

Tetrahedron 55 (1999) 7573-7582

TETRAHEDRON

Stereoselective Synthesis of *myo*-Inositol-1,3,4,5-tetrakisphosphate Analogues from 6-deoxy D-Inositol Precursors.

Didier Dubreuil^{1*}, Jeannine Cleophax, Mauro Vieira de Almeida, C. Verre-Sebrié, Muriel Pipelier¹, Georges Vass and Stéphane D. Gero.

Institut de Chimie des Substances Naturelles, C.N.R.S., 91198 Gif-sur-Yvette Cedex, France.

¹Laboratoire de Synthèse Organique associé au C.N.R.S., UMR 6513, Faculté des Sciences et des Techniques, 2 rue de la Houssinière BP-92208, 44322 Nantes Cedex 03, France.

Received 24 December 1998; accepted 21 April 1999

Abstract: The synthesis of 6-deoxy-D-myo-inositol-1,3,4,5-tetrakisphosphates is described. The access to optically pure $Ins(1,3,4,5)P_4$ analogues was carried out from deoxy myo inositol precursors derived from D-galactose. Modification of $Ins(1,3,4,5)P_4$ analogues by lipophilic substituents has been investigated in order to produce neutral phosphate derivatives aimed to be incorporated in cell membrane for *in vivo* evaluation. © 1999 Elsevier Science Ltd. All rights reserved.

The involvement of *myo* inositol polyphosphates in signal transduction *via* the polyphosphoinositide pathway has justified the need for the synthesis of molecules that would somehow interfere with, or modulate, the processes of cellular signalling.¹ Synthesis of structurally-modified analogues offers the prospect of pharmacological intervention in this ubiquitous metabolism where the second messenger D-*myo*-inositol-1,4,5trisphosphate [Ins(1,4,5)P₃] is deactivated to D-*myo*-inositol-1,4-bisphosphate [Ins(1,4)P₂] or to D-*myo*inositol-1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P₄] which is subsequently degraded to D-*myo*-inositol-1,3,4trisphosphate [Ins(1,3,4)P₃].² Ins(1,3,4,5)P₄ metabolite is produced from the [Ins(1,4,5)P₃] second messenger by specific cytosolic 3-kinase. Its biological function as another second messenger involved in Ca²⁺ haemostasis at the plasma membrane helping to control entry of extracellular Ca²⁺ into the cell, has not been unambiguously resolved.² However binding sites for Ins(1,3,4,5)P₄ have been identified in a range of tissues.³ In support of this hypothesis, a sensitive Ca²⁺ permeable channel has been characterized from endothelial cells and Ins(1,3,4,5)P₄-binding proteins proposed as Ins(1,3,4,5)P₄-receptor have been purified from pig and rat cerebelum.⁴ Results of these experiments emphasized the extreme specificity for 1,3,4,5 configuration of

*Fax (33) 2 51 12 54 12; E-mail: dubreuil@chimie.univ-nantes.fr or cleophax@icsn.cnrs-gif.fr

0040-4020/99/\$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(99)00366-X

phosphate groups. The identification of a specific binding region of guanosine triphosphatase-activating protein (GAPIP4BP) stimulating activity against Ras⁵, strongly increased the interest of synthetic natural and analogue derivatives of Ins tetrakisphosphate.⁶ Furthermore, $Ins(1,2,4,5)P_4^7$ has been regarded as connected to $Ins(1,3,4)P_3$ with a charge phosphate at 2-position in comparison with 2-neutral analogues synthesized previously.⁸ With respect to these considerations it was obvious, that preparation of 6-deoxy derivatives analogues of $Ins(1,3,4,5)P_4$ were of current interest. The strategy has been elaborated from deoxy inositol precursors previously synthesized from the D-galactose,^{9,10} already used for the preparation of chiral myo-inositol-trisphosphate analogues (Scheme 1).

Scheme 1

The synthesis of the 6-deoxy $Ins(1,3,4,5)P_4 5$ was firstly attempted by the selective equatorial 3-OH phosphorylation of the protected 6-deoxy-myo-inositol-1,4,5-tris(dibenzyl)phosphate 3,¹⁰ already described, using the pyrophosphate method,¹¹ in the presence of 1.2eq. of tetrabenzylpyrophosphate reagent and n-BuLi (Scheme 2). Usual hydrogenolysis of the resulting tertrakis(dibenzyl)phosphate intermediate 4, in the presence of a catalytic amount of palladium on charcoal (Pd/C 10%) produced the targeted 6-deoxy $Ins(1,3,4,5)P_4 5$, with no migration of phosphate groups, in 70% overall yield isolated as octatris(hydroxymethyl)aminomethane salt, (TRIS salt).

Scheme 2

After the success accounted in our previous paper on the transmembrane incorporation of lipophilic derivatives of $Ins(1,4,5)P_3$,¹⁰ the transformation of the tetrakisphosphate derivatives into lipophilic analogues seemed attractive. Two types of these analogues could be envisaged, by substitution on 2-hydroxy or on phosphate groups. In both cases, the strategy required the prior preparation of a 2-O-protected 6-deoxy-myo-inositol precursor which could be prepared from the 4-O-benzyl-2,3-O-cyclohexylidene-6-deoxy-myo-inositol 1⁹ via the orthoformate 7 6k,11,12 (Scheme 3). The diol 1⁹ was converted into the tetrol 6 under acidic treatment before reacting with triethylorthoformate in N,N-dimethylformamide in the presence of a catalytic amount of camphor sulfonic acid (10%) affording the orthoformate 7 in 97% yield. Myristoylation of 7 using DCC in dichloromethane in the presence of a catalytic amount of DMAP gave the intermediate 8 in 90% yield. Catalytic hydrogenolysis of the benzylether of 8 followed by acidic treatment of compound 9 with methanolic/HCl solution to remove the ketal protecting groups induced an intramolecular migration of the myristoyl group from axial 2 position to equatorial 1 or 3 position leading to a mixture of 1- and 3-O-myristate 10 and 11 in 54 and 36% yields respectively.

Scheme 3

Thus introduction of an ether group on 2 position was attempted from the orthoformate 7 via the 2-Oallyl derivative 12 (NaH, 1.5 eq.; AllBr, 1.5 eq.; DMF : 55%). Hydrogenation of compound 12 in the presence of Pd/C gave 13 (94%) by hydrogenolysis of the benzylether and reduction of the allyl- to propylether. Hydrolysis of orthoformate 13 by methanolic HCl solution afforded the 2-O-propyl 1,3,4,5-tetrol 14 in 98% yield. Compound 14 was submitted to the phosphorylation-deprotection procedure, in the presence of bisbenzyloxy(diisopropylamino)phosphine reagent, to give the 6-deoxy-2-O-propyl Ins(1,3,4,5)P4 16 in 65% overall yield isolated as octa-TRIS salt. This latter derivative could be of interest to determine the influence of the 2-hydroxy group in the degradation process of $Ins(1,3,4,5)P_4$.

Another strategy was established to produce protected phosphate analogues from the 3,4-O-cyclohexylidene-6-deoxy-myo-inositol 2^9 (Scheme 4).

The tribenzoylation of triol 2 was carried out, in 96% yield, in the presence of benzoyl chloride in pyridine to give the intermediate 17 which was hydrolyzed in acidic conditions into the diol 18 (90%) without ester migration. Selective protection of 3-OH of compound 18 was achieved by trimethylacetylchloride (1.3 eq.) in pyridine in 80% yield. Benzylation of the resulting free 2-OH of alcohol 19 was performed, in 70% yield, using benzyltrichloroacetamidate in the presence of trifluoromethanesulfonic acid.¹³ Saponification of the tetraester intermediate 20, under basic medium, afforded the tetrol 21 in 86% yield, which was allowed to be phosphorylated in the presence of bisbutyloxy(diisopropylamino)phosphine and tetrazole, followed by oxydation with *t*-BuOOH, leading to the tetrakis(dibutyl)phosphate 22 in 55% yield. Hydrogenation, in the presence of Pd/C 10% in AcOEt, of intermediate 22 furnished the lipophilic tetrakis(dibutyl)phosphate 23.

CONCLUSION

In conclusion of this work, we have illustrated the potentiality of deoxy cyclitol precursors, stereoselectively produced from D-galactose,⁹ to be used for the synthesis of optically pure D-Ins $(1,3,4,5)P_4$ analogues. The strategy previously elaborated for the access to deoxy *myo* inositol trisphosphate analogues,¹⁰ could be easily extended to a variety of 6-deoxy Ins $(1,3,4,5)P_4$ derivatives, which might be modified at the 2-hydroxy position or at the phosphate moieties using the selectively protected cyclitol intermediates described. The quantity of material available allowed the study of their interaction with rapidly expanding range of Ins $(1,3,4,5)P_4$ -binding proteins. Therefore, preliminary success encountered *in vivo* in the incorporation of lipophilic analogues of InsP₃ into the cell membrane, encouraged the investigation of lipophilic Ins $(1,3,4,5)P_4$ on Ca²⁺-mobilization. Data on biological evaluation are under investigation and will be published elsewhere.

Phosphatidylinositol analogues represent now the logical attractive targets for chemical development from deoxy cyclitol precursors and will be presented in the next paper.

Acknowledgements : This work was supported by Bayer-AG Geschäftsbereich Pharma und Entwicklung Institut. We thank Dr. E. Bischoff for biological investigations and Professor B. V. L. Potter for fruitful discussions. This paper is dedicated to the memory of Dr. S. D. Gero.

EXPERIMENTAL PART

¹H NMR and ¹³C NMR spectra were recorded on Bruker spectrometra WP 200, AC 200, AC 250; chemical shifts are expressed in parts per million (ppm) referenced to residual chloroform (7.27 ppm). Coupling constants (J) are given in Hertz (Hz). Multiplicities are recorded as s or bs (singlet or broad singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). The $[\alpha]_D$ were recorded on Perkin-Elmer 241-MC sodium absorbtion at 20°C. Mass spectra (m/z (% base peak) were recorded on Atlas CH₄ or AEI MS9 spectrometra. Melting points were determined on a C. REICHERT microscope apparatus and are uncorrected. Elemental analysis were carried out at the "Laboratoire de Microanalyse de l'I.C.S.N." (CNRS, Gif/yvette). All solvents were freshly distilled prior to use by standard methods.¹⁴. Flash chromatography was performed on silica-gel Merck 60 230-400 mesh. Thin layer chromatography was performed on precoated plates of silica gel PF₂₅₄ neutralized with sodium bicarbonate. All crystallizations were obtained from AcOEt/pentane if not specified. All extractions were followed by addition of magnesium sulfate to the organic layer and filtration.

For general procedure for phosphorylation and deprotection process see the previous paper. D-6-Deoxy-myo-inositol-1,3,4,5-tetrakis(dibenzyl)phosphate 4

1,4,5-tris(dibenzyl)phosphate 3 was phosphorylated using the method B in the presence of tetrabenzylpyrophosphate (1.2 eq.) to give 1,3,4,5-tetrakis(dibenzyl)-phosphate 4 (70%): $[\alpha]_D$ +1° (c 0.98, CHCl₃); ¹H NMR (400MHz; CDCl₃): δ : 4.75 (t, 1H, H-4; J₄₋₃=J₄₋₅=8); 4.5 (bs, 1H, H-2); 4.35 (m, 1H, H-1); 4.20 (m, 1H, H-5); 4.10-4.32 (m, 16H, H-3, CH₂O); 2.55 (dt, 1H, H-6eq, J_{6eq-6ax}=12; J_{6eq-1}= J_{6eq-5}=4); 2.35 (q, 1H, H-6ax; J_{6eq-6ax}=J_{6ax-1}=J_{6ax-5}=12); ¹³C NMR (63MHz; CDCl₃): δ : 78.50 (C-2); 77.02 (C-4); 74.70 (C-3); 75.35 (CH₂Ph); 73.23, 71.82 (C-1, C-5); ³¹P NMR (81MHz; CDCl₃): δ ppm: -1.52; -1.38; -1.21; -1.09; (P₁, P₃, P₄, P₅); (Found C, 61.90; H, 5.15; P, 10.31; C₆₂H₆₄O₁₇P₄ requires C, 61.79; H, 5.35; P, 10.28).

D-6-Deoxy -myo-inositol-1,3,4,5-tetrakisphosphate 5

Tetrakis(dibenzyl)phosphate 4 dissolved in the minimun amount of EtOH 95% was hydrogenated for 2h., under 4-5 psi, in the presence of the same amount of Pd/C 10%. The catalyst was removed by filtration on Whatman paper and washing with water. Tris(hydroxymethyl)aminomethane (TRIS, 2 eq. per phosphate) was added and the aqueous solution was concentrated *in vacuo* then lyophilized. The tetraphosphate 5 was precipitated as octa-TRIS salt; $[\alpha]_D + 0^\circ$ (c 0.75, H₂O); (Found C, 30.21; H, 7.35; N, 7.52; C₃₈H₁₀₄O₄₁N₈P₄, 4H₂O requires C, 29.92; H, 7.40; N, 7.35).

D-4-O-Benzyl-6-deoxy-myo-inositol 6

Diol 1 (1g, 2.9 mmol.) was treated by aq. solution of HCl 1M for 1h. After evaporation to dryness the tetrol 52 was isolated and crystallized from isopropanol/pentane (95%); m.p.130-131°C; $[\alpha]_D$ =+2° (c 1,

CH₃OH); ¹H NMR (200MHz; CDCl₃): δ : 3.7 (ddd, 1H, H-1, J₁₋₂=4, J_{1-6ax}=10, J_{1-6ax}=4); 3.5 (m, 1H, H-2); 3.43 (m, 1H, H-4); 3.40 (m, 1H, H-5); 3.33 (m, 1H, H-3); 2.10 (m, 1H, H-6ax); 1.90 (m, 1H, H-6eq); (Found C, 61.38; H, 7.26; O, 31.80; C₁₃H₁₈O₅ requires C, 61.40; H, 7.14; O, 31.46).

D-4-O-Benzyl-1,3,5-O-orthoformyl-6-deoxy-myo-inositol 7

To a solution of tetrol 6 (470 mg, 1.85 mmol.) in dry DMF (5 ml) was added triethyl orthoformate (0.55 ml, 3.3 mmol.) and *p*-toluene sulfonic acid monohydrate (76 mg). The solution was stirred under argon 12h. at 60°C before neutralization with sodium bicarbonate aq. solution. The mixture was then filtered on celite and the organic layer was evaporated *in vacuo*. The residue was diluted with methanol and treated with charcoal, 15 min. at 60°C and filtered on celite. The filtrate was concentrated and the orthoformate 7 was crystallized from CHCl₃ (97%); m.p.104-106°C; $[\alpha]_D=+9^\circ$ (c 1,31, CH₂Cl₂); ¹H NMR (200MHz; CDCl₃): δ : 5.50 (sl, 1H, H-7); 4.2 0(d, 2H, CH₂O); 4.26 (t, 1H, H-4, J₄₋₃=J₄₋₅=2); 4.19 (m, 2H, H-1, H-5); 4.08 (t, 1H, H-3, J₃₋₄=J₃₋₂=2), 3.84 (t, 1H, H-2, J₂₋₃=J₂₋₁=2), 2.60 (m, 1H, H-6ax); 2.0 (m, 1H, H-6eq); ¹³C NMR (50MHz; CDCl₃): δ : 104.0 (C-7); 73.3, 72.8, 71.4, 67.6, 64.8 (C-1, C-2, C-3, C-4, C-5); 72.0 (<u>CH</u>₂Ph); 27.5 (C-6); (Found C, 62.59; H, 6.37; O, 31.12; C₁₄H₁₆O₅, 1/4 H₂O requires C, 62.56; H, 6.19; O, 31.23).

D-4-O-Benzyl-1,3,5-O-orthoformyl-2-O-myristoyl-6-deoxy-myo-inositol 8

To the alcohol 7 (264 mg, 1 mmol.) dissolved in dry CH₂Cl₂ (20 ml) was added DCC (309 mg, 1.5 mmol.), DMAP (20 mg) and myristoic acid (342 mg, 1.54 mmol.). After 4h. of stirring at r.t., the mixture was filtered on celite and the filtrate was concentrated. The residue was chromatographed on silica gel to give the crystalline monoester 8 (90%); m.p. 88-90°C; $[\alpha]_D$ 0° (c 1, CH₂Cl₂); ¹H NMR (200MHz; CDCl₃): δ : 5.6 (bs, 1H, H-7); 5.05 (bs, 1H, H-2); 4.60 (dd, 2H, CH₂Ph); 4.35 (m, 1H, H-4); 4.30 (m, 1H, H-3); 4.20 (m, 2H, H-3, H-5); 2.61 (m, 1H, H-6ax); 2.12 (m, 1H, H-6eq); ¹³C NMR (50MHz; CDCl₃): δ : 173.4 (C=O); 103.94 (C-7); 72.4, 70.36; 68.26, 67.68, 66.63 (C-1, C-2, C-3, C-5); 71.61 (CH₂Ph); 14.06 (CH₃); (Found C, 65.68; H, 6.73; P, 7.47; C₆₉H₈₃O₁₆P₃ requires C, 65.70; H, 6.73; P, 7.37).

D-6-Deoxy-2-O-myristoyl-1,3,5-O-orthoformyl-myo-inositol 9

Compound 8 dissolved in the minimun amount of EtOH 95% was hydrogenated for 4 h., under 3 psi, in the presence of the same amount of Pd/C 10%. The catalyst was removed by filtration on Whatman paper and the filtrate was concentrated *in vacuo*. The alcohol 9 was crystallized from CH₃OH/H₂O in quantitative yield. m.p.99-101°C; $[\alpha]_D$ =-4° (c 1, CHCl₃); ¹H NMR (200MHz; CDCl₃): δ : 5.6 (bs, 1H, H-7); 5.05 (bs, 1H, H-2); 4.6 (m, 1H, H-1); 4.20 (m, 3H, H-3, H-4, H-5); 2.60 (m, 1H, H-6ax); 2.11 (m, 1H, H-6eq); ¹³C NMR (50MHz; CDCl₃): δ : 174.2 (C=O); 103.69 (C-7); 72.1, 70.36, 69.1, 68.4, 66.6, 65.7 (C-1, C-2, C-3, C-4, C-5); 14.1 (CH₃); (Found C, 65.37; H, 9.56; O, 24.92; C₂₁H₃₆O₆ requires C, 65.60; H, 9.44; O, 24.97).

D-1-O-Myristoyl-6-deoxy-myo-inositol 10 and D-3-O-myristoyl-6-deoxy-myo-inositol11

2-O-myristoyl orthoformate 9 was treated by a methanolic solution of HCl 1M, 2h. at r.t.. After neutralization of the acidic mixture with sodium bicarbonate aq. solution and evaporation to dryness, the residue was chromatographed on silica gel. First the 1-O-myristoyl 10 was eluted (54%) and then the 3-O-myristoyl 11 (36%). Both esters were crystallized from CH₃OH/H₂O.

10: m.p.142-144°C; $[\alpha]_D$ -13° (c 1, C₅H₅N); ¹H NMR (200MHz; C₅D₅N): δ : 5.40 (m, 1H, H-1); 5.11 (bs, 4H, O<u>H</u>); 4.85 (bs, 1H, H-2); 4.6 (t, 1H, H-4; J₄₋₃=J₄₋₅=9); 4.20 (m, 1H, H-5); 4.05 (dd, 1H, H-3; J₃₋₂=2, J₃₋₄=9); 2.9 (q, 1H, H-6ax; J_{6ax-6eq}=J_{6ax-1}=J_{6ax-5}=12); 2.60 (m, 1H, H-6eq); ¹³C NMR (50MHz; C₅D₅N): δ : 173.3 (C=O); 76.7; 74.79, 74.37, 70.96, 68.63 (C-1, C-2, C-3, C-4, C-5); 14.30 (<u>C</u>H₃); (Found C, 63.94; H, 10.19; O, 25.35; C₂₀H₃₈O₆ requires C, 64.14; H, 10.22; O, 25.63).

11: m.p. $136-137^{\circ}$ C; $[\alpha]_D - 35^{\circ}$ (c 1, C₅H₅N); ¹H NMR (250MHz; C₅D₅N + D₂O): δ : 5.90 (bs, 4H, O<u>H</u>); 5.45 (dd, 1H, H-3; J₃₋₄=10; J₃₋₂=2); 4.9 (sl, 1H, H-2); 4.80 (t, 1H, H-4; J₄₋₃=J₄₋₅=10); 4.20 (m, 2H, H-1, H-5); 2.90 (q, 1H, H-6ax; J_{6ax-6eq}=J_{6ax-1}=J_{6ax-5}=12); 2.6 (m, 3H, H-6eq, CH₂C=O); 1.00 (t, 3H, CH₃); ¹³C NMR (50MHz; C₅D₅N): δ : 173.87 (C=O); 76.83, 73.92, 72.72, 71.32, 68.39 (C-1, C-2, C-3, C-4, C-5); 14.38 (<u>C</u>H₃); (Found C, 63.95; H, 9.98; O, 25.48; C₂₀H₃₈O₆ requires C, 64.14; H, 10.22; O, 25.63).

D-2-O-Allyl-4-O-benzyl-6-deoxy-1,3,5-O-orthoformyl-myo-inositol 12

To a solution of orthoformate 7 (700 mg, 2.65 mmol.) in DMF (5 ml) was added sodium hydride (95 mg, 3.97 mmol.) and allyl bromide (0.35ml, 3.9 mmol.). The mixture was stirred for 1h. before addition of MeOH (5 ml) and the stirring was maintained for another 1h.. After extraction with CH₂Cl₂, the organic layer was concentrated *in vacuo* The residue was chromatographed on silicagel to give the allylether **12** in 55% yield; $[\alpha]_D$ =+ 11° (c 0.55, CH₂Cl₂); ¹H NMR (200MHz; CDCl₃): δ : 6.13 (m, 1H, =CH-); 5.73 (bs, 1H, H-7); 5.4 (d, 2H, CH₂=); 4.40 (m, 4H, H-1, H-2, H-5, CH₂O); 4.20 (m, 1H, H-3); 3.76 (m, 1H, H-4); 2.6 (m, 1H, H-6ax); 2.0 (m, 1H, H-6eq); (Found C, 67.25; H, 6.63; C₁₇H₂₀O₅ requires C, 67.09; H, 6.62).

D-6-Deoxy-1,3,5-O-orthoformyl-2-O-propyl-myo-inositol 13

Compound 12 dissolved in the minimun amount of AcOEt was hydrogenated for 1h., under 4 psi, in the presence of the same amount of Pd/C 10%. The catalyst was removed by filtration on Whatman paper and the filtrate was concentrated *in vacuo* The alcohol 13 was crystallized (94%): m.p.161-163°C; $[\alpha]_{D}=+10^{\circ}$ (c 0.9, CH₂Cl₂); ¹H NMR (200MHz; CDCl₃): δ : 5.56 (bs, 1H, H-7); 4.26 (m, 1H, CH₂O); 3.70 (ddd, 1H, H-1, J₁₋₂=4, J_{1-6ax}=8, J_{1-6eq}=2); 3.67 (ddd, 1H, H-5, J₅₋₄=6, J_{5-6ax}=8, J_{5-6eq}=2); 3.66 (dd, 1H, H-3, J₃₋₄=7, J₃₋₂=4); 3.60 (t, 1H, H-2, J₂₋₁=J₂₋₃=4); 3.40 (dd, 1H, H-4, J₄₋₃=7, J₄₋₅=6); 2.56 (ddd, 1H, H-6ax, J_{6ax-1}=8, J_{6ax-6eq}=12, J_{6ax-5}=2); 2.06 (m, 1H, H-6eq); 1.66 (m, 2H, CH₂); 0.96 (t, 2H, CH₃); (Found C, 55.51; H, 7.23; C₁₀H₁₆O₅ requires C, 55.54; H, 7.46)

D-6-Deoxy-2-O-propyl-myo-inositol 14

Orthoformate 13 was treated by a methanolic solution of HCl 1M, 2h. at r.t.. After neutralization of the acidic mixture with aq. sodium bicarbonate solution and evaporation to dryness, the residue was chromatographed on silicagel and the tetrol 14 was crystallized from hexane; m.p. 138-140°C; $[\alpha]_D + 6^\circ$ (c 1.3, CH₃OH); ¹H NMR (200MHz; CH₃OD): δ : 3.7 (ddd, 1H, H-1, J₁₋₂=4, J_{1-6ax}=10, J_{1-6ax}=3); 3.59 (m, 1H, H-2); 3.50 (q, 2H, CH₂O); 3.44 (m, 1H, H-5); 3.33 (m, 1H, H-3); 3.29 (m, 1H, H-4); 2.06 (ddd, 1H, H-6ax, J_{6ax-1}=10, J_{6ax-6eq}=12, J_{6ax-5}=8); 1.86 (m, 1H, H-6eq); 1.41 (m, 2H, CH₂); 0.91 (t, 2H, CH₃); (Found C, 49.98; H, 8.80; C9H₁₈O₅ .1/2 H₂O requires C, 50.22; H, 8.90).

D-6-Deoxy-2-O-propyl-myo-inositol-1,3,4,5-tetrakis(dibenzyl)phosphate 15

Tetrol 14 was phosphorylated using the method A in the presence of bisbenzyloxy-(diisopropylamino)phosphine reagent to give the 1,3,4,5-tetrakis(dibenzyl)phosphate 15 (65%); [α]_D +3°(c 0.77, CH₂Cl₂); ¹H NMR (200MHz; CDCl₃): δ : 4.86 (dt, 1H, H-1, J₁₋₂=4, J_{1-6ax}=12, J_{1-6ax}=4), 4.20 (t, 1H, H-2, J₂₋₁=J₂₋₃=4); 4.1 (m, 2H, H-3, H-4); 4.0 (ddd, 1H, H-5, J₅₋₄=8, J_{5-6ax}=12, J_{5-6eq}=6); 3.53 (q, 2H, CH₂O); 2.46 (ddd, 1H, H-6ax, J_{6ax-1}=12, J_{6ax-6eq}=>20, J_{6ax-5}=12); 2.26 (m, 1H, H-6eq); 1.46 (m, 2H, CH₂); 0.83 (t, 2H, CH₃); ¹³C NMR (50MHz; CDCl₃): δ : 77.8 (C-2); 75.9, 73.6, 73.3, 73.3 (C-1, C-3, C-4, C-5); 75.6 (<u>C</u>H₂Ph); 31.9 (C-6); 69.6, 23.5, 10.6 (propyl); (Found C, 62.46; H, 5.49; P, 9.90; C₆₅H₆₉O₁₇P4 requires C, 62.65; H, 5.58; P, 9.94).

D-6-Deoxy-2-O-propyl-myo-inositol-1,3,4,5-tetrakisphosphate 16

Tetrakis(dibenzyl)phosphate **15** dissolved in the minimun amount of EtOH 95% was hydrogenated for 2 h., under 4-5 psi, in the presence of the same amount of Pd/C 10%. The catalyst was removed by filtration on Whatman paper. Tris(hydroxymethyl)aminomethane (TRIS, 2 eq. per phosphate) was added and the aqueous solution was concentrated *in vacuo*. After lyophilization the tetraphosphate **16** was precipitated as a octa-TRIS-salt; $[\alpha]_D$ +0° (c 1.2, H₂O);¹H NMR (250MHz D₂O): δ : 4.36 (m 1H, H-5); 4.20 (m, 1H, H-1); 4.10 (m, 2H, H-2, H-3); 3.8 (m, 1H, H-4); 2.26 (m, 1H, H-6eq); 2.00 (m, 1H, H-6eq); (Found C, 31.20; H, 7.41; N, 7.28; C₄₁H₁₀₉O₄₁N₈P₄+ 4H₂O requires C, 31.44; H, 7.53; N, 7.15).

D-1,4,5-Tri-O-benzoyl-2,3-O-cyclohexylidene-6-deoxy-myo-inositol 17

To a solution of triol 1 (1,22g, 5 mmol.) dissolved in dry pyridine, was added benzoyl chlroride (2,32 ml, 20 mmol.) and the mixture was stirred for 3h. at r. t.. After extraction with CH₂Cl₂, the organic layer was concentrated *in vacuo*. The residue was chromatographed on silica gel to give crystalline 17 (96%); m.p. 200°C; $[\alpha]_D$ -40° (c 0.65, CHCl₃); S.M. (I.C; isobutanol; m/z): 557 [MH]⁺; ¹H NMR (250MHz; CDCl₃): δ : 5.85 (dd, 1H, H-4; J₄₋₃=8; J₄₋₅=10); 5.55 (m, 1H, H-1); 5.30 (m, 1H, H-5); 4.65 (t, 1H, H-2; J₂₋₃=J₂₋₁=4); 4.45 (dd, 1H, H-3); 2.50 (m, 2H, H-6ax H-6eq); ¹³C NMR (63MHz; CDCl₃): δ : 165.76 (3C=O); 111.78 (O-C-O); 76.62 (C-4); 75,14, 74.17 (C-2, C-3); 69.55, 67.58 (C-1, C-5); 29.88 (C-6); (Found C, 71.42; H, 5.90; C₃₃H₃₂O₈ requires C, 71.21; H, 5.80).

D-1,4,5-Tri-O-benzoyl-6-deoxy-myo-inositol 18

Tribenzoyl 17 was treated by a methanolic solution of HCl 37% (3 ml), 12h. at r.t.. After neutralization of the acidic mixture with sodium bicarbonate aq. solution and evaporation to dryness, the residue was chromatographed on silicagel to give the crystalline diol 18 (90%); m.p. 101-103°C; $[\alpha]_D$ -18° (c 1.65, CHCl3); S.M. (I.C; isobutanol; m/z): 477 [MH]⁺; ¹H NMR (200MHz; CDCl₃): δ : 5.85 (t, 1H, H-4; J₄₋₃=J₄₋₅=10); 5.40 (m, 1H, H-5); 5.25 (m, 1H, H-1); 4.40 (sl, 1H, H-2); 3.90 (dd, 1H, H-3; J₃₋₂=2.5, J₃₋₄=10); 3.70 (bs, 2H, 2OH); 2.50 (m, 2H, H-6ax, H-6eq); ¹³C NMR (63MHz; CDCl₃): δ : 167.41; 165.89; 165.69 (3 C=O); 75.04 (C-4); 71.40; 71.26 (C-2, C-3); 69.61; 69.56 (C-1, C-5); 29.00 (C-6); (Found C, 66.46; H, 5.24; C₂₇H₂₄O₈,1/2 H₂O requires C, 66.79; H, 5.19).

D-1,4,5-Tri-O-benzoyl-6-deoxy-3-O-trimethylacetyl-myo-inositol 19

A solution of diol 18 (400 mg, 0.84 mmol.) in dry pyridine under argon, was cooled to 0°C before addition of pivaloyl chloride (0.135 ml, 1.09 mmol.). The mixture was stirred 4h. at r.t. and extracted with CH_2Cl_2 . The organic phase was concentrated *in vacuo* and the residue chromatographed on silica gel to give

crystalline **19** (80%); m.p. 208-210°C; $[\alpha]_D$ =-38° (c 1, CHCl₃); ¹H NMR (200MHz; CDCl₃): δ : 6.15 (t, 1H, H-4; J₄₋₃=J₄₋₅=10); 5.4 (m, 2H, H-1 et H-5); 5.30 (dd, 1H, H-3; J₃₋₂=2.5, J₃₋₄=10); 4.05 (bs, 1H, H-2); 2.60 (m, 3H, OH; H-6ax, H-6eq); 1.05 (s, 9H, (CH₃)); ¹³C NMR (50MHz; CDCl₃): δ : 177.32 (<u>C</u>=O_{pivaloyl}); 165.91; 165.77; 165.47 (3C=O_{benzoyl}); 71.38; 71.17; 69.90; 69.46; 69.15 (C-1,C-2, C-3, C-4, C-5); 39.00 [<u>C</u>(CH₃)₃]; 28.97 (C-6); 27.00 [(CH₃)₃]; (Found C, 68.37; H, 5.85; C₃₂H₃₂O₉ requires C, 68.56; H, 5.75).

D-1,4,5-Tri-O-benzoyl-2-O-benzyl-6-deoxy-3-O-trimethylacetyl-myo-inositol 20

To a solution of alcohol **19** (230 mg, 0.5 mmol.) dissolved in CH₂Cl₂ (5 ml) was added under argon cyclohexane (10 ml), benzyl-2,2,2-trichloroacetamidate (380 mg, 1.5 mmol.) and trifluoromethanesulfonic acid (0.1 ml). After 6h. of stirring and neutralization with aq. sodium bicarbonate solution, the mixture was extracted with CH₂Cl₂. The organic layer was concentrated *in vacuo* and the residue chromatographed on silicagel to give the crystalline benzylether **20** (70%); m.p. 128-129°C; $[\alpha]_D$ -13° (c 1.25, CHCl₃); S.M. (I.C; isobutanol; m/z): 651 [MH]+; ¹H NMR (250MHz; CDCl₃): δ : 6.15 (t, 1H, H-4; J_{4.3}=J₄₋₅=10); 5.35 (m, 3H, H-1, H-3, H-5); 4.80 (dd, 2H, CH₂Ph); 4.35 (bs, 1H, H-2); 2.55 (m, 2H, H-6ax, H-6eq); 1.05 [s, 9H, (CH₃)]; ¹³C NMR (63MHz; CDCl₃): δ : 177.20 (C=O_{pivaloyl}); 165.66 (3C=O_{benzoyl}); 77.10 (C-2); 75.35 (CH₂Ph); 71.67 (C-3, C-4); 69.98; 69.36 (C-1, C-5); 38.79 [C(CH₃)₃]; 29.62 (C-6); 26.93 [(CH₃)₃]; (Found C, 71.57; H, 5.95, O, 22.52 C₃₉H₃₈O₉ requires C, 71.98; H, 5.89; O, 22.13).

D-2-O-Benzyl-6-deoxy-myo-inositol 21

Tribenzoate **20** (300 mg, 0.46 mmol.) was treated by a sodium hydroxide (600 mg) solution in methanol (10 ml), 2h. at reflux. After neutralization of the mixture with HCl aq. solution and evaporation to dryness, the residue was chromatographed on silicagel to give the crystalline tetrol **21** from CH₃OH/H₂O (86%); m.p. 138-140°C; $[\alpha]_D$ =+16° (c 1.7, CH₃OH); ¹H NMR (200MHz; C₅D₅N): δ : 6.00 (m, 4H, OH); 5.05 (dd, 2H, CH₂Ph); 4.25 (t, 1H, H-4; J₄₋₃=J₄₋₅=9); 4.15 (bs, 1H, H-2); 3.95 (ddd, 1H, H-1; J₁₋₂=3; J_{1-6eq}=4; J_{1-6ax}=12); 3.80 (m, 2H, H-3, H-5); 2.45 (q, 1H, H-6ax; J_{6ax-1}=J_{6ax-5}=J_{6ax-6eq}=12); 2.3 (m, 1H, H-6eq); ¹³C NMR (50MHz; C₅D₅N): δ : 83.84 (C-2); 77.11 (C-4); 75.50 (CH₂Ph); 74.68 (C-3); 71.47 (C-5); 68.91 (C-1); 38.17 (C-6); (Found C, 61.11; H, 7.12; C₁₃H₁₈O₅ requires C, 61.40; H, 7.14).

D-2-O-Benzyl-6-deoxy-myo-inositol-1,3,4,5-tetrakis(dibutyl)phosphate 22

Tetrol 21 was phosphorylated using the phosphorylation method A in the presence of bisbutyloxy(diisopropylamino)phosphine to give 1,3,4,5-tetrakis(dibutyl)phosphate 22 (55%); $[\alpha]_D=+7^\circ$ (c 1, CHCl₃); ¹H NMR.(400MHz; CDCl₃): δ : 4.90 (dd, 2H, CH₂Ph); 4.75 (t, 1H, H-4; J₄₋₃=J₄₋₅= 9); 4.5 (bs, 1H, H-2); 4.35 (m, 1H, H-1); 4.20 (m, 1H, H-5); 4.10 (m, 17H, H-3, CH₂O); 2.55 (dt, 1H, H-6eq, J_{6eq-6ax}=12; J_{6eq-1}=J_{6eq-5}=4); 2.35 (q, 1H, H-6ax; J_{6eq-6ax}=J_{6ax-1}=J_{6ax-5}=12); ¹³C NMR (63MHz; CDCl₃): δ : 78.00 (C-2); 76.81 (C-4); 75.56 (C-3); 75.23 (CH₂Ph); 73.00, 71.73 (C-1, C-5); 67.90 (8<u>C</u>H₂O); 31.96 (C-6 et 8<u>C</u>H₂CH₂O); 18.38 (8<u>C</u>H₂CH₃); 13.30 [8<u>C</u>H₃(CH₂)₃]; ³¹P NMR (81MHz; CDCl₃): δ : -1.32; -0.86 (P₁, P₃, P₄, P₅); (Found C, 53.05; H, 8.51; P, 11.82; C4₅H₈₆O₁₇P₄ requires C, 52.83; H, 8.47; P, 12.11).

D-6-Deoxy-myo-inositol-1,3,4,5-tetrakis(dibutyl)phosphate 23

Tetrakis(dibenzyl)phosphate 22 dissolved in the minimun amount of AcOEt was hydrogenated for 2h., under 4-5 psi, in the presence of the same amount of Pd/C 10%. The catalyst was removed by filtration on

Whatman paper and the filtrate was concentrated to give the tetrakisphosphate 23 quantitatively; $[\alpha]_D + 1^\circ$ (c 0.7, CHCl₃); ¹H NMR (250MHz; CDCl₃): δ : 4.75 (q, 1H, H-4; J₄₋₃=J₄₋₅=9); 4.6 (bs, 1H, H-2); 4.35 (m, 2H, H-1, H-5); 4.10 (m, 17H, H-3, CH2O); 3.2 (bs, 1H, OH): 2.55 (dt, 1H, H-6eq, J_{6eq-6ax}=12; J_{6eq-1}= $J_{6eq-5}=4$; 2.35 (q, 1H, H-6ax; $J_{6eq-6ax}=J_{6ax-5}=J_{6ax-1}=12$); ¹³C NMR (50MHz; CDCl₃): δ : 76.91 (C-4); 76.39 (C-3); 73.18 (C-2); 71.92; 69.72 (C-1, C-5); 67.90, 68.15 (8CH2O); 32.27 (8CH2CH2O); 31.41 (C-6); 18,65 (8CH₂CH₃); 13.53 [8CH₃(CH₂)₃]; ³¹P NMR (81MHz; CDCl₃):δ : -1.69, -1.43, -1.21, -0.97 (P₁, P₃, P4, P5); (Found C, 49.02; H, 8.70; P, 12.98; C₃₈H₈₀O₁₇P4 requires C, 48.92; H, 8.64; P, 13.28).

REFERENCES

- 1. a. Berridge, M. J. and Irvine, R. F. "Inositol phosphates and cell signalling" Nature (Lond.) 1989, 341, 197; b. Berridge, M. J. Nature (Lond.) 1993, 361, 315; c. Potter, B. V. L. and Gigg, R. Carbohydr. Res. 1992, 234, xi; c. Berridge, M. J. Ann. N. Y. Acad. Sci. 1995, 766, 31; d. Recent review of chemistry of inositol lipid. Potter, B. V. L. and Lampe, D. Angew. Chem. Int. Ed. Engl. 1995, 34, 1933; Angew. Chem. 1995, 107, 2085. a. Lückhoff, A. and Clapham, D. E. Nature, (London) 1992, 355, 356; b. Wilcox, R. A;
- 2. Challis, R. A. J.; Baudin, G.; Vasella, A.; Potter, B. V. L; Nahorski, S. R. Biochem. J. 1993, 294, 191.
- Irvine, R.F. and Cullen, P. J. Curr. Biol. 1993, 3, 540. 3.
- a. Cullen, P. J.; Dawson, A. P.; Irvine, R. F. *Biochem. J.* **1995**, 305, 139; b. Cullen, P. J.; Chung, S.-K; Chang, Y, -T; Dawson, A. P.; Irvine, R. F. *FEBS Lett.* **1995**, 358, 240. 4.
- Cullen, P. J.; Hsuan, J. J.; Truong, O.; Letcher, A. J.; Jackson, T. R.; Dawson, A. P.; 5. Irvine, R. F. Nature, (London) 1995, 376, 527.
- 6. a. Baudin, G.; Glänzer, B. I.; Swaminathan, K. S. and Vasella A., Helv. Chim. Acta, 1988, 71, 1367; b. Deef, C. E.; Tuinman, R. J.; Elie, C. J. J.; van der Marel, G. A. and van Boom, J. H. Recl. Trav. Chim. Pays-Bas, 1988, 107, 395; c. Watanabe, Y.; Fujimoto, T.; Shinohara, T. and Osaki, S. J. Chem. Soc., Chem. Commun. 1991, p. 428. d. Gou, D.-M.; Liu, Y.-C. and Chen, C.-S. Carbohydr. Res. 1992, 234, 51; e. Falck, J. R. and Abdali, A. Bioorg. Med. Chem. Lett. 1993, 3, 717; f. Mills, S. J.; Safrany, S. T. Wilcox, R. A.; Nahorski, S. R. and Potter, B. V. L. Bioorg. Med. Chem. Lett. 1993, 3, 1505; g. Lui, C. and Potter, B. V. L. Tetrahedron Lett., 1994, 35, 1605; h. Hirata, M.; Narumoto, N.; Watanabe, Y.; Kanematsu, T.; Koga T. and Osaki, S. Mol. Pharmacol. 1994, 45, 271; i. Kozikowski, A. P.; Fauq. A. H.; Wilcox, R. A. and Nahorski. S. R. Bioorg. Med. Chem. Lett. 1995, 5, 1295; j. Jenkins, D. J.; Dubreuil, D. and Potter, B. V. L. J. Chem Soc., Perkin Trans I, 1996, p. 1365; k. Riley, A. M.; Mahon, M. F. and Potter B. V. L. Angew. Chem. Int. Ed. Engl. 1997, 36, 1472.
- Mills, S. J. and Potter, B. V. L. J. Chem Soc., Perkin Trans I, 1997, p. 1279 7.
- a. Hirata, M.; Watanabe, Y.; Ishimatsu, T.; Ikebe, T.; Kimura, Y.; Yamaguchi, K.; Osaki, S.; Koga, T. J. Biol. Chem., 1989, 264, 20303; b. Hirata, M.; Yanaga, F.; Koga, T.; Ogasawara, T.; Watanabe, Y.and Osaki, S. J. Biol. Chem., 1990, 265, 8404. a. Dubreuil, D.; Cleophax, J.; Vieira de Almeida, M.; Verre-Sebrié, C.; Liaigre, J.; Vass, G. 8.
- 9. and Gero, S. D. Tetrahedron, 1997, 53, 16747.
- 10. Vieira de Almeida, M.; Dubreuil, D.; Cleophax, J.; Verre-Sebrié, C.; Pipelier, M.; Prestat, G.; Vass, G. and Gero, S. D. Tetrahedron submitted
- a. Billington, D. C.; Baker, R ; Kulagowski, J. J.; Mawer, I. M.; Vacca, J. P.; deSolms, S. J.; Huff, J. R. J. Chem Soc., Perkin Trans 1 1989, p. 1423; b.Dreef, C.; Elie, C.J.J.; Hocgerhout, P.; van der Marel, G. A.; van Boom, J. H. Tetrahedron Lett., 1988, 29, 6513. 11.
- 12.
- a. Lee, H. W.; Kishi, Y.; J. Org. Chem., 1985, 50, 4402. a. Iversen, T. and Bundle, D. R. J. Chem. Soc., Perkin Trans 1 1981, p 1240; b. Wessel, H. P.; Iversen, T. and Bundle, D. R. J. Chem. Soc., Perkin Trans 1 1985, 2247. Perrin, D. D.; Armarego, W. L. F. Purification of laboratory Chemicals; 3rd ed.; 13.
- 14. Butterworth-Heinemann Ltd.; Oxford, 1988.