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Abstract: Protected  t-butyl  esters  of  aldonic acids with the rare
L-ido and L-altro configuration  can  be  effectively obtained by a
diastereoselective Tishchenko reaction of hexos-5-uloses induced
by t-BuOSmI2. These compounds can be easily converted into the
corresponding protected lactones and free sugars.
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During our synthetic studies toward the monosaccharide
caryose1 the fully diastereoselective formation of 2,3,4-
tri-O-benzyl-6-deoxy-L-iditono-1,5-lactone 3 rather than
the expected pinacolic condensation2 to the desired diol 4
was observed when 2,3,4-tri-O-benzyl-6-deoxy-D-xylo-
hexos-5-ulose 2, obtained by Swern oxidation of alditol 1,
was treated with an old commercial solution of SmI2 in
THF (Scheme 1).

Scheme 1

Actually, the use of trivalent samarium reagents, and in
particular t-BuOSmI2, for the conversion of 1,5-ketoalde-
hydes into d-lactones through an intramolecular Tish-
chenko oxidoreduction had been already reported by
Uenishi.3 Interestingly however, lactone 3 presented the
opposite configuration at its 5 position with respect to al-
ditol 1 from which it was generated. Thus an intramolec-
ular Tishchenko reaction could be potentially exploited as
the key-step for a straightforward synthesis of rare L-sug-
ars such as Lidose, L-gulose and L-altrose starting from
suitably protected alditols easily obtained from D-glucose,
D-mannose and D-galactose, respectively. These rare L-
sugars are synthetic targets of current interest.4 Taking ad-
vantage of our recently reported5 general approach for the

preparation of 2,3,4,6-tetra-O-benzyl-hexos-5-uloses, we
explored the proposed path.

Aldulose 6 was first generated from 2,3,4,6-tetra-O-benz-
yl-D-glucitol 5 through a double Swern oxidation, and
then treated with tBuOSmI2 (5 eq.) following a one-pot
procedure.6 Under these conditions t-butyl ester 7, pos-
sessing the desired L-ido configuration, was obtained in
place of lactone 8. Lactonization of 7 was easily accom-
plished in a further step by acid treatment (Scheme 2).

Scheme 2

However, disappointing yields were achieved (35% of 7
from 5 after 36 h at r.t. or 25% after 2 h at reflux), prob-
ably due to interference of triethyl ammonium salts pro-
duced by the Swern oxidation in the reaction. As a matter
of fact, when the salts were removed by centrifugation un-
der argon prior to the Tishchenko step only 2.5 eq of
tBuOSmI2 in THF at room temperature (12 hours) were
needed to afford almost pure t-butyl ester 7 (1H NMR).7,9

This compound was directly submitted to lactonization,
reduction and debenzylation10 to give L-idose with an
overall 65% yield from 5.9, 11

The optimized procedure was then applied to protected D-
mannitol 10 and D-galactitol 13. In the first case we ob-
served that the Tishchenko reaction furnished almost ex-
clusively t-butyl ester 11 having the manno configuration
as demonstrated by its conversion into a product having
spectroscopic properties identical with authentic 2,3,4,6-
tetra-O-benzyl-D-mannopyranose 12 (Scheme 3).
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Scheme 3

In the case of galacto precursor 13, the sequence of Swern
oxidation/Tishchenko  reaction afforded a 5:1 mixture of
t-butyl esters 149 and 15 having the L-altro and D-galacto
configuration, respectively. The subsequent lactonization
afforded an unseparable mixture of compounds 169 and 17
(78% overall yield from 13) which was submitted to re-
duction with DIBAL. The resulting epimeric hemiacetals
could be separated by silica gel chromatography to yield
the L-altro and D-galacto derivatives 189 and 19 (65 and
12% yield from 13, respectively). Debenzylation of 18 af-
forded L-altrose11 free from any detectable (NMR)
amount of 1,6-anhydro-b-L-altropyranose though the
deprotection implied an acid treatment.4a

A possible explanation of the observed diastereoselectiv-
ities of the Tishchenko step can be based on the model
proposed by Uenishi.3 However, the extensive presence of
benzyloxy groups on the chain of the studied sugar deriv-
atives must be considered. As shown in Scheme 4, the
conversion of galacto derivative 13 to ester 14 can occur
through the samarium complex B rather than A, both com-
plexes being stabilized by further coordination of samari-
um to the oxygen atoms of the adjacent benzyloxy
substituents, but the latter being disfavoured by some
eclipsing of 1-O-t-Bu and 2-OBn groups. Similarly, inter-
mediate C should be favoured over intermediate D in the
reversion of manno derivative 10 to manno ester 11, and
intermediate F over intermediate E in the conversion of
gluco derivative 5 to L-ido ester 7.

In summary, Tishchenko reaction of hexos-5-uloses has
been shown to proceed in a highly stereoselective fashion.
The reaction has been exploited as the key-step of a con-
venient synthesis of L-idose and L-altrose and leads to use-
ful synthons such as t-butyl esters of aldonic acids.

Scheme 4
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