR(CDCl3): δ 2.31 (s, 3H, CH₃), 2.41 (s, 3H, CH₃), 4.9 (s, 2H, CH₂), 7.17–7.36 ppm (m, 11H, Ar-H). IR (Nujol): 1716 cm⁻¹ (C=0). M.P.: 167°C. Yield: 88% (1.40 g).

CRYSTAL STRUCTURE DETERMINATION

A single crystal of the title compound with the dimensions $0.30 \times 0.25 \times 0.25$ mm was chosen for the X-ray diffraction study. The data were collected on a DIPLabo Image Plate system equipped with a normal focus, 3 kW sealed X-ray source (graphite monochromated Mo K_{α}). The crystal to detector distance was fixed at 120 mm with the detector area of 441×240 mm². Thirty-six frames of data were collected at room temperature by the oscillation method. Each exposure of the image plate was set to 400 s. Successive frames were

scanned in steps of 5° per minute with an oscillation range of 5°. Image processing and data reduction were done using Denzo [27]. The reflections were merged with Scalepack [28]. All the frames could be indexed using a primitive monoclinic lattice. Absorption correction was not applied. The structure was solved by direct methods using SHELXS-97 [29]. Least-squares refinement using SHELXL-97 [30] with isotropic temperature factors for all the non-hydrogen atoms converged the residual R1 to 0.1595. Subsequent refinements were carried out with anisotropic thermal parameters for non-hydrogen atoms and isotropic temperature factors for the hydrogen atoms which were placed at chemically acceptable positions. The hydrogen atoms were allowed to ride on their parent atoms. After eight cycles of refinement, the residual converged to 0.0737. The details of crystal data and

	702891
CCDC Empirical formula	$C_{20}H_{13}$ Cl_2NO_4
Formula weight	402.21
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	$P2_1/n$
Cell dimensions	a = 9.434(2) Å
cen unicipions	b = 13.167(3) Å
	c = 15.107(5) Å
	$\beta = 105.089(4)$ Π $\beta = 105.289(8)^{\circ}$
Volume	p = 100.200(0) 1807.7(7) Å ³
Z	4
Density (calculated)	$1.478\mathrm{Mg/m^3}$
Absorption coefficient	$0.386 \mathrm{mm}^{-1}$
F_{000}	824
Crystal size	$0.3 \times 0.25 \times 0.25$ mm
Theta range for data collection	2.09° to 25.00°
Index ranges	-11 < h < 11
	$-15 \le k \le 15$
	$-17 \le l \le 10$ $-17 \le l \le 17$
Reflections collected	3918
Independent reflections	2672 [R(int) = 0.0450]
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	2672/0/245
Goodness-of-fit on F^2	1.063
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0737, wR2 = 0.1945
R indices (all data)	R1 = 0.0900, wR2 = 0.2206
Extinction coefficient	0.001(9)
Largest diff. peak and hole	0.255 and $-0.257~\mathrm{e}\cdot\mathrm{\AA^{-3}}$

TABLE 1 Crystal Data and Structure Refinement Table

Atom	x	У	Ζ	$U_{ m cq}$
01	0.6628(3)	1.0642(2)	0.2896(2)	0.0989(8)
N2	0.5750(3)	1.0337(3)	0.3287(2)	0.0903(9)
O3	0.5187(5)	1.0898(3)	0.3732(4)	0.1572(2)
C4	0.5374(4)	0.9251(3)	0.3247(2)	0.0783(9)
C5	0.4516(4)	0.8897(3)	0.3795(3)	0.0883(1)
C6	0.4219(4)	0.7872(3)	0.3770(3)	0.0863(1)
C7	0.4732(3)	0.7207(3)	0.3218(2)	0.0742(8)
C8	0.5578(4)	0.7601(3)	0.2677(2)	0.0820(9)
C9	0.5903(4)	0.8623(3)	0.2684(3)	0.0815(9)
C10	0.4394(4)	0.6094(3)	0.3173(2)	0.0769(8)
011	0.3801(3)	0.5828(2)	0.39123(2)	0.0847(7)
C12	0.3398(3)	0.4841(3)	0.3983(2)	0.0739(8)
C13	0.2678(3)	0.4634(3)	0.4668(2)	0.0754(8)
C14	0.2314(3)	0.3636(3)	0.4818(2)	0.0784(9)
C15	0.2635(4)	0.2864(3)	0.4285(2)	0.0789(9)
C16	0.3326(4)	0.3061(3)	0.3607(3)	0.0812(9)
C17	0.3705(4)	0.4048(3)	0.3463(3)	0.0810(9)
Cl18	0.21317(1)	0.16180(8)	0.44568(8)	0.0959(4)
C19	0.2326(4)	0.5449(3)	0.5271(3)	0.0799(9)
O20	0.2537(4)	0.5290(3)	0.60891(2)	0.1060(9)
C21	0.1665(3)	0.6427(3)	0.4868(2)	0.0743(8)
C22	0.0763(4)	0.6476(3)	0.3970(3)	0.0799(9)
C23	0.0127(4)	0.7385(3)	0.3611(2)	0.0827(9)
C24	0.0439(4)	0.8249(3)	0.4145(3)	0.0798(9)
C25	0.1336(4)	0.8232(3)	0.5039(3)	0.0842(9)
C26	0.1927(4)	0.7313(3)	0.5391(3)	0.0841(1)
Cl27	-0.03151(1)	0.94037(8)	0.36776(8)	0.1009(5)

TABLE 2 Atomic Coordinates and Equivalent Thermal Parameters of theNon-Hydrogen Atoms

 $U_{\mathrm{cq}} = (1/3) \sum_{i} \sum_{j} U_{ij} (a_i^* a_j^*) (\mathbf{a}_i \cdot \mathbf{a}_j).$

refinement are given in Table 1.¹ Table 2 gives the atomic coordinates and equivalent thermal parameters of the non-hydrogen atoms. Tables 3 and 4 give the list of bond lengths and bond angles, respectively, which are in good agreement with the standard values. The schematic diagram and ORTEP of the molecule with thermal ellipsoids drawn at 50% probability is shown in Fig. 1 and Fig. 2.

The title compound has independently planar phenyl ring system. The dihedral angle between the two, 4-chloro-phenyl rings, bridged

¹"CCDC 702891 contains the supplementary crystallographic data for this article. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK. Fax: +44(0)1223-336033. E-mail: deposit@ccdc.cam.ac.uk"

Atoms	Length	Atoms	Length
01-N2	1.207(4)	C13-C19	1.500(5)
N2-O3	1.211(5)	C14-C15	1.379(5)
N2-C4	1.470(5)	C15-C16	1.375(5)
C4-C9	1.371(5)	C15-C118	1.746(4)
C4-C5	1.381(5)	C16-C17	1.381(5)
C5-C6	1.376(6)	C19-O20	1.215(4)
C6-C7	1.381(5)	C19-C21	1.488(5)
C7-C8	1.383(5)	C21-C26	1.394(5)
C7-C10	1.498(5)	C21-C22	1.399(5)
C8-C9	1.380(5)	C22-C23	1.383(5)
C10-O11	1.417(4)	C23-C24	1.381(6)
O11-C12	1.366(4)	C24-C25	1.391(6)
C12-C17	1.382(5)	C24-C127	1.747(4)
C12-C13	1.405(4)	C25-C26	1.379(6)
C13-C14	1.392(5)		

TABLE 3 Bond Lengths Å

by carbonyl group is 64.51(17) Å. The atom C23 deviate from the Cremer and Pople plane C21/C22/C24/C25/C26 by 0.0123(39)Å. Torsion angle values of $-136.23(33)^{\circ}$ and $41.16(51)^{\circ}$ for C14-C13-C19-C21 and C14-C13-C19-C20, respectively, gives -anti-clinal and

TABLE 4 Bond Angles (°)

Atoms	Angle	Atoms	Angle
01-N2-O3	121.7(4)	C12-C13-C19	122.4(3)
O1-N2-C4	119.6(3)	C15-C14-C13	120.0(3)
O3-N2-C4	118.7(4)	C16-C15-C14	121.0(3)
C9-C4-C5	122.3(3)	C16-C15-C118	119.3(3)
C9-C4-N2	119.3(3)	C14-C15-C118	119.7(3)
C5-C4-N2	118.5(3)	C15-C16-C17	119.3(3)
C6-C5-C4	117.5(3)	C16-C17-C12	121.3(3)
C5-C6-C7	122.4(3)	O20-C19-C21	120.2(3)
C6-C7-C8	117.8(3)	O20-C19-C13	119.3(4)
C6-C7-C10	122.9(3)	C21-C19-C13	120.4(3)
C8-C7-C10	119.3(3)	C26-C21-C22	118.8(3)
C9-C8-C7	121.6(3)	C26-C21-C19	120.0(3)
C4-C9-C8	118.4(3)	C22-C21-C19	121.3(3)
O11-C10-C7	109.3(3)	C23-C22-C21	120.7(3)
C12-O11-C10	118.2(3)	C24-C23-C22	118.7(3)
O11-C12-C17	124.7(3)	C23-C24-C25	122.4(4)
O11-C12-C13	116.1(3)	C23-C24-C127	118.7(3)
C17-C12-C13	119.1(3)	C25-C24-C127	119.0(3)
C14-C13-C12	119.4(3)	C26-C25-C24	117.9(4)
C14-C13-C19	118.2(3)	C25-C26-C21	121.6(3)

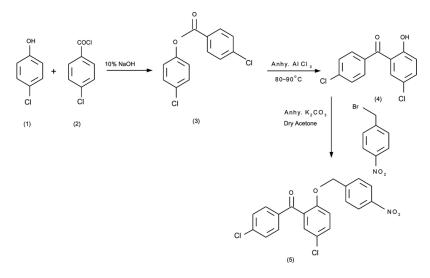


FIGURE 1 Schematic diagram.

+syn-clinal conformation. The torsion angle about C12/C11/C10/C7 being 179.01(27) Å reflects +anti-periplanar conformation w.r.t chloro phenyl and nitroxy phenyl ring, respectively. The keto group in the structure plays a vital role in the determination of some potent biological activities [20]. The structure exhibits intermolecular hydrogen bonds of the type C–H...O. C9–H9...O20 has a length of 3.489(5) Å with an angle of 168°, and C10–H10B...O20 which has a length of 3.353(5) Å and an angle of 158° with symmetry codes 1/2 + x, 3/2 - y, -1/2 + z, and 1-x, 1-y, 1-z, respectively. The stability of the crystal

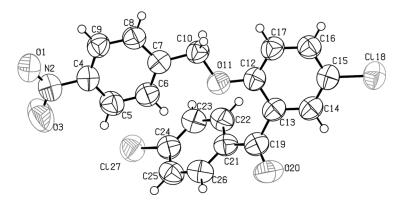
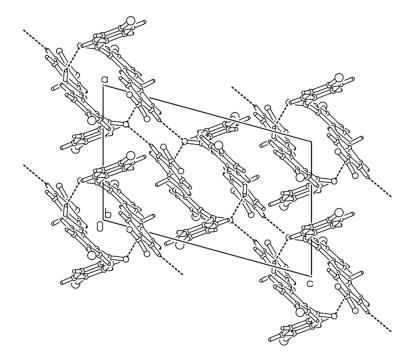



FIGURE 2 ORTEP of the molecule at 50% probability.

FIGURE 3 Packing of the molecules down the b axis. The dashed lines represent the hydrogen bonds.

structure can be accounted for by these hydrogen bonds. Packing of the molecules down b axis is shown in Fig. 3.

ACKNOWLEDGMENTS

The authors would like to express their thanks to DST, Government of India, for financial assistance under the project SP/I2/FOO/93.

REFERENCES

- [1] Du, Y., Ma, C., Kwok, W. M., Xue, J., & Philips, D. L. (2007). J. Org. Chem., 72, 7148–7156.
- [2] Moffett, R. B., & Sey, P. P. H. (1964). J. Med. Chem., 7, 178.
- [3] Wiesner, J., Kettler, K., Sakowski, J., Ortmann, R., Jomaa, H., & Schlitzer, M. (2003). Bioorg. Med. Chem., 13, 361.
- [4] Winter, R., Walter, R., Hinrich, M. K., & David, J. (1997). PCT Int. 9707790, *Through Chem. Abstr.*, 126, 248760.
- [5] Sanji, H., Susumce, K., Yasushi, M., Nobuhiro, H., Yasunobu, & Toshiro, K. (1995).
 PCT Int. 9521856, *Through Chem. Abstr.*, 124, 56716.

- [6] Saettone, M. F., Alderigi, C., Giannaccini, B., Anselmi, C., Rosselt, M. G., Schotton, M., & Gerini, R. (1998). Int. J. Cosmet. Sci., 10, 99.
- [7] Bernadi, A. P. M., Ferraz, A. B. F., Albring, D. V., Birdignon, S. A. L., Schripsema, J., Bridi, R., Dutra-Filho, C. S., Henriques, A. T., & Von Poser, G. L. (2005). *J. Nat. Prod.*, 68, 784.
- [8] Saharia, G. S., & Sharma, H. R. (1979). Sci. Cult., 45, 139.
- [9] Pierre, D., Jacques, B., Matthias, K., & Corina, B. (2002). PCT Int. 2002092552, *Through Chem. Abstr.*, 137, 384655.
- [10] Singh, N. A., Indra, D., Setty, B. S., & Ray, S. (1994). Indian J. Pharm. Sci., 56, 105.
- [11] Bakana, P., Claeys, M., Totte, J., Pieters, L. A., Van Hoof, L., Vemba, Y., Berghe, V. D. A., & Vlietinck, A. J. (1987). J. Ethnopharmacol., 21, 75.
- [12] Leonard, D. M. (1997). J. Med. Chem., 40, 2971.
- [13] Williams, T. M., & Dinsmore, C. (1999). J. Adv. Med. Chem., 4, 273.
- [14] Palomer, A., Pascual, J., Cabre, M., Borras, L., Gonzalez, G., Aparici, M., Carabaza, A., Cabre, F., Garcia, M. L., & Mauleon, D. (2002). *Bioorg. Med. Chem. Lett.*, 12, 533.
- [15] Jaques, M., & Walter, S. (1983). Eur. Pat. 79,499, Through Chem. Abstr., 99, 83726j.
- [16] Hejaz, A. A. M., Woo, L. W. L., Purohit, A., Reed, M. J., & Potter, B. V. L. (2004). Bioorg. Med. Chem., 12, 2759.
- [17] Mitsch, A., Wibner, P., Sibler, K., Haebel, P., Satler, I., Klebe, G., & Schlitzer, M. (2004). Bioorg. Med. Chem., 12, 4585.
- [18] Katsuichi, S., & Massaki, T. (1992). Chem. Abstr., 116, 128368g.
- [19] Ottosen, E. R., Sorensen, M. D., Bjorkling, F., Skak-Nielsen, T., Fjording, M. S., Aaes, H., & Binderup, L. (2003). J. Med. Chem., 46, 5651.
- [20] Khanum, S. A., Shashikanth, S., & Deepak, A. V. (2004). Bioorg. Chem., 32, 211.
- [21] Khanum, S. A., Shashikanth, S., & Sudha, B. S. (2004). Heteroatom Chem., 15, 37.
- [22] Khanum, S. A., Shashikanth, S., & Sudha, B. S. (2004). Pestmanag. Sci., 60, 1119.
- [23] Mahendra, M., Doreswamy, B. H., Sridhar, M. A., Shashidhara Prasad, J., Khanum, S. A., Shashikanth, S., & Venu, T. D. (2005). J. Chem. Cry., 35, 463.
- [24] Martin, R. (2005). Handbook of Hydroxyacetophenones: Preparation and Physical Properties, 2nd Ed., Springer: Berlin.
- [25] Vane, J. R. (1992). Aspirin and Other Salicylates, Chapman and Hall Medical: London.
- [26] Winter, C. A., Risley, E. A., & Nuss, G. W. (1962). Proc. Soc. Exp. Biol. New York, 111, 544.
- [27] Otwinowski, Z., & Minor, Z. (1997). In: *Methods in Enzymology*, 276, Carter, Jr., C. W., & Sweet, R. M. (Eds.), Academic Press: New York, 307.
- [28] Mackay, S., Gilmore, C. J., Edward, C., Stewart, N., & Shankland, K. (1999). maXus Computer Program for the Solution and Refinement of Crystal Structures, Bruker Nonius: The Netherlands.
- [29] Sheldrick, G. M. (1997). SHELXS97. Program for Crystal Structure Solution. University of Göttingen: Germany.
- [30] Sheldrick, G. M. (1997). SHELXL97. Program for Crystal Structure Solution. University of Göttingen: Germany.
- [31] Cremer, D., & Pople, J. A. (1975). J. Amer. Chem. Soc., B12, 1354–1358.