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Abstract

A disaccharide scaffold based on tunicamycin was synthesizeddrandine andL-mannose. The key step in
disaccharide assembly was anannosylation performed using Crich’s modification of the sulfoxide glycosylation
method. The scaffold described contains two orthogonal derivatization sites and will be used in the search for novel
biologically active compounds. © 2000 Elsevier Science Ltd. All rights reserved.
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As part of our drug discovery program, we are interested in the construction of scaffolds based on
therapeutically interesting carbohydrates and glycoconjuga@esh scaffolds can be utilized as building
blocks in the assembly of combinatorial libraries, with the objective of exploring the SAR of the original
drug and identifying novel biologically active ageRts.

This paper reports work in the construction of one such scaffold based on the tunicaniycias (
family of nucleoside antibiotics isolated from the fermentation brothStadptomyces lysosuperifictis
These drugs have a general structure composed of a fatty acid chain,éwacétylD-glucosamine and
an undecose sugar named tunicanfirihe tunicamycins have been shown to inhibit a wide variety
of lipid carrier-dependent protein glycosylations, having great potential as antibiotic and antitumor
agents. For example, in bacteria the tunicamycins inhibit the conversion of UDP-MurNAc to lipid
| catalyzed by the MraY enzyme, inhibiting cell wall biosynthesis and leading to bacterial Heath.
Unfortunately, tunicamycins have not enjoyed use as human therapeutic agents because they are also
toxic to mammalian cells, interfering with dolichol-diphosphoryl-GIcNAc synthesis and inhibiting
oligosaccharide biosynthesidNevertheless, since tunicamycins inhibit enzymes with distinct substrate
requirements, it is plausible that distinct features of the drug may be recognized by each affected enzyme.
Tunicamycin analogs may thus have differential inhibitory effects towards eukaryotic and prokaryotic
cells, allowing for the possible targeting of pathogenic cells over mammalian cells. Because of the
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great structural complexity of the drugs, limited work besides chemical degradation has been devoted
to establishing a structure—activity relationship for these compotinds.

The disaccharide scaffold described he2eRig. 1) has the general structure of tunicamycin, with
modifications in the two-carbon bridge and the glucosamine ring. Besides simplifying the overall
synthesis oR, these modifications may shed light on the importance of the specific groups in biological
activity. Furthermore? incorporates two sites (azide and hydroxyl groups) that can be derivatized
orthogonally (Fig. 1). Retrosynthetic analysisb$howed that the key synthetic step was formation of
a -glycosidic linkage betweeniamannosyl donor and a-uridyl acceptor. Synthesis ofmannosides
is still one of the most difficult challenges in modern carbohydrate cheniiStiyce Crich and Sun have
recently shown that-mannosides can be synthesized in high yield using a modification of the sulfoxide
glycosylation method? this glycosylation method was chosen for construction of the disaccharide core.
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Synthesis of thed-uridyl acceptor is shown in Fig. 2. Uridin@ was reacted with trityl chloride in
pyridine in the presence of DMAP to afford thé-ityl derivative 4, which was peralkylated with
benzyloxymethyl chloride to generate Treatment ofs with formic acid in acetonitrile led to clean
removal of the trityl group, without loss of the BOM groups, yielding accepftr
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Synthesis of the-mannosyl donor is shown in Fig. B-Mannoser was peracetylated and reacted with
PhSH and BE OE® to generate sulfide8a—b. The -sulfide9awas deacetylated to the tetrad and
reacted with benzaldehyde dimethyl acetal to afford the 4®-0enzylidene compountll. Treatment
with excess BnCl and NaH vyielded the fully protected sulfide which was cleanly oxidized using
mCPBA to sulfoxidel3. CompoundL3was recrystallized as a single diastereoisotfer.
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Compoundst and 13 were coupled using Crich’s protocol for the sulfoxide glycosylation reaction
(Fig. 4). A solution of13 and base in CkLCl, was treated with HO at  78°C, and after 5 mi was
added. The reaction afforded 53% of the desiredannoside 4,13 along with 29% of the corresponding

-mannoside and 10% of mannosyl lactols. The benzylidene grolipwas selectively removed with
agqueous HOAc at 50°C, and th&Iydroxyl group was tosylated to affofds. Finally, the tosyl group
was displaced using sodium azide, affording target scaff@itf
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Diversity could, in principle, be introduced it¥ by selective derivatization of thé-@zide and the%4
hydroxyl groups on the-mannose ring, followed by removal of protective groups (Fig. 5). In order
to validate such chemical diversity stratedy, was treated with PMgin THF—EtOH-HO and the
resulting aminel8 was selectively acetylated using HOAc, HATU and DIPEA to aff&8l Reaction
with n-octadecyl isocyanate afforded the urethafewhich was hydrogenated to generate the expected
bis-derivatized produ@1l.
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In summary, we have reported the efficient synthesis of a disaccharide schffdddsed on the
tunicamycins. Scaffold7was synthesized from two commercially available building blocksy@nnose
andp-uridine) and the key step in the synthesis involved the use of Crich’s modification of the sulfoxide
glycosylation method to obtain amannoside in good yield. Compoudd presents a functional group
dyad (the azide and the free hydroxyl groups) that can be orthogonally derivatized to generate di-
substituted disaccharide scaffolds. Based on this combinatorial flexibility, we are currently pursuing the
synthesis of tunicamycin analogs basedl@rand other related scaffolds. Biological evaluation of such



858

compounds should shed light on the mechanism of action of the tunicamycins and help refine our initial
choice of scaffold structure.
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