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Stereoselective synthesis of (�)-jimenezin
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Abstract—Total synthesis of jimenezin was achieved via radical cyclization of b-alkoxyacrylate and b-alkoxyvinyl sulfoxide inter-
mediates and intramolecular olefin metathesis reaction.
� 2005 Published by Elsevier Ltd.
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1 (-)-Jimenezin
Cytotoxic Annonaceous acetogenin
from Rollinia mucosa seeds

A B C
Jimenezin (1) is an Annonaceous acetogenin isolated
from the seeds of Rollinia mucosa (Jacquin) Baillon.1

It is quite active in the brine shrimp lethality test (IC50

5.7 ng/mL) and exhibits potent cytotoxic activity against
six human solid tumor lines. The original structure pro-
posed was corrected by Takahashi and co-workers via
total synthesis, which was achieved by using carbo-
hydrates as chiral building blocks.2 Jimenezin (1) is a
rare example of acetogenins possessing a hydroxylated
cis-2,6-disubstituted oxane ring along with an adjacent
cis-2,5-disubstituted oxolane ring and one flanking
hydroxyl group on the oxolane side (Scheme 1). Radical
cyclization reactions of b-alkoxyacrylates and related
vinyl ethers are now well known to produce cis-2,5-
disubstituted oxolane and cis-2,6-disubstituted oxane
rings,3 and we intended to examine the efficacy of these
reactions in a stereocontrolled synthesis of jimenezin (1).

In retrosynthetic analysis, hydroxy oxane F was to be
prepared from a b-alkoxyacrylate aldehyde precursor
G via samarium(II) iodide-mediated cyclization. Oxo-
lane derivative D was envisaged to arise via radical cycli-
zation of b-alkoxyvinyl sulfoxide E. The homoallylic
alcohol prepared from aldehyde C was to be converted
into carboxylate ester B, which may serve as a precursor
for macrolactone A via ring-forming olefin metathesis.
Incorporation of (S)-propylene oxide unit into A and
further manipulations should generate jimenezin (1)
(Scheme 1).
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Dibenzoate 3 was prepared from trans-3-hexenedioic
acid (2) and transformed into diol 4 (96% ee)4 via Sharp-
less asymmetric dihydroxylation.5 The PMB acetal pre-
pared from 4 was reduced in the presence of titanium
chloride and sodium cyanoborohydride6 and triol 5
was prepared via subsequent removal of benzoate
groups via LAH reduction.

Selective benzylidene acetal protection of the 1,3-diol
moiety in 5, iodide substitution of the primary hydroxyl
group, and subsequent substitution with lithiated 1,3-
dithiane produced the dithiane intermediate 6. PMB ether
deprotection of 6, reaction with ethyl propiolate in the
presence of NMM, and dithiane deprotection yielded b-
alkoxyacrylate aldehyde 7. Samarium iodide-mediated
radical cyclization7 of 7 proceeded smoothly, and the
oxane derivative 8 was obtained in high yield (Scheme 2).

Conversion of 8 into olefin 9 required MOM protection
of the hydroxyl group, and Wittig reaction of the corre-
sponding aldehyde. DIBAL reduction of 9 produced a
benzyl ether intermediate, from which (E)-b-alkoxyvinyl
(S)-sulfoxide 10 was obtained via hydrogenation/
hydrogenolysis, tosylation of the primary hydroxyl
group, reaction with ethynyl p-tolyl (S)-sulfoxide, and
iodide substitution. The key radical cyclization
(matched case)8 of 10 in the presence of tributylstannane
and triethylborane at low temperature furnished a single
oxolane product 11, and aldehyde 12 was prepared via
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Scheme 2. Reagents and conditions: (1) EtOH, cat. H2SO4, benzene,
reflux (–H2O), 2 d; (2) 2.0 equiv LAH, ether, 0 �C–rt; (3) 2.2 equiv
BzCl, 2.5 equiv pyridine, DCM, 0 �C–rt, 10 h; (4) 0.4 mol % OsO4,
0.01 equiv DHQ2(PHAL), 3.0 equiv K3FeCN6, 3.0 equiv NaHCO3,
3.0 equiv K2CO3, 1.0 equiv MeSO2NH2, t-BuOH–H2O (1:1) (0.1 M),
0 �C, 12 h; (5) 1.5 equiv (p-MeO)PhCH(OMe)2, 0.02 equiv CSA,
DCM, rt; (6) 1.2 equiv TiCl4, 1.5 equiv NaBH3CN, 2.0 equiv TEA,
MeCN, 0 �C, 50 min; (7) 2.0 equiv LAH, ether, 0 �C–rt; (8) 2.2 equiv
PhCH(OMe)2, 0.01 equiv CSA, DCM, rt; (9) 1.5 equiv I2, 1.5
equiv Ph3P, 2.0 equiv imidazole, DCM, rt; (10) 2.2 equiv n-BuLi,
2.2 equiv 1,3-dithiane, 3.0 equiv HMPA, THF, �30 �C–rt; (11) 1.1
equiv DDQ, DCM–H2O (20:1), rt; (12) 2.5 equiv HCCCO2Et,
0.15 equiv NMM, MeCN–DCM (1:1), rt; (13) 5.0 equiv MeI, 7.0 equiv
NaHCO3, MeCN–H2O (3:1), rt; (14) 3.0 equiv SmI2, THF, 3.0 equiv
MeOH, 0 �C, 10 min.
Pummerer rearrangement. Reaction of 12 with the
Roush boronate 139 provided a 3.8:1 mixture favoring
(R)-homoallylic alcohol 14.10 Yamaguchi esterification
of 14 with carboxylic acid 15 proceeded smoothly to
yield the ester diene 16 (Scheme 3).

Epoxide 18 was obtained from (R)-glycidyl tosylate
(17)11 via reaction with octenyl Grignard reagent and
DBU treatment, and a three-step sequence provided car-
boxylic acid 15 (Scheme 4).

The crucial ring-closing olefin metathesis reaction of 16
proceeded efficiently to give the olefin mixture 19.12
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Scheme 3. Reagents and conditions: (1) 5.0 equiv MOMCl, 8.0 equiv
DIPEA, DCM, 0 �C–rt; (2) 1.0 equiv LAH, ether, 0 �C–rt; (3)
2.0 equiv Dess–Martin periodinane, DCM, rt, 2 h; (4) 2.6 equiv n-
BuLi, 2.6 equiv n-C8H17PPh3

+I�, THF, �78 �C–rt; (5) 2.2 equiv
DIBAL, DCM, 0 �C; (6) H2, Pd–C, MeOH, rt; (7) 1.0 equiv p-TsCl,
0.02 equiv n-Bu2SnO, 1.0 equiv TEA, rt, 10 h; (8) 3.0 equiv (S)-p-
TolS(O)CCH, 1.0 equiv NMM, DCM, 0 �C–rt, 1 d; (9) 4.0 equiv NaI,
acetone, reflux, 16 h; (10) 1.5 equiv n-Bu3SnH, 0.5 equiv Et3B, toluene,
�30 �C; (11) 2.0 equiv TFAA, 5.0 equiv 2,4,6-collidine, 0 �C, 10 min;
5.0 equiv K2CO3, 0.2 M NaH2PO4–Na2HPO4 buffer (pH 7.0), 0 �C,
30 min; (12) 13, 4 Å MS, toluene, �78 �C, 3 h; (13) 1.5 equiv 2,4,6-
Cl3PhCOCl, 1.7 equiv TEA, 1.2 equiv 15, THF; 2.0 equiv DMAP,
benzene, 14.
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Scheme 4. Reagents and conditions: (1) 1.5 equiv C8H15MgBr, THF,
�40 �C, 3 h; (2) 2.1 equiv DBU, DCM, rt, 2 h; (3) 3.0 equiv
PhSCH2CO2H, 3.0 equiv LDA, THF, �78 �C–rt, 16 h; (4) 3.0 equiv
TBSCl, 5.0 equiv DCM, rt, 12 h; (5) 3.0 equiv K2CO3, MeOH–H2O
(7:1), rt.
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Scheme 5. Reagents and conditions: (1) 15 mol %
(Cy3P)2RuCl2(CHPh), DCM, rt, 16 h; (2) 6 N LiOH, 12-crown-4,
MeOH–THF (1:1), reflux; (3) 5.0 equiv TESCl, 6.0 equiv imidazole,
DCM, rt; 3.0 equiv K2CO3, MeOH–H2O (7:1), rt; (4) 3.0 equiv LDA,
5.0 equiv (S)-propylene oxide, THF; p-TsOH, benzene, rt; (5) 1.0 equiv
m-CPBA, DCM, 0 �C; toluene, reflux, 1 h; (6) H2, 10 mol %
(Ph3P)3RhCl, benzene, rt; (7) 10% HCl–MeOH, DCM, rt.
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Enolates derived from 19 failed to react with (S)-propyl-
ene oxide,13 and it was instead converted into the corre-
sponding hydroxy acid 20 under basic hydrolytic
conditions. After selective TES-protection of the hydro-
xyl group, lithium enolate generated was reacted with
(S)-propylene oxide to form an a-phenylthio c-lactone,
which provided a butenolide intermediate via oxida-
tion–elimination protocol. (�)-Jimenezin (1)14 was final-
ly obtained via selective hydrogenation and acidic
deprotection of protecting groups (Scheme 5).

In this synthesis, the oxane and oxolane moieties were
introduced in high stereoselectivity via radical cycliza-
tion of b-alkoxyacrylate and b-alkoxyvinyl sulfoxide
intermediates. Ring-closing olefin metathesis reaction
was employed for butenolide side-chain elongation.
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