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A B S T R A C T

A series of 1,5-disubstituted 1,2,3-triazoles are synthesized by a one-pot process from anti-3-aryl-2,3-

dibromopropanoic acids and organic azides mediated by sodium hydride in dimethyl sulfoxide. The

reaction is mild and simple, does not require a transition-metal catalyst, and gives products in good to

excellent yields.

� 2013 Chun-Xiang Kuang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights

reserved.
1. Introduction

1,2,3-Triazoles are attractive compounds because of their
unique chemical properties and structures that find many
applications in medical [1], material [2], and biological research
[3]. The use of 1,2,3-triazole moieties as catalysts and ligands in
transition-metal catalysis systems is also emerging [4]. The rapidly
increasing number of requirements for the synthesis of these
heterocycles has led to a need to develop effective methods for the
preparation of diverse 1,2,3-triazole derivatives.

Copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) is an
important advancement in the chemistry of 1,2,3-triazoles [5].
However, the CuAAC process works only with terminal alkynes and
produces various kinds of 1,4-disubstituted 1,2,3-triazoles. In
contrast to 1,4-disubstituted 1,2,3-triazoles, general and regiose-
lective routes leading to 1,5-regioisomers are not as well
developed. Among the available methods are the reactions of
stabilized phosphonium ylides [6] or enamines [7] with aryl azides,
the nucleophilic attack of acetylide on the electrophilic terminal
nitrogen of the azide [8,9], and ruthenium-catalyzed azide–alkyne
cycloaddition [10]. However, these methods have limitations that
cannot be neglected.

In this paper, we report a mild and simple method for the
generation of 1,5-disubstituted triazoles from readily available
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anti-3-aryl-2,3-dibromopropanoic acids and organic azides medi-
ated by sodium hydride (Scheme 1). In this reaction, the anti-3-
aryl-2,3-dibromopropanoic acids serve as precursors of reactive
acetylides, which readily react with organic azides. The result is the
exclusive formation of 1,5-disubstituted triazoles in a one-pot
process. To verify the final products are 1,5-diaryl-1,2,3-triazoles,
not the 1,4-isomers, we compare the 1H NMR and 13C NMR spectra
of the final products (for details see the Supporting information)
with the standard spectra in the existing literature [6–10].

2. Experimental

1H NMR and 13C NMR spectra were recorded using Bruker AM-
400 spectrometer in CDCl3 with TMS as an internal standard.
Commercially obtained reagents were used without further
purification. All reactions were monitored by TLC with Huanghai
GF 254 silica gel coated plates. Column chromatography was
carried out using 300–400 mesh silica gel at medium pressure. The
synthesis of anti-3-aryl-2,3-dibromopropanic acids 1 and organic
azides 2 was achieved according to literature procedures [11,12].
(CAUTION! Aryl azides are poisonous and potentially explosive
when subjected to heat, light, and pressure. Any azide synthesized
should be stored below 0 8C in the dark.)

2.1. 1,5-Disubstituted 1,2,3-triazoles (3a)

A solution of anti-3-aryl-2,3-dibromopropanic acid 1
(0.6 mmol), organic azides 2 (0.5 mmol), NaH (60 mg, 2.5 mmol),
and DMSO (5 mL) were placed in a sealed tube. The mixture was
on behalf of Chinese Chemical Society. All rights reserved.
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Scheme 1. One-pot synthesis of 1,5-disubstituted 1,2,3-triazoles.
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Scheme 2. Proposed mechanism of the one-pot reaction.
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stirred at room temperature for 12 h. The mixture was then
quenched with H2O (25 mL). The mixture was extracted with
EtOAc (3� 30 mL), and the combined organic layers were washed
with brine (3� 10 mL). The extract was dried over Na2SO4 and
concentrated under reduced pressure to afford a crude product.
Purification by column chromatography on silica gel (EtOAc–PE)
afforded the desired 1,5-disubstituted-1,2,3-triazole 3a. Yield:
100 mg (85%), yellow solid.

3. Results and discussion

The reaction was determined to proceed best using dimethyl-
sulfoxide (DMSO) as solvent at room temperature. Then, we
examined the substrate scope of the sodium hydride-mediated
Table 1
Sodium hydride-mediated synthesis of 1,4-disubstituted-1,2,3-triazoles from anti-3-ar
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a 1 (0.6 mmol), 2 (0.5 mmol), NaH (2.5 mmol), DMSO (5 mL), r.t., and 12 h.
b Isolated yield based on substrate 2.
synthesis of 1,5-diaryl-1,2,3-triazoles (Table 1). The necessary anti-
3-aryl-2,3-dibromopropanoic acids were easily prepared by
bromination of the corresponding trans-a,b-unsaturated carbox-
ylic acids [11], and the organic azides were obtained from the
corresponding organic amine or organic halide [12]. As shown in
Table 1, the method can be used to synthesize 1,5-diaryl-1,2,3-
triazoles carrying either an electron-donating substituent (such as
methyl, tert-butyl, or methoxy; entries 1–4) or an electron-
withdrawing group (entries 5–11). Aryl azides with sterically
demanding ortho-substituents gave slightly lower yields (entries 9
and 11). The electronic properties of both reactants also influenced
the reaction outcome. Electron-deficient reactants give slightly
lower yields on average than electron-rich reactants (compare
entries 1–4 with entries 9–11).
yl-2,3-dibromopropanoic acids and organic azides. [TD$INLINE]

Yield (%)b Entrya Product Yield (%)b

N
N

82 9

[TD$INLINE]

N
NN

Br

3i

75

N
N

r

79 10

[TD$INLINE]

N
NN

Br

Br

3j

78

N
N

76 11

[TD$INLINE] N
NN

Br

Cl Cl

3k

73

N
N

83



X.-Z. Cheng et al. / Chinese Chemical Letters 24 (2013) 764–766766
To study the reaction mechanism, we carried out a control
experiment with anti-3-phenyl-2,3-dibromopropanoic acids in the
absence of the azide partner and obtained the corresponding
terminal alkyne in 89% yield. This finding suggested that an
aralkyne was generated in situ in the one-pot reaction. The
proposed pathway of this reaction is shown in Scheme 2, as
previously described [9,13]. Initially, the trans-elimination reac-
tion of anti-3-aryl-2,3-dibromopropanoic acid 1, involving a
simultaneous loss of carbon dioxide and bromide ions, occurs to
generate the intermediate (Z)-b-arylvinyl bromide. A subsequent
E2 trans-elimination gives the terminal alkyne. Reversible
deprotonation of the terminal alkyne generates an aryl acetylide
I, which acts as a nucleophile to attack the terminal nitrogen of aryl
azide 2. The triazenide intermediate II then undergoes either 6p-
electrocyclization or 5-endo-dig cyclization to form 1,5-disubsti-
tuted-1,2,3-triazolyl anion III, which gives products 3 by the
deprotonation of a DMSO molecule, terminal alkyne, or water.

4. Conclusion

We developed a simple and efficient one-pot method for the
preparation of 1,5-disubstituted 1,2,3-triazoles 3 from anti-3-aryl-
2,3-dibromopropanoic acids 1 and organic azides 2. The reaction
was mediated only by the inexpensive sodium hydride, and good
to excellent yields were obtained. The process had considerable
advantages in terms of readily available substrates and mild,
transition-metal-free conditions.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at http://dx.doi.org/10.1016/j.cclet.2013.05.007.
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