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Sialic acid and its analogues have been synthesized using a salenCo(ll) complex catalyzed hetero Diels—Alder reaction and oxidative azidation

(CAN/NaNs3) of silyl enol ether as the key steps.

Sialic acids (especiallij-acetylneuraminic acid, Neu5Al

(Neu5Ac), 2-deoxy3-Neu5Ac, and 4epi2-deoxyp-NeuSAc

frequently occur at the terminal end of glycoconjugates, such from p-glucose based on salenCo(I8) complex catalyzed

as glycoproteins, glycolipids, and oligosaccharides, in cell
membranes and nerve tissues of various living organisms.
They play a vital rolé in numerous biological processes
including cell-to-cell recognition, cell-adhesion, and tumor
metastasis. Among the analogueslofN-acetyl-2-deoxy-
neuraminic acid?) and its 4-epimer are of particular interest,

because they are inhibitors of Neu5Ac-associated enzymes

such a¥/ibio choleraesialidasé and influenza viral neuramini-

dase!t Considerable attention has therefore been paid to

developing effective methods for synthesis of both Neu5Ac
(1)>8and its 2-deoxy-2-H derivative2).36¢"Herein we wish
to report an efficient approach fé-acetylneuraminic acid
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hetero Diels-Alder reactions.
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The desired silyloxy diengwas prepared from the readily
availablep-glucose as shown in Scheme 1. Thus, @4-
ethylidenep-erythrose %) was obtained using the established
procedures. Wittig reaction of 5 with PhhP=CHCOCH;
afforded unsaturated ketoBewhich was then protected as
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aReagents and conditions: (a) Paraldehyde, cg®Qy 43%;
(b) NalQ;, NaHCQ;, H,0; (¢) PRP=CHCOCH;, toluene, 90°C,
66% over two steps; (d) methylal, cat@, CHCL;, 0 °C — room
temperature, 88%; (e) TBSQTEBN, 0 °C, 99%; (f) ethyl
glyoxylate, 3 (10% mol), CHCl,, room temperature, 62%.

MOM ether7 (88% yield). Treatment of compourtiwith
triflate and triethylamine at OC for 30 min provided the
corresponding dien&in 99% yield The hetero Diels Alder

reaction between compoudand ethyl glyoxylate (freshly
distilled) catalyzed by $9S)-salenCo(ll) complex3) (10%
mol) at room temperature afforded cycloaddition prodiict
in 62% isolated yield, along with a small amount of an
isomer 5% vyield) and the byprodudtsfrom the Mukai-
yama reaction.

The next key step of our synthesis was to introduce an
amine group at the C-5. We first tried to preparéydroxy
ketonel0 by an AD reactio® of 9 under conditions similar
to those used previousi/(Scheme 2)10 was then trans-
formed in parallel into mesylatél, tosylatel12, or triflate
13 and treated separately with NaN'o our surprise, the
anticipated {2 reaction leading t@7 did not occur. Instead,
all runs gave predominantly the elimination product, presum-
ably due to the steric crowding causédy the larger
substituent at C-6. We then tested the Mitsunobu rea¢tion
(using DEAD, DPPA, P§P); the reaction was very compli-
cated. The Sharpless asymmetric aminohydroxylation reac-
tion** [LIOH/AcNHBI/K ;,0s(OH)0, in t-BuOH/H,O] of 9
did not afford anyl5 either. The Evans’ copper-mediated
aziridination reactiotf gave the expected-amino ketone
adduct14 in 39% isolated yield, whe® was treated with
10 mol % of CuCIQ'® or Cu(OTfy and 1.5 equiv (with
respect td) of Phi=NTs!” in anhydrous MeCN at-30 °C.
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a Reagents and conditions: (ay®BsQ,(OH), (5% mol), (DHQD)}—PHAL (5% mol), NaHCQ (3 equiv), KCO; (3 equiv), KsFe(CN)
(3 equiv), t-BUOH/HO (1:1), 0°C, 78%; (b) NaN (3 equiv), CAN (2.5 equiv), CECN, —25 °C, 61%; (c) PH=NTs (1 equiv),
Cu(CH;CN),4CIO4 (210% mol), CHCN, —20— —10°C, 39%; (d) Na/NH, or Na/naphthalene, THF78°C, < 10%; (e) CHCOSH, room

temperature, 90%; (f) NaBH EtOH, —30 °C, 85%; (g)p-TsOH (2 equiv), EtOH, reflux, then A©, EtN, DMAP, CH,Cl,,
—10 °C, 80%; (i) MOMCI, i-PENEt, CHCls,

LIAI[O(CH 3)3]3H, THF,
DMAP, CH,Cl,, 95%; (k) same as (g), 92%.

96%; (h)
91%; (j) Hp, Pd/C (10%), room temperature, then 8¢ EgN,
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Scheme 3
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aReagents and conditions: (a) NaBHEtOH, —30 °C, 83%; (b) MOMCI,i-PrLNEt, CH,Cl,, 0 °C — room temperature, 90% (c) LDA,
MoOPH, THF,—78°C, 50%; (d) A¢cO, Py, DMAP, CHCI,, room temperature, 84%; (e),Hd/C (10%), EtOH, 30C, then AgO, EgN,
DMAP, CH,Cl,, room temperature, 68%; (f-TsOH, EtOH, reflux, then A®, Py, DMAP, CHCI,, room temperature, 73%.

However, the following removal of the tosyl group i in 90% yield. Reduction of the ketone &6 with NaBH, at
using either Na/Nklor Na/naphthalene suffered from very —30 °C afforded the desirednti product19 in 85% yield.
low yield (<10%), although the expected produdi did All the protecting groups in compouri® were then removed
form. This difficulty made us reconsider introducing an azide by treatment withp-TSOH in refluxing EtOH. Acetylation
group at C-5 first. of the unmasked hydroxyl groups to afford the corresponding
Oxidative azidation (CAN/Na} of silyl enol etheris also  acetate2?* was fulfilled (96%) using acetic anhydride in
an established means to prepar@zido ketone. Although  the presence of Bl and a catalytic amount of DMAP.
there are report§!®on the ineffectiveness of this reaction, The 4€pi analogue24 was also prepared according to
we found that the yield could be significantly improved by Scheme 2. Reduction of the ketone carbonyl twith the
modifying the procedure. Thus, treatment®fvith NaN; bulky reducing reagent LiAI[O(CkJs]sH?? at —10 °C gave
(3.0 equiv) in anhydrous CGJ&N at —25 °C followed by syn product21 in 80% isolated yield. After protection of
slow addition of CAN (2.5 equiv in CKCN) led to the the C-4 hydroxyl as the MOM etheR?, 91% yield), the
desired producl? in a 61% isolated yield, together with a  azido functionality was hydrogenated to give an amine, which
small amount ofl8 (10%). It is noteworthy that unlike all ~ was converted t@3 in high yield (95%). Then, under the
the previously reported procedures, the present one can besame conditions, compour23 was transformed int@4, the
run easily on larger scales (2.5 g) without lowering the  fully acetylated 4epi2-deoxyB-Neu5Ac, in 92% yield?
yield. The total synthesis of sialic acid from intermedidté
Conversion ofl7 to the corresponding acetamiti® using require oxidation at C-2. Thus, reduction of the ketone,
a modification of Rosen’s meth&{Scheme 2) was realized
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following protection of the resulting hydroxy, furnished the 30.2°> The physical data of our synthetic sample are identical
desiredanti-azido MOM ether26 (Scheme 3). Oxidation of  to those reportéélby Whitesides.

the lithium enolate 026 with MoOs-Py-HMPA (MoOPHY* In summary, we have established an effective synthesis
gave the 2a-OH product (along with traces of the/2OH of both sialic acid and its analogues. Further studies on the
isomer) in 50% isolated yield (70%, based on recov@®d total synthesis of Neu2en5Ac and Zanant®{GG167) are
Acetylation of the hydroxyl at C-2 afforded compougé currently ongoing in this laboratory, and the results will be

(84%). Then following a procedure similar to that described reported in due time.
above,28 was transformed into pentaacetylated ethyl ester
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