Intramolecular Tishchenko Reactions of Protected Hexos-5-uloses: a Novel and Efficient Synthesis of L-Idose and L-Altrose

M. Adinolfi, G. Barone, F. De Lorenzo, A. Iadonisi*

Dipartimento di Chimica Organica e Biologica, Università degli Studi Federico II, Via Mezzocannone 16, I-80134 Napoli, Italy Fax +39 0815521217; E-mail iadonisi@unina.it

Received 13 November 1998

Abstract: Protected *t*-butyl esters of aldonic acids with the rare L-*ido* and L-*altro* configuration can be effectively obtained by a diastereoselective Tishchenko reaction of hexos-5-uloses induced by *t*-BuOSmI₂. These compounds can be easily converted into the corresponding protected lactones and free sugars.

Key words: Tishchenko reaction, trivalent samarium reagents, L-idose, L-altrose, aldonic acids *t*-butyl esters

During our synthetic studies toward the monosaccharide caryose¹ the fully diastereoselective formation of 2,3,4-tri-*O*-benzyl-6-deoxy-L-iditono-1,5-lactone **3** rather than the expected pinacolic condensation² to the desired diol **4** was observed when 2,3,4-tri-*O*-benzyl-6-deoxy-D-*xylo*-hexos-5-ulose **2**, obtained by Swern oxidation of alditol **1**, was treated with an old commercial solution of SmI₂ in THF (Scheme 1).

Scheme 1

Actually, the use of trivalent samarium reagents, and in particular *t*-BuOSmI₂, for the conversion of 1,5-ketoaldehydes into δ -lactones through an intramolecular Tishchenko oxidoreduction had been already reported by Uenishi.³ Interestingly however, lactone **3** presented the opposite configuration at its 5 position with respect to alditol **1** from which it was generated. Thus an intramolecular Tishchenko reaction could be potentially exploited as the key-step for a straightforward synthesis of rare L-sugars such as Lidose, L-gulose and L-altrose starting from suitably protected alditols easily obtained from D-glucose, D-mannose and D-galactose, respectively. These rare Lsugars are synthetic targets of current interest.⁴ Taking advantage of our recently reported⁵ general approach for the preparation of 2,3,4,6-tetra-*O*-benzyl-hexos-5-uloses, we explored the proposed path.

Aldulose **6** was first generated from 2,3,4,6-tetra-*O*-benzyl-D-glucitol **5** through a double Swern oxidation, and then treated with $tBuOSmI_2$ (5 eq.) following a one-pot procedure.⁶ Under these conditions *t*-butyl ester **7**, possessing the desired L-*ido* configuration, was obtained in place of lactone **8**. Lactonization of **7** was easily accomplished in a further step by acid treatment (Scheme 2).

a) Swern oxidation (COCl)₂/DMSO/Et₃N in THF; b) *t*-BuOSmI₂, THF; c) 1:1 CF₃COOH/CH₂Cl₂, 0 °C, 30 min; d) DIBAL (1.1 eq), toluene, -70 °C, 1h; e) C-Pd, 1:9 HCOOH-CH₃OH, sonication, 2h.

Scheme 2

However, disappointing yields were achieved (35% of 7 from 5 after 36 h at r.t. or 25% after 2 h at reflux), probably due to interference of triethyl ammonium salts produced by the Swern oxidation in the reaction. As a matter of fact, when the salts were removed by centrifugation under argon prior to the Tishchenko step only 2.5 eq of $tBuOSmI_2$ in THF at room temperature (12 hours) were needed to afford almost pure *t*-butyl ester 7 (¹H NMR).^{7,9} This compound was directly submitted to lactonization, reduction and debenzylation¹⁰ to give L-idose with an overall 65% yield from 5.^{9, 11}

The optimized procedure was then applied to protected Dmannitol **10** and D-galactitol **13**. In the first case we observed that the Tishchenko reaction furnished almost exclusively *t*-butyl ester **11** having the *manno* configuration as demonstrated by its conversion into a product having spectroscopic properties identical with authentic 2,3,4,6tetra-O-benzyl-D-mannopyranose **12** (Scheme 3).

In the case of *galacto* precursor **13**, the sequence of Swern oxidation/Tishchenko reaction afforded a 5:1 mixture of *t*-butyl esters **14**⁹ and **15** having the L-*altro* and D-*galacto* configuration, respectively. The subsequent lactonization afforded an unseparable mixture of compounds **16**⁹ and **17** (78% overall yield from **13**) which was submitted to reduction with DIBAL. The resulting epimeric hemiacetals could be separated by silica gel chromatography to yield the L-*altro* and D-*galacto* derivatives **18**⁹ and **19** (65 and 12% yield from **13**, respectively). Debenzylation of **18** afforded L-altrose¹¹ free from any detectable (NMR) amount of 1,6-anhydro- β -L-altropyranose though the deprotection implied an acid treatment.^{4a}

A possible explanation of the observed diastereoselectivities of the Tishchenko step can be based on the model proposed by Uenishi.³ However, the extensive presence of benzyloxy groups on the chain of the studied sugar derivatives must be considered. As shown in Scheme 4, the conversion of *galacto* derivative **13** to ester **14** can occur through the samarium complex **B** rather than **A**, both complexes being stabilized by further coordination of samarium to the oxygen atoms of the adjacent benzyloxy substituents, but the latter being disfavoured by some eclipsing of 1-O-*t*-Bu and 2-OBn groups. Similarly, intermediate **C** should be favoured over intermediate **D** in the reversion of *manno* derivative **10** to *manno* ester **11**, and intermediate **F** over intermediate **E** in the conversion of *gluco* derivative **5** to L-*ido* ester **7**.

In summary, Tishchenko reaction of hexos-5-uloses has been shown to proceed in a highly stereoselective fashion. The reaction has been exploited as the key-step of a convenient synthesis of L-idose and L-altrose and leads to useful synthons such as *t*-butyl esters of aldonic acids.

Scheme 4

Acknowledgement

Financial support by MURST (PRIN 1997-98: Chemistry of Organic Compounds of Biological Interest) and by CNR is acknowledged. NMR spectra were performed at the Centro di Metodologie Chimico-Fisiche of Università di Napoli Federico II.

References and Notes

- Adinolfi, M.; Barone, G.; Iadonisi, A.; Mangoni, L.; Manna, R. *Tetrahedron* **1997**, *53*, 11767.
- (2) Molander G. A.; Kenny, C. J. Org. Chem. 1988, 53, 2132.
- (3) Uenishi, J.; Masuda, S.; Wakabayashi, S. *Tetrahedron Lett.* 1991, 32, 5097.
- (4) a) So, Y. K.; Lee, A. W. M.; Masamune, S.; Reed III, L. A., Sharpless, K. B., Walker, F. J. *Tetrahedron* **1990**, *46*, 245.
 b) Dondoni, A.; Marra, A.; Massi, A. J. Org. Chem. **1997**, *62*, 6261 and references therein.
- (5) Adinolfi, M.; Barone, G.; Iadonisi, A.; Mangoni, L. Tetrahedron Lett. 1998, 39, 2021.
- (6) Isolation of aldulose 6 was avoided because of the easy hydration of hexos-5-uloses (ref. 5 and 7). However, the pure aldehyde form can be obtained (Boiron, A.; Zillig, P.; Faber, D.; Giese, B. J. Org. Chem. 1998, 63, 5877) by removing water over molecular sieves.
- (7) In a typical procedure compound 5 (162 mg, 0.3 mmol) was submitted to Swern oxidation in THF at -60 °C as previously reported,⁵ but in a centrifugation tube closed with a rubber septum. The clear solution obtained after centrifugation was transferred *via cannula* with an argon stream to a 0.1 M THF solution of *t*-BuOSmI₂⁸ (7.5 mL, 0.75 mmol) and stirred at r.t. for 12 hours. The reaction mixture was added with few drops of acetic acid and filtered through a short column of 1:1 Celite/Florisil to remove the samarium salts and to give almost pure 7. This compound was directly submitted to lactonization (1:1 CF₃COOH/CH₂Cl₂, 0°C, 30 min). Usual work-up and chromatography on Florisil (CHCl₃) gave pure 8 (122 mg, 76% from 5).
- (8) Namy, J. L.; Souppe, J.; Collin, J.; Kagan, H. B. J. Org. Chem. 1984, 49, 2045.

(9) Selected physical data. 7: ¹H NMR (400 MHz, CDCl₃) δ 1.48 $(9H, s, -C(CH_3)_3)$, 2.50 (1H, d, exchanges with D_2O , $J_{OH,H-5} =$ 7.1 Hz, 5-OH), 3.36 (1H, dd, $J_{6a,6b} = 9.7$ Hz, $J_{5,6a} = 6.1$ Hz, H-6a), 3.47 (1H, dd, J_{5,6b} = 6.3 Hz, H-6b), 3.75 (1H, m, H-5), $3.89 (1H, dd, J_{4.5} = 2.9 Hz, J_{3.4} = 6.9 Hz, H-4), 4.15 (1H, d, J_{2.3})$ = 3.5 Hz, H-2), 4.37-4.87 (4 x benzylic CH₂), 7.15-7.40 (aromatic protons). ¹³C NMR δ 28.2 (-C(CH₃)₃), 69.4, 71.3, 72.9, 73.2, 74.9, 77.1 78.2, 78.4, 80.3, 82.1 (C-2, C-3, C-4, C-5, C-6 and 4 x benzylic CH₂ and $-C(CH_3)_3$, 127.5-128.6 (aromatic CH), 137.2-138.3 (quaternary aromatic carbons), 169.7 (C-1). 8: ¹H NMR (400 MHz, CDCl₃) δ 3.65 (1H, dd, J_{6a,6b} = 10.0 Hz, $J_{5,6a} = 5.3$ Hz, H-6a), 3.79 (1H, dd, $J_{5,6b} = 5.6$ Hz, H-6b), 3.79 $(1H, t, J_{3,4} = J_{4,5} = 1.7 \text{ Hz}, \text{H-4}), 3.93 (1H, dd, J_{2,3} = 6.6 \text{ Hz}, \text{H-}$ 3), 4.17 (1H, d, H-2), 4.32-5.07 (4 x benzylic CH₂ and H-5), 7.2-7.5 (aromatic protons). ¹³C NMR δ 67.9, 71.3, 72.4, 73.3, 73.5, 75.2, 75.9, 78.5, 79.9 (C-2, C-3, C-4, C-5 and C-6 and 4 x benzylic CH₂), 128-129 (aromatic CH), 137.3-137.7 (quaternary aromatic carbons), 169.4 (C-1).

9 was obtained as an anomeric mixture. ¹H NMR (400 MHz, CDCl₃) anomeric protons at δ 4.94 (1H, d, J = 2.3 Hz) and 5.18 (1H, d, J = 2.8 Hz). ¹³C NMR (DEPT) δ 66.6, 71.9, 72.5, 73.3, 73.8, 74.5, 74.5, 75.7 (C-2, C-3, C-4, C-5), 68.2, 68.4, 72.2, 72.2, 72.3, 72.3, 72.4, 72.8, 72.9 and 72.9 (C-6 and 4 x benzy-lic CH₃), 91.7 and 93.2 (C-1).

- 14: ¹H NMR (250 MHz, CDCl₃) δ 1.46 (9H, s, -C(CH₃)₃), 3.60 (1H, dd, J_{6a,6b} = 10.9 Hz, J_{5,6a} = 3.5 Hz, H-6a), 3.67 (1H, dd, J_{5,6b} = 7.0 Hz, H-6b), 3.79 (1H, t, J_{3,4} = J_{4,5} = 5.8 Hz, H-4), 4.11 (1H, dd, J_{2,3} = 4.6 Hz, H-3), 4.14 (1H, m, 5-H), 4.26 (1H, d, H-2), 4.35-4.80 (4 x benzylic CH₂), 7.15-7.40 (aromatic protons).
- **16**: ¹H NMR (250 MHz, CDCl₃) δ 3.71 (2H, d, $J_{5,6} = 4.8$ Hz, H-6), 4.05 (1H, dd, $J_{3,4} = 2.2$ Hz, $J_{4,5} = 5.9$ Hz, H-4), 4.18 (1H, dd, $J_{2,3} = 5.9$ Hz, H-3), 4.28 (1H, d, H-2), 4.55-5.00 (4 x benzylic CH₂ and H-5), 7.15-7.40 (aromatic protons). ¹³C NMR δ 68.7, 72.1, 72.5, 72.8, 73.5, 73.5, 74.5, 75.6, 78.1 (C-2, C-3, C-4, C-5, C-6 and 4 x benzylic CH₂), 128-129 (aromatic CH), 137.3-137.7 (quaternary aromatic carbons), 168.8 (C-1). **18** was obtained as an anomeric mixture. Selected data: ¹H NMR (250 MHz, CDCl₃, exchanged with D₂O) anomeric protons at 5.05 (1H, d, J = 1.4 Hz) and 5.10 (1H, bs). ¹³C NMR (DEPT) δ 67.1, 72.2, 72.5, 72.7, 74.6, 74.6, 74.8, 76.8 (C-2, C-3, C-4, C-5), 69.3, 69.4, 71.9, 72.0, 72.2, 73.2, 73.2, 73.6, 73.6, 74.1 (C-6 and 4 x benzylic CH₂), 91.9 and 93.1 (C-1).
- (10) Rao, V. S.; Perlin, A. S. Carbohydr. Res. 1980, 83, 175.
- (11) L-idose and L-altrose prepared by the above procedure displayed ¹H and ¹³C NMR spectra as reported.^{12, 13}
- (12) Angyal, S.; Pickles, V.A. Aust. J. Chem. 1972, 25, 1695.
- (13) Bock, K.; Pedersen C. Adv. Carbohydr. Chem. Biochem. 1990, 41, 27.