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Abstract: Synthesis of core-2 branched tetrasaccharides 1-3, in
which a fluorine atom was substituted at the 3 or 4-position of ga-
lactose residues is described. Glycosyl imidates 13, and 19 were
prepared and used to provide novel glycosyl disaccharide donors 15
and 21, respectively. Coupling of acceptor 7 with glycosyl bromide
6 provides a disaccharide that was further converted into disaccha-
ride acceptor 8. The coupling of acceptor 14 with donor 13, and ac-
ceptor 20 with donor 19 provided disaccharides that were converted
to disaccharide donors 15 and 21, respectively. Regioselective gly-
cosylation of acceptors 8, and 16 with donors 9, 15, and 21 provided
tetrasaccharides 10, 17, and 22 respectively, which were systemati-
cally deprotected to targets 1-3.

Key words:. tetrasaccharides, galactose residues, core-2 O-linked
glycoproteins

The natural mucin ligands, and various tumor-associated
core-2 O-linked glycoproteins are known to contain the
GalB1—4GIcNACB1—6Ga pl—3GaNHACca-1 structure
(Scheme 1).! These core-2 branched oligosaccharides are
important in many functional biological processes.? How-
ever, there is little known about the detailed physiologic
roles of these siaylated and sulfated oligosaccharides as-
sociated with cancers and inflammations. Tremendous ef-
forts have been devoted to understanding the structure and
function of O-glycans in binding with L, P, and E selec-
tins, which were demonstrated by developing avariety of
synthetic methodologies including glycosylation forma
tion, and protection-deprotection strategies by various re-
search groups.® We have become interested in fluorinated
core-2 branched oligosaccharide analogues due to: (a) the
small size of fluorine is comparable to that of a hydroxyl
group;* (b) the fluorine atom in a C-F bond is believed to
be capable of forming hydrogen bonds with hydrogen
bond donors but not hydrogen bond acceptors; (¢) substi-
tution of 3-or 4-hydroxyl group from galactose residue
can further terminate chain  elongation  of
Galpl—>4GIcNAcB1—6Gapl—>3GaNHAca-1  struc-
ture, which is believed to be a possible glycosylation site
for a(2,3)-sidyltransferase, 3-O-sulfotransferase and
a(1,4)-GlcNAc transferase. Blocking the C-3, or C-4 po-
sition of the pertinent galactose residue will provide an
opportunity to investigate and understand the biosynthetic
mechanism of core-2 branched oligosaccharides, and may
provide useful information in the search of inhibitors for
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these glycotransferases. Moreover, these modified ana-
logs when per, or partially acetylated may have the ability
to prime core-2 oligosaccharide glycan synthesis and thus
inhibit biosynthesis of natural ligands for L and P selec-
tins.® Herein, we have described effective syntheses of
fluorinated core-2 branched oligosaccharides 1-3. Core-2
tetrasaccharides 1-3 and the related building blocks are
shown in Scheme 1. There are two galactose residues in
each core-2 branched tetrasaccharide. Synthesis of these
tetrasaccharides was thereby divided into synthetic targets
1, of which the fluorine was located at the 3-position of
down-chain galactose residue and targets 2, 3 of which
fluorine was located at 3, or 4-position of up-chain galac-
tose residue. In order to synthesize tetrasaccharide 1, the
fluorinated bromide donor 6 was necessary. The fluorinat-
ed compound 4 was prepared according to a known meth-
od in good yield.® Compound 4 was acetolysized with a
catalytic amount of concentrated sulfuric acidin acetic an-
hydride in an ice-bath for 2 h. The bromide donor 6 was
obtained via treatment of compound 5 with HBr—HOACc
(33%) at room temperature for 2 h (Scheme 2).” The dis-
accharide acceptor 8 was then prepared in two stepsin a
poor yield (28%) using a published methodology.® There-
gioselective glycosylation of acceptor 8 with disaccharide
donor 9 at low temperature provided tetrasaccharide 10 as
the only glycosylated product in agood yield (65%). The
stereochemistry and linkage of trisaccharide 10 was estab-
lished with a combination of two-dimensional NMR ex-
periments including 2D DQF-COSY, TOCSY, and
ROESY. Target 1 was obtained by systematic deprotec-
tion of compound 10 in three steps. 1) removal of Phth
group from C-2 of sugar residue; 2) complete acetylation;
3) removal of acetyl group in good yield (45%). Synthesis
of compound 2 is outlined in Scheme 3. Fluorine-contain-
ing disaccharide donor 15 was essential to produce com-
pound 2. Construction of the B(1—4) linkage of
disaccharide donor 15 was due to regiosel ective coupling
at the 4-hydroxyl of acceptor 14 with imidate donor 13.
An attempt to couple acceptor 14 with imidate donor 13,
at 45 °C to 40 °C, resulted in a mixture of the B(1—4)
and B(1—3) linked disaccharides, which made separation
by column chromatography difficult. However, when the
reaction temperature was lowered to —65 °C to —70 °C,
only the B(1—4) linked disaccharide was obtained as a
glycosylation product. This product was then treated with
dry pyridine and anhydrous acetic anhydride to provide
disaccharide donor 15 in two steps, and in good yield
(63%). Regioselective glycosylation of the 6-hydroxyl
group of disaccharide acceptor 16 with donor 15 at low
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Scheme 1l Fluorine containing core 2 oligosaccharides 1-3 and related building blocks

temperature provided compound 17 in ahighyield (76%).
The structure of tetrasaccharide 17 was confirmed by a
variety of 2D NMR experiments. Target compound 2 was
obtained by a similar procedure used for the deprotection
of compound 10 to compound 1 in three stepsin areason-
ableyield (39%). Synthesis of target oligosaccharide 3 is

shown in Scheme 4. Fluorinated imidate donor 19° was
preparedin low yield (32%). Regiosel ective glycosylation
of the 4-hydroxyl group of acceptor 20 with imidate donor
19 was achieved by a glycosylation procedure established
in our laboratory. This method provided the B(1—4) link-
age for disaccharide 21. Coupling of disaccharide accep-
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Scheme2 a) Ac,0-H,SO,, 0-5 °C, 2 h, 58%, b) HBr—HOALC, r.t., 65%, ¢) Hg(CN),/CH;NO,~benzene, 65 °C, 12 h, d) 60% HOAc, 65 °C to
70°C, 1.5 h, 28% in two steps, €) NI S=TfOH/CH,Cl,,, —45 °C to —40 °C, 65%, f) i) NH,-NH,-H,O-CH,OH (1:5), 90 °C, 6 h, ii) Ac,O—pyridine
(1:1), DMAP, rt., 12 h, g) 1 M CH;ONa-CH4OH/CH,OH-H,0, r.t., 12 h, 45% in three steps.
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Scheme3 &) NH,NH,-HOAC/DMF, 50 °C, 2 h, b) CCl,CN/DBU, CH,Cl,, 0°C to 25 °C, 2 h, 80% in two steps, ¢) TMSOTf/CH,Cl,, 4 A MS,

—65°Cto—70°C, 2 h, 41%, d) Ac,O—pyridine (1:1), DMAP, r.t., 12
f) Ac,O—pyridine (1:1), DMAP, r.t.,12 h, 45%, g) (i) NH,-NH,-H,0-C
1M CH3;ONa-CH;OH/CH;0H-H,0, r.t., 12 h, 39% in three steps.

tor 16 with disaccharide donor 21 afforded the desired
B(1—6) linkage of tetrasaccharide 22 in a reasonable
yield (52%). Target oligosaccharide 3 was obtained by
complete deprotection of compound 22 in four stepsin a
reasonable yield.

In summary, fluorine core-2 oligosaccharide anal ogues
1-3 having the fluorine atom located at different posi-
tions on the gal actose residue were synthesized by a con-

h, 63%, €) NIS-TfOH/CH,Cl,, 4 A MS, —65 °C to —60 °C, 2 h, 76%,
H4OH (1:5), 90 °C, 6 h, (ii) Ac,0—pyridine (1:1), DMAP, rt, 12 h, (iii)

vergent method. Biochemical investigation of fluorinated
carbohydrates-enzyme interactions and fluorinated carbo-
hydrate-sel ectin interactions are underway.
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Scheme4 &) NH,NH,-HOAc/DMF, 50 °C, 2 h, b) CCI,CN/DBU, CH,Cl,, 0°C to 25 °C, 32% in two steps, ¢) TMSOTf, CH,Cl,, 4 A MS,
—65°C, 2 h, 43%, d) Ac,O—pyridine (1:1), DMAP, r.t., 12 h, 76%,e) NIS-TfOH/CH,Cl,, 4 A MS, =65 °C to—60 °C, 2 h, 52%, f) Ac,O—pyridine
(1:1), DMAP, r.t.,12 h, 45%, @) (i) NH,-NH,-H,0-CH-OH (1:5), 90 °C, 6 h, (ii) Ac,O—pyridine (1:1), DMAP, rt., 12 h, (h) 1 M CH;ONa-

CH3;0OH/CH;OH-H,0, r.t., 12 h, 45% in three steps.
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Physical data: Compound 1: R; = 0.5 (i-C;H,OH-HOAC—
H,0, 3:1:1); 'H NMR (D,O, DQF-COSY and ROESY, 400
MHz): § = 7.50-7.20 (m, 5H, ArH), 499 (d, 1H, J,,=3.4
Hz, HA-1),4.72(d, 1 H, Jgem = 12.6 Hz, PACH, O, ABq),
4.61(dg, 1 H, HB-3), 458 (d, 1H, J; , = 7.6 Hz, H&-1), 4.53
(d, 1H, Jyen = 12.4 Hz, PhCHRO, ABQ), 449 (d, 1 H, J; , =

8.6 Hz, H®-1),4.48 (d, 1 H, J,, = 7.6 Hz, HP-1), 4.35 (dd, 1
H, HA-2),4.23 (d, 1 H, J= 2.8 Hz, HA-4), 4.20 (dd, 1 H, HEB-
4), 4.15 (dd, 1 H, HA-5), 4.07 (dd, 1 H, HA-6b), 4.04 (dd, 1
H, HA-3), 4.01 (dd, 1 H), 3.94 (d, 1 H, J = 2.7 Hz, HP-4),
3.90-3.50 (m, 15 H, HB-2, HP-2), 2.31 (s, 3H, Ac), 2.21 (s,
3H, Ac); BC NMR (D,0, 100.6 MHz): § = 175.76 (C=0),
175.52 (C=0), 138.24, 130.07, 129.96, 129.71, 105.12 (d,
3Jcr = 11.3 Hz), 104.21, 102.76, 97.62, 94.10 (d, I ¢ =
183.4 Hz), 79.90, 78.48, 76.65, 76.06, 75.02, 74.96, 73.84,
73.80, 72.27, 70.91, 70.86, 70.77, 70.59 (d, 2Jc. = 18.6 H2),
69.97 (d, 2Jcr = 20.4 Hz), 62.31, 61.94, 61.89, 61.40, 56.39,
49.83, 23.58 (NAC), 23.25 (NAC). ESIMS (negative mode)
Calcd for CgsHs30450N,F (mV2)[M = 840]. Found: 839.5
[M]-, 875.5[M + ClI]~. Compound 2: * H NMR (D,0, DQF-
COSY, TOCSY and ROESY, 400 MHz): § = 7.50-7.00 (m,
5H, ArH),5.00(d, 1 H, J; , = 3.2 Hz, HA-1), 4.87 (dd, 1 H,
J=28Hz, 2}, =52.0Hz, HP-4),4.73(d, 1 H, J,., = 12.3
Hz, PhCH,O, ABq), 459 (d, 1 H, J,;, = 7.6 Hz, H°-1), 458
(d, 1H,J;,=8.0Hz H®1),453(d, 1 H, Iy, = 12.4 Hz,
PhCHzO, ABQ), 4.46 (d, 1 H, J,, = 7.8 Hz, HB-1), 4.34 (dd,
1H, HA-2),4.25(d, 1 H, J= 2.8 Hz, HA-4), 4.16 (dd, 1 H,
HA-5), 4.10 (dd, 1 H, HA-6b), 4.08 (dd, 1 H, HA-3), 4.02 (dd,
1H), 3.92-3.80 (m, 6 H, H®-4), 3.81 (dd, 1 H, HP-3), 3.80—
3.50 (m, 10 H, HP-2, HA-6a, H®-3, HP-2, H®-2), 2.31 (s, 3H,
Ac), 2.29 (s, 3H, Ac); ®C NMR (D,0, 100.6 MHz): § =
175.80 (C=0), 175.65 (C=0), 129.60, 129.40, 129.30,
105.90, 104.10, 102.85, 97.85, 79.80 (d, Y. = 178.5 Hz),
76.10 (d, 2Jcr = 50.6 Hz), 73.90, 72.15 (d, 2J..¢ = 50.9 Hz),
71.50, 71.23, 70.25, 70.00, 62.25, 61.23, 56.20, 49.95, 23.50
(NACc), 23.20 (NAC). *F NMR (CDCls, 376.4 MHZ): § =
—172.95 ppm. ESIM S (negative mode) Calcd for
C3sHs3050N,F (mV2) [M = 840]. Found: 839.6 [M]".
Compound 3: R; = 0.5 (i-C;H,OH-HOAcH,0, 3:1:1). 1 H
NMR (D,O, DQF-COSY and ROESY, 400 MHz): 5 = 7.50—
7.20 (m, 5H, ArH), 499 (d, 1 H, J,, = 3.4 Hz, HA-1), 4.73
(d, 1 H, Jgem = 12.6 Hz, PhCH, O, ABQ), 4.61 (dg, 1 H, J=
2.8 Hz, J=9.6 Hz, 2J,.r = 68.0 Hz, HP-3), 4.58 (d, 1 H,
J;,=7.6Hz, HP-1), 455 (d, 1 H, J; , = 8.6 Hz, H®-1), 452
(d, 1H, Jyer, = 12.5Hz, PACH0), 4.46 (d, 1H, J; , = 7.6 Hz,
HB-1), 4.33 (dd, 1 H, HA-2), 4.24 (d, 1 H, J= 2.8 Hz, HA-4),
4.03(d, 1H,J=3.2Hz, HP-4),4.16 (m, 1 H, HA-5), 4.07 (dd,
1H, HA-6b), 4.04 (dd, 1 H, HA-3), 4.00 (dd, 1 H, H®-3), 3.91
(d,1H,J=28Hz, HB-4),3.91-3.72 (m, 9H), 3.64 (m, 2 H,
HC-5, HB-3), 3.52 (dd, 1 H, HB-2), 2.31 (s, 3H, Ac), 2.28 (s,
3H, Ac); BC NMR (D,0, 100.6 MHz): § = 175.77 (C=0),
175.54 (C=0), 138.22, 130.07, 129.95, 129.71, 105.89,
103.41 (d, 33 = 12.7 Hz), 102.76, 97.58, 94.08 (d, 13 ¢ =
183.9 Hz), 79.81, 78.26, 76.15 (d, 2Jc. = 17.8Hz), 75.32 (d,
3Jcr = 6.8 Hz), 73.79, 73.75, 71.93, 71.05, 70.99, 70.86,
70.73, 70.13, 69.89, 68.15, 67.97, 62.29, 61.99, 61.97,
61.32, 56.43, 49.87, 23.57 (NAc), 23.26 (NAc). ESIMS
(negative mode) Calcd for CysHs30,0N,F (MV2) [M = 84Q].
Found: 839.5 [M]", 875.5[M + ClI]~.
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