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Abstract—Polymer hydrogels synthesized by crosslinking poly(allylamine hydrochloride) with (%)-epichlorohydrin in the presence
of p-glucose-6-phosphate monobarium salt do not show imprinting on the molecular level. A series of hydrogels was prepared using
the following five templates: D-glucose-6-phosphate monobarium salt, b-glucose, L-glucose, barium hydrogen phosphate (BaHPO,),
and Dp-gluconamide; a hydrogel was also prepared in the absence of a template. For all six hydrogels, batch binding studies were
conducted with D-glucose, L-glucose, D-fructose, and D-gluconamide. The extent of analyte sugar binding was determined using
'"H NMR. Each hydrogel shows approximately the same relative binding affinity for the different sugar derivatives, and none
displays selectivity for either glucose enantiomer. The results of the binding studies correlate with the octanol-water partition
coefficients of the sugars, indicative that differential solubilities in the bulk polymer account for the binding affinities observed.
Thus, in contrast to templated hydrogels prepared using methacrylate- or acrylamide-based reagents, true imprinting does not

occur in this novel, crosslinked-poly(allylamine hydrochloride) system.

© 2006 Elsevier Ltd. All rights reserved.

Over the past decade, many new approaches have been
reported for the generation and characterization of
molecularly imprinted polymers.!> For example, im-
prints generated from hydrogels, hydrophilic polymer
networks that have been exploited in a variety of biolog-
ical and pharmacological applications,®> have potential
for use as ‘intelligent, controlled release’ materials.*
Recent reports indicate that imprinted hydrogels can
selectively bind both protein®® and small-molecule’
templates, including glucose.®

We were particularly interested in the novel, carbohy-
drate-binding system reported by the Kofinas group.”!°
Unlike the majority of imprinted hydrogels reported to
date, this system does not involve the use of methacry-
late- or acrylamide-based reagents—rather the hydrogels
are synthesized by crosslinking poly(allylamine hydro-
chloride) (PAA-HCIl) with (*)-epichlorohydrin (EPI).
When prepared in the presence of 1.5 mol % of p-glu-
cose-6-phosphate monobarium salt (GPS-Ba), these
hydrogels show preferential binding of p-glucose relative
to p-fructose.® As measured by batch studies in deion-
ized water, binding capacities of approximately 600 mg
of D-glucose per gram of dry polymer were reported,
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compared with only slightly more than 100 mg of p-fruc-
tose; control hydrogels formed in the absence of template
were reported to bind just over 100 mg of both p-glucose
and p-fructose per gram of dry polymer. Based upon
these results, the Kofinas group had concluded that the
GPS-Ba templated hydrogels had ‘recognizable cavities
in a water-swollen state with an affinity for the imprint’s
analog, glucose’.’ To better understand the basis of the
binding properties exhibited by this remarkable system,
we undertook the additional studies reported here.

Following the general procedure of the Kofinas
group,’ 'Y we prepared crosslinked hydrogels in the pres-
ence of GPS-Ba, p-glucose, L-glucose, BaHPO,, and Dp-
gluconamide;'"*!2 a control hydrogel was also prepared
in the absence of a template. By using p-glucose and
BaHPO, as templates, we had hoped to dissect the inter-
actions of the GPS-Ba with the PAA-HCI. We included
D-gluconamide in our studies because it is a potential
substrate for an intramolecular amide cleavage
reaction'® (our ultimate goal is to generate catalytic
molecular imprints). Finally, we were especially interested
in L-glucose—both as a template and an analyte—as a
probe of enantioselective binding.

For all six hydrogels, batch binding studies were con-
ducted in deionized water with the analytes p-glucose,
L-glucose, D-fructose, and D-gluconamide.!* (Although
the Kofinas group had also measured the extent of bind-
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Figure 1. The structures of the derivatives employed in this study.
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Figure 2. Calibration curve for p-glucose (n = 6, R> = 0.981) generated

from the "H NMR spectra of six solutions of known concentration.

The ratio of the integral of 25 mg/mL p-glucose relative to that of the

acetic acid standard is normalized to 1.0. The error bars indicate the
+5% range routinely observed in the measurement of the integrals.

ing in pH 7 buffer, greater discrimination for glucose
over fructose had been observed in deionized water,’
and we thus did not use buffer in our experiments.)

Table 1. The results of the "H NMR binding assay”

The structures of all the templates and analytes are
shown in Figure 1.

While the Kofinas group had determined the extent of
binding colorimetrically,”!'® we employed an 'H NMR
assay that entails integrating signals for the sugar
relative to an internal acetic acid standard; the amount
of sugar remaining in solution is then determined by
reference to a standard curve. The calibration curve
for p-glucose is shown in Figure 2. (This assay does
not require reagents specific to the sugar of interest
and thus is general for any analyte.)

The raw data from our binding studies are shown in
Table 1; the sugar-binding capacities of the hydrogels
(in mg of sugar bound per gram of dry hydrogel) calcu-
lated from these data are shown in Table 2. Our results
indicate that all of the hydrogels, irrespective of tem-
plate, preferentially bind p-glucose over D-fructose.
The values for the separation factors o—defined as
[(binding capacity for glucose)/(binding capacity for
fructose)]— shown in Table 3 indicate that this en-
hanced binding of glucose is essentially independent of
template. Moreover, in contrast to the results reported
by the Kofinas group, we observed that the hydrogel
formed in the absence of template has a higher affinity
both for glucose and for fructose as compared with
the hydrogel formed in the presence of GPS-Ba. The o
value for D-glucose verses D-fructose binding by the
untemplated hydrogel is lower than that for all five of
the templated hydrogels, but the difference is not large.

To further probe the specificity of binding, we measured
the affinity of all six hydrogels for L-glucose—enantio-
selective binding is a hallmark of organic polymers
imprinted with optically pure chiral templates.'®> (The
hydrogels prepared with achiral BAHPO, and in the ab-
sence of template serve as controls.) All of the hydrogels,
however, bound both enantiomers of glucose with essen-
tially equal affinity (Tables 1 and 2).

Our results indicate that molecular imprinting is not
responsible for the different binding properties of these
hydrogels. Rather, the binding data correlate to the oct-
anol-water partition coefficients (P,.) of the analyte
sugars. As shown in Figure 3 for the hydrogel generated
in the absence of a template, a plot of log [binding
capacity] vs. log P, yields a straight line. (Similar plots
are obtained from the data for each of the templated

Template Analyte sugar (mg/mL remaining in solution after incubation of a 50 mg/mL solution with hydrogel)
D-Fructose D-Glucose L-Glucose D-Gluconamide
GPS-Ba 457%23 38.6+22 37.7+24 31217
BaHPO, 435+ 1.0 343%0.1 342+23 32618
D-Glucose 43.6 0.7 353+ 1.1 36.1£1.3 303x14
L-Glucose 452104 357%0.8 36.2%2.6 31.0%£ 1.6
D-Gluconamide 463+ 0.4 36.2+0.0 382%0.5 314%1.1
None 41.8+0.5 327%1.0 354%12 28.8 +0.7

#The final concentration of analyte sugar (in mg/mL) remaining in solution after incubation of a 50 mg/mL solution of sugar in deionized water with
the hydrogels. A 0.40:15 w/v ratio of the dry polymer hydrogels to the analyte sugar solution was used. Each value shown is the average of two

independent measurements with the range indicated as ‘*’.
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Table 2. Sugar-binding capacity (mg of sugar bound/g of dry polymer hydrogel)®

Template Analyte sugar
p-Fructose D-Glucose L-Glucose D-Gluconamide

GPS-Ba 161 £ 86 428 £ 83 461 £ 90 705 + 64
BaHPO, 244 + 38 589+ 04 593+ 86 653 + 68
D-Glucose 240 + 26 551 £ 41 521 49 739 + 53
D-Glucose 180 £ 15 536 =30 518 £98 713 £ 60
D-Gluconamide 139 £ 15 518 £ 00 44319 698 + 41
None 308 £ 19 649 + 38 548 45 795 + 26

#The values shown are calculated from the raw data in Table 1: Sugar-binding capacity = [(50 mg/mL initial analyte sugar concentration — analyte
sugar concentration remaining in solution)/0.02667 g polymer per mL analyte sugar solution]. The larger errors than in Table 1 are due to the small

amount of sugar bound relative to that remaining in solution.

Table 3. Separation factors « for D-glucose vs. D-fructose binding for
each hydrogel®

Template Range Average
GPS-Ba 1.39-6.80 2.65
BaHPO, 2.08-2.87 2.42
D-Glucose 1.92-2.77 2.30
L-Glucose 2.60-3.43 2.98
D-Gluconamide 3.37-4.18 3.73
None 1.87-2.38 2.11

#The « value = [(binding capacity for p-glucose)/(binding capacity for
p-fructose)]. The range in each o value reflects the experimental error
in Tables 1 and 2; the average « values are calculated from the
average binding values in Table 2.
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Figure 3. Log [binding capacity untemplated hydrogel] vs. log P, for
the analyte sugars. The binding capacity for glucose was taken to be
the weighted average of the binding capacity for p-glucose and L-
glucose. The log P, values at 25 °C for glucose (both enantiomers will
have the identical value), D-fructose, and D-gluconamide have been
calculated to be —3.169 * 0.858, —1.629 + 0.870, and —3.700 * 0.870,
respectively.!” The log P, value for glucose has also been experimen-
tally determined as —3.24 by Sangster'® and —2.82 + 0.04 by Mazzobre
et al.,'’” numbers that agree, within experimental error, with the
calculated value.

hydrogels.) As log P, becomes more negative, indica-
tive of an increased sugar polarity, adsorption into the
hydrogel also increases. Thus, the differential solubilities
of each sugar in the bulk polymer account for the bind-
ing data obtained. (An earlier study'® on the partition-

ing of a series of drugs into the hydrogel poly-2-
hydroxyethyl methacrylate also revealed a linear depen-
dence on analyte polarity, but with more hydrophobic
analytes preferentially binding in the hydrogel.)

Finally, we would note that two factors likely account
for the discrepancies in the values reported here, as com-
pared with those reported earlier by the Kofinas group,’
for the glucose and fructose-binding affinities of the
hydrogels prepared with GPS-Ba and prepared in the
absence of template: one, the binding assays are run in
unbuffered, deionized water (for the reasons discussed
earlier), and thus small differences in pH are inevitable;
and two, binding equilibrium is not reached in the ‘stan-
dard testing time’ of 4 h,'® and thus kinetic factors will
influence the data obtained.

In summary, polymer hydrogels prepared by crosslink-
ing poly(allylamine hydrochloride) with epichlorohydrin
in the presence of sugar templates do not exhibit
imprinting on the molecular level. Instead, differences
in the solubilities of the analyte sugars in the polymer
hydrogel bulk account for the observed data, a conclu-
sion consistent with the fact that far more sugar is
bound by the hydrogels than the 1.5 mol % of template
used in their generation.
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