

Bioorganic & Medicinal Chemistry Letters, Vol. 7, No. 13, pp. 1595-1600, 1997 © 1997 The DuPont Merck Pharmaceutical Company Published by Elsevier Science Ltd Printed in Great Britain 0960-894X/97 \$17.00 + 0.00

РП: S0960-894X(97)00254-0

BIARYL SUBSTITUTED ALKYLBORONATE ESTERS **AS THROMBIN INHIBITORS**

M. L. Quan,* J. Wityak, C. Dominguez, J. V. Duncia, C. A. Kettner, C. D. Ellis, A. Y. Liauw, J. M. Park, J. B. Santella, R. M. Knabb, M. J. Thoolen, P. C. Weber,[‡] and R. R. Wexler.

The DuPont Merck Pharmaceutical Company, P.O. Box 80500 Wilmington, DE 19880-0500

Abstract: Thrombin is a serine protease that plays an important role in the blood coagulation cascade, and is a target enzyme for new therapeutic agents. Ac-(D)-Phe-Pro-boroArg-OH (DuP 714) was found to be a highly effective thrombin inhibitor. In order to reduce the peptidic nature of DuP 714, we have designed a series of novel biaryl substituted alkylboronate esters as potent thrombin inhibitors. The most potent compounds have subnanomolar affinity for thrombin. © 1997 The DuPont Merck Pharmaceutical Company. Published by Elsevier Science Ltd.

Thrombin is a serine protease that plays an important role in the blood coagulation cascade.¹ As the last protease in the coagulation cascade, thrombin catalyzes the conversion of fibrinogen to fibrin. Additionally, it is a potent activator of platelets and a number of coagulation factors. Consequently, it is a target enzyme for new therapeutic agents with potential for the treatment of pulmonary embolism, deep vein thrombosis, unstable angina, thrombolysis, and coronary by-pass surgery.

In 1990, a series of boropeptide thrombin inhibitors based upon the D-Phe-Pro-Arg sequence was described.² These modified peptides have a C-terminal boronic acid moiety in place of the carboxy terminus and are among the most potent thrombin inhibitors known. Ac-(D)-Phe-Pro-boroArg-OH (DuP 714) was a highly potent compound in the series.² In order to reduce the peptidic nature of these inhibitors, we designed and synthesized some simple biaryl amide substituted aminoalkylboronates exemplified by 1. The most potent compounds have subnanomolar affinity for thrombin.

Replacement of the Ac-(D)-Phe-Pro portion of DuP 714 with a benzoyl group decreased thrombin inhibition from 0.04 nM to 510 nM (2, Table 1). However, replacement of the Ac-(D)-Phe-Pro portion with 1,1-biphenyl carbonyl afforded 3, which had a K_i of 0.94 nM against thrombin. A greater than two order of magnitude increase in binding affinity was observed by para-substitution of the phenyl mojety with a second phenyl group. From molecular modeling studies it appeared that the terminal phenyl ring of the biphenyl moiety was well-positioned for a favorable lipophilic edge to face interaction³ with Trp²¹⁵ in the active site. The thrombin inhibition of 3 and 4 suggested that the contribution to the binding energy of the boronate esters was negligible. This was validated by X-ray crystallographic studies of boropeptide pinanediol ester-thrombin complexes in which the pinanediol from the inhibitors bound within the active site was not detected.⁴ Placing a methylene group between the carboxamide carbon and the biaryl caused a seven fold decrease in binding affinity (3 and 5).

_	Table 1. K _i Data of Thrombin Inhibitors ^a					a
NH OR ³	Ex.	R	n	R ³	Thr K _i (nM)	Tryp K _i (nM)
	DuP 714			Н	0.040	0.045
 _NH	2	Н	0	pinacol	512	70
	3	Ph	0	(+) pinanediol	0.94	33
(CH2)n	4	Ph	0	Н	1.7	not tested
(II)	5	Ph	1	(+) pinanediol	6.9	not tested
	^a see r	eference	e 2 for	assay conditions.		

"see reference 2 for assay conditions.

Meta-substitution of the biphenyl moiety was also explored. As compared with 3, a 117-fold decrease in thrombin affinity was observed when substitution was at the meta-position (6). However, when the terminal phenyl substituent was meta-substituted with either a methylsulfonamide or a tert-butyloxycarbonylamine, the thrombin activity returned to the nanomolar range (7 and 8). Replacement of the inner phenyl ring of 3 with a 2,5-substituted 5-membered heterocycle such as furan caused the thrombin affinity to decrease by approximately 150-fold. Meta-substitution of the terminal ring with a tert-butyloxycarbonylamine group afforded a moderate increase in activity (10 and 11).

Table 2. Ki Da		an inniditors~			
Ex.	A	R ²	Thrombin K _i (nM)	Trypsin K _i (nM)	
6	\searrow	Н	110	7.4	
7	\searrow	NHSO ₂ CH ₃	3.5	3.8	
8	\searrow	NHBOC	8.3	35	
9, free acid	\checkmark°	Н	137	not tested	U
10	\checkmark	NHBOC	30	25	(11)
11	√ s∕∕	NHBOC	42	13	

_9

	Table 2.	K: Data	of Thrombin	Inhibitor
--	----------	---------	-------------	-----------

^asee reference 2 for assay conditions.

Molecular modeling studies of 3 superimposed with DuP 714 bound to thrombin indicated that an *ortho*substituent on the benzoyl moiety of 3 might participate in a possible lipophilic edge to face interaction of with Trp^{60D} of thrombin. The addition of a methyl group at the *ortho*-position to the carbonyl caused a two fold increase in affinity (12). Replacement of the *ortho*-methyl with a fluoro or amino group caused the thrombin affinity to decrease by three fold, whereas a nitro- substituent at the *ortho*-- or meta-position caused the affinity to decrease by ten fold. A comparison of *ortho*- and *meta*- amino groups indicated a four fold decrease in thrombin activity when the amino substituent was placed at the *meta*-position as compared to the *ortho*-position. As shown in Table 3, all compounds with an *ortho*-substituent had similar affinity for trypsin.

The X-ray crystal structure⁵ of **12** bound to thrombin superimposed on DuP 714 (Figure 1) showed that compound **12** overlaps very well with DuP 714. The *ortho*-methylbiphenyl group occupies the same lipophilic S_2S_3 pocket as the Ac-(D)-Phe-Pro portion of DuP 714. The terminal phenyl ring is at a similar location relative to the phenylalanine of DuP 714, and it forms an edge to face interaction with Trp^{215} . The *ortho*-methyl group has a weak interaction with Trp^{60D} . Similar to DuP 714, the P₁ arginine has an ionic interaction with Asp¹⁸⁹; the boronic acid forms a covalent bond with Ser¹⁹⁵ through a electrophilic interaction; and the NH group of the carboxamide is also involved in a hydrogen bonding interaction with Ser²¹⁵.

The crystal structure also indicated that there might be some space available for substitution at the *ortho*position of the terminal ring, and a substituent with a hydrogen bond accepting group might be able to form a hydrogen bond with the phenolic hydroxyl group of Tyr^{60A}. To test this hypothesis, a few compounds were prepared, but they did not show an increase in affinity for thrombin (Table 4). It is possible that the substitution may have changed the conformation of the terminal ring, resulting in a weaker edge to face interaction with Trp²¹⁵. The new inhibitors may also have induced a conformational change in the enzyme, which might not allow such an interaction. The substituent may have also changed the angle between the two phenyl rings. Such rotation of the terminal phenyl ring might be unfavorable for the interaction with Trp²¹⁵. Although this substitution did not improve affinity for thrombin, the *in vitro* thrombin times were better than **12**. Compounds **18** and **21** are only two to three fold less potent than DuP 714, as indicated in Table 4.

Table 3. Sub	stitution Effec	ts on the Inner	Phenyl Ring ^a
Ex.	R ¹	Thrombin K _i (nM)	Trypsin K _i (nM)
3	Н	0.94	33
12	o-CH3	0.42	4.2
13	o-F	1.2	not tested
14	o-NH2	1.3	5.3
15	0-NO2	4.7	not tested
16	m-NO ₂	4.9	4.8
17	m-NH ₂	5.5	4.7

(III)

^asee reference 2 for assay conditions.

Table 4. Substitution Effects on the Terminal Phenyl Ringa

Ex.	<u>R²</u>	Thrombin K _i (nM)	Trypsin K _i (nM)	Thr Time IC ₅₀ (nM)
12	Н	0.42	4.2	600
18	SO2NH-t-Bu	0.21	0.70	140
19	SO2NEt2	0.36	0.62	not tested
20	CF3	0.46	3.1	not tested
21	SO ₂ NH ₂	0.92	0.11	110
22	SO2NHCO2CH3	1.1	0.64	225

^asee reference 2 for assay conditions.

Figure 1. X-ray Crystal Structure of Compound 12 and DuP 714 Bound to Thrombin

Table 5. Effects of Autogen Atom on the Thenyi King						
Ex.	X	Y	Z	R ¹	P ₁	Thrombin Kj (nM)
3	СН	СН	СН	Н	NHC(NH)NH ₂	0.94
23	СН	CH	Ν	н	NHC(NH)NH2	19
12	СН	СН	CH	CH3	NHC(NH)NH2	0.42
24	N	N	СН	СН3	NHC(NH)NH2	10
25	СН	СН	CH	CH3	CH ₂ NH ₂	26
26	Ν	СН	CH	СН3	CH ₂ NH ₂	580
27	Ν	Ν	CH	CH3	CH ₂ NH ₂	410

Table 5. Effects of Nitrogen Atom on the Phenyl Ring

As shown in Table 5, the incorporation of nitrogen atoms into the biphenyl resulted in a 15- to 20-fold decrease in thrombin affinity. A similar effect was observed when nitrogen was either in the terminal ring or in the inner ring. The same result was also seen for the P₁ lysine analogs (25, 26, and 27).

Syntheses of boroamino acid amides have been described.^{2b, 6} Compounds listed in Tables 1 to Table 4 were prepared from the α -aminoboronic acid 31, which was prepared using the Matteson route.^{2b, 6, 7} The starting biaryl carboxylic acids were synthesized via palladium-catalyzed coupling of appropriately substituted 4-bromobenzoic acid with the requisite arylboronic acid (Scheme 1).⁸ The phenylpyrimidine analogs in Table 5 were prepared using the methods⁹ described in Scheme 2. The phenylpyridine analogs in Table 5 were prepared as described in Scheme 3. Compounds 38 and 43 were then converted to the final targets following the methods described in Scheme 1.

In conclusion, we have replaced the P_2P_3 peptide portion of DuP 714 with substituted biaryl groups. These compounds are potent thrombin inhibitors with the best compounds having subnanomolar affinity for thrombin. The selectivity and in vitro potency of our best compounds are very similar to DuP 714.

a. Pd(PPh₃)₄, Aq. Na₂CO₃, toluene, refluxed for 6h, ~70%; b. NaOH/ MeOH; 90-95%; c. HBTU, NMM, DMF, RT for 24 h, 30-50% yield; d. (1) NaN₃/DMF, 100°C for 5 h. (2) Pd(OH)₂ /H₂/ MeOH/HCl, RT for 12 h. ~70%;

Scheme 2

Acknowledgements.

We wish to thank J. M. Luettgen, L. J. Mersinger, and S. Spitz for obtaining compound binding data. We also like to thank R. Hilmer for assistance in obtaining the crystal of 12 and R. S. Alexander for preparing the image of the crystal structure of 12.

References and Notes

[‡] Current address: Schering Plough Research, Kenilworth, NJ 07033.

1. Luchtman-Jones, L.; Broze, G. J. Ann. Med. 1995, 27, 47.

2. (a).Knabb, R. M.; Kettner, C. A.; Timmermans, P. B. M. W. M.; Reilly, T. M. Thromb. Haemostas. 1992, 67, 56. (b).Kettner, C. A.; Mersinger, L. J.; Knabb, R. M. J. Biol. Chem. 1990, 265, 18289.

3. Burley, S. K.; Petsko, G. A. Science 1985, 229, 23.

4. Weber, P. unpublished results.

5. Crystals were prepared and inhibitors were added using the procedure of Weber, et. al. (Weber, P. C.; Lee, S.; Lewandowski, F. A.; Schadt, M. C.; Chang, C; Kettner, C. A. *Biochemistry*, **1995**, *34*, 3750). Diffraction data was obtained to a resolution of 2.1 Angstrom and data were refined to a crystallographic R-factor of 0.200.

6. Wityak, J.; Earl, R. A.; Abelman, M. M.; Bethel, Y. B.; Fisher, B. N.; Kauffman, G. S.; Kettner, C.A.; Ma, P.; McMillian, J. L.; Mersinger, L. J.; Pesti, J.; Pierce, M. E.; Rankin, F. W.; Chorvat, R. J.; Confalone, P. N. J. Med. Chem. 1995, 60, 3717.

7. Matteson, D. S.; Jesthi, P. K.; Sadhu, K. M. Organometallics 1984, 3, 1284.

8. Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513.

9. Schenone, P.; Sansebastiano, L.; Mosti, L. J. Het. Chem. 1990, 27, 302.

(Received in USA 20 March 1997; accepted 12 May 1997)