A Stereocontrolled Access to α -*C*-(1 \rightarrow 3)-Linked Disaccharides Containing 2-Deoxyhexopyranoses

Petr Štěpánek,^a Ladislav Kniežo,^{*a} Hana Dvořáková,^b Pavel Vojtíšek^c

^b NMR Laboratory, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic

^c Department of Inorganic Chemistry, Charles University, 128 40 Prague 2, Czech Republic

Received 27 February 2003

Abstract: A protected α -D-glucopyranosylacetaldehyde was converted by Wittig reaction with (thiazol-2-yl)carbonylmethylenetriphenyl phosphorane into the corresponding substituted 1-oxa-1,3-butadiene which by hetero-Diels–Alder reaction with ethyl vinyl ether afforded a mixture of two diastereoisomeric dihydropyran derivatives. These were separated by chromatography and the thiazol ring was transformed into an aldehyde group. Subsequent hydroboration afforded α -C-(1 \rightarrow 3)-linked disaccharides containing 2-deoxyhexopyranoses of D- or L-configuration.

Key words: *C*-disaccharides, *C*-glycosides, hetero-Diels–Alder reaction, oxabutadienes, Wittig reaction

Formal replacement of the glycosidic oxygen atom by a methylene group in disaccharides leads to a group of compounds denoted trivially as *C*-disaccharides. Although this change can influence the conformational arrangement about the original C-O-C bonds,¹ it is assumed that *C*-disaccharides mimic well the structures of the natural disaccharides but – unlike them – they resist acidic as well as enzyme hydrolysis. Therefore, *C*-disaccharides are potential inhibitors of glycosidases or glycosyltransferases. Since these enzymes play a crucial role in the biosynthesis of cell-surface oligosaccharides that are important for intercellular communication, we can expect that some *C*-disaccharides could find use as compounds with therapeutic effects.²

For these reasons, there is an increased interest in the search for new synthetic pathways leading to *C*-disaccharides and in the study of their properties.^{2–6} Because of the great structural variety of disaccharides, where e.g. one hexopyranose can be attached by an α - or β -anomeric bond to five different positions (i.e. positions 1, 2, 3, 4 or 6) of the second hexopyranose, the existing methods of preparation of *C*-disaccharides are usually multi-step syntheses, enabling the preparation of only one particular type of *C*-disaccharide. Therefore, a search for further simple syntheses of various types of *C*-disaccharides is desirable, particularly for those which could afford the final compounds in sufficient quantities for testing their properties.

Synlett 2003, No. 7, Print: 02 06 2003.

© Georg Thieme Verlag Stuttgart · New York

In our previous studies we described a method by which a formyl group can be converted to a new dideoxyhexopyranose and using this approach, we prepared compounds in which two monosaccharides were linked either directly by a C-C bond⁷ or by a -CH₂-bridge.⁸ In the present communication we publish a short and simple synthesis of a new type of α -C-(1- \Re)-disaccharide using the same methodology. Some types of C-(1- \Re)-disaccharrides are already known in which two monosaccharides are linked by a -CH₂-,⁴ -CH(OH)-⁵ or -CO-⁶ bridge. Recently, the epimeric pair α -C-(1- \Re)-mannopyranoside of *N*-acetylgalactosamine and α -C-(1- \Re)-mannopyranoside of *N*-acetyltalosamine has been prepared and the former isomer showed inhibitory effects toward glycosidases and human α -1,3-fucosyltransferase.⁹

We used protected α -D-glucopyranosylacetaldehydes 1 or 2 as starting compounds. These aldehydes are accessible, even in multigram amounts, by ozonolysis of the corresponding peracetylated¹⁰ or perbenzylated¹¹ propenyl derivatives. Heating a mixture of substituted acetaldehyde 1 and stabilized ylide 3^{12} in chloroform afforded *trans*-oxadiene 4¹³ which was isolated by column chromatography in 80% yield (Scheme 1). As in the previous cases,^{7,8} Eu(fod)₃-catalyzed cycloaddition of oxadiene 4 to ethyl vinyl ether led to a mixture of two *endo*-cycloadducts 6 and 7. Similarly to the synthesis of the branched-chain sugars,⁸ we observed no chiral induction by the monosaccharide moiety in the cycloaddition reaction, both endocycloadducts 6 and 7 being formed in the ratio 1:1 (as determined by ¹H NMR spectroscopy and HPLC).¹⁴ Unfortunately, the cycloadducts 6 and 7 were inseparable by preparative chromatography on silica gel. Therefore, we repeated the reaction, starting from benzyl-protected acetaldehyde 2.

Analogously to 1, the Wittig reaction of 2 afforded oxadiene 5 and subsequent cycloaddition under the same conditions as in the preceding case gave 1:1 mixture of two cycloadducts 8 and 9.¹⁵ We confirmed the structural identity of the pair of products 6 and 7 and the pair 8 and 9 by deacetylation of the mixture of cycloadducts 6 and 7 and subsequent benzylation which gave a mixture of cycloadducts 8 and 9. Contrary to the pair 6 and 7, the mixture of 8 and 9 was well separable on silica gel and pure com-

^a Department of Chemistry of Natural Compounds, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic Fax +420(2)33339990; E-mail: ladislav.kniezo@vscht.cz

Art Id.1437-2096,E;2003,0,MM,0963,0966,ftx,en;D05103ST.pdf.

Scheme 1 Reagents and conditions: i. ethyl vinyl ether, $Eu(fod)_3$ (7.5 mol%), CH_2Cl_2 , r.t., 6 h; ii. a) MeOTf, MeCN, r.t., 15 min, b) NaBH₄, MeOH, r.t., 15 min, c) AgNO₃, MeCN/H₂O, r.t., 20 min; iii. a) Me₂S·BH₃, THF, r.t., 18 h, b) NaOH, H₂O₂, r.t., 40 min; iv. H₂/Pd-C, MeOH, r.t., 16 h v. Ac₂O, pyridine, DMAP, r.t., 4 h.

pounds were obtained by flash chromatography. Mass and NMR spectra confirmed that compounds **8** and **9** represent a pair of diastereoisomers differing only in configuration on the dihydropyran ring.¹⁵ Moreover, the presence of NOE between the protons H-1a and H-3a in the individual diastereoisomers **8** and **9** confirmed the *cis*-configuration of substituents on the dihydropyran ring in both compounds.

In the two subsequent steps, both the individual cycloadducts 8 and 9 were converted into compounds 12 and 15. In the first step, the thiazole substituent was in the known way¹⁶ transformed to a formyl group, giving rise to little stable aldehydes 10 and 11. Their hydroboration with an excess of $(CH_3)_2S\cdotBH_3$, with simultaneous reduction of the formyl group, proceeded stereoselectively from the less hindered side of the dihydropyran double bond and afforded benzylated products **12** and **15**.¹⁷ Removal of the benzyl protecting groups by hydrogenation gave ethyl glycosides of α -*C*-(1 \rightarrow 3)-disaccharides **13** and **16**, which were characterized as peracetyl derivatives **14** and **17**.¹⁸ Whereas ethyl glycoside of C-disaccharide **17** with L-configuration in the new deoxyhexopyranose was obtained as a crystalline compound of mp 145–147 °C, its diastereoisomer **14** was contaminated with minor impurities (up to 20%), even after chromatography on silica gel. As shown by NMR spectra, in both the new deoxypyranoses **14** and **17** all substituents are equatorial¹⁸ (for **14**: *J* = H-1a/H-2a_{ax} = 9.4 Hz; *J* = H-3a/H-4a = 9.0 Hz; *J* = H-4a/H-5a = 10.0 Hz; for **17**: *J* = H-1a/H-2a_{ax} = 8.1 Hz; *J* = H-3a/H-4a = *J* = H-4a/H-5a = 9.9 Hz).

The L-configuration of the new deoxyhexopyranose in the crystalline ethyl glycoside **17** has been unequivocally confirmed by X-ray crystallographic analysis (see Figure 1),¹⁹ which leaves the D-configuration for the new deoxyhexopyranose in ethyl glycoside **14**.

In summary, we have shown that the described method represent a direct and rapid approach to two diastereoisomeric α -*C*-(1 \rightarrow 3)-disaccharides **13** and **16** in which D-glucose is linked by methylene bridge with 2-deoxy-hexopyranose in the D- and in the L-configuration, respectively. Now, we are trying to use as starting compounds other aldehydes derived from monosaccharides (e.g. of *galacto* or *manno* configuration) in order to obtain a broader series of α -*C*-(1 \rightarrow 3)-disaccharides for biological activity screening.

Acknowledgement

This study was financially supported by Ministry of Education, Youth and Sport of the Czech Republic (Grant No 22330006).

References

- (1) Mikros, E.; Labrinidis, G.; Pérez, S. J. Carbohydr. Chem. **2000**, *19*, 1319.
- (2) (a) Levy, D. E.; Tang, C. In *The Chemistry of C-Glycosides, Tetrahedron Organic Chemistry Series*; Baldwin, J. E.; Magnus, P. D., Eds.; Pergamon-Elsevier Science: Oxford, **1995**. (b) Postema, M. H. D. In *C-Glycoside Synthesis*; CRC: Boca Raton/ FL, **1995**. (c) Vogel, P.; Ferrito, R.; Kraehenbuehl, K.; Baudat, A. In *Carbohydrate Mimics, Concept and Methods*; Chapleur, Y., Ed.; Wiley-VCH: Weinheim, **1998**, 19–48. (d) Du, Y.; Linhardt, R. J.; Vlahov, I. R. *Tetrahedron* **1998**, *54*, 9913. (e) Vogel, P. *Chimia* **2001**, *55*, 359.
- (3) (a) Wei, A.; Haudrechy, A.; Audin, C.; Jun, H.-S.; Haudrechy-Bretel, N.; Kishi, Y. J. Org. Chem. 1995, 60, 2160. (b) Kobertz, W. R.; Bertozzi, C. R.; Bednarski, M. D. J. Org. Chem. 1996, 61, 1894. (c) Streicher, H.; Geyer, A.;

Schmidt, R. R. Chem. Eur. J. 1996, 2, 502. (d) Witczak, Z. J.; Chabra, R.; Chojnacki, J. Tetrahedron Lett. 1997, 38, 2215. (e) Rubinstenn, G.; Esnault, J.; Mallet, J.-M.; Sinaÿ, P. Tetrahedron: Asymmetry 1997, 8, 1327. (f) Angelaud, R.; Landais, Y.; Parra-Rapado, L. Tetrahedron Lett. 1997, 38, 8845. (g) Bornaghi, L.; Utille, J. P.; Mekai, E. D.; Mallet, J.-M.; Sinaÿ, P.; Driguez, H. Carbohydr. Res. 1997, 305, 561. (h) Dondoni, A.; Zuurmond, H.; Boscarato, A. J. Org. Chem. 1997, 62, 8114. (i) Sutherlin, D. P.; Armstrong, R. W. J. Org. Chem. 1997, 62, 5267. (j) Lubineau, A.; Grand, E.; Scherrmann, M.-C. Carbohydr. Res. 1997, 297, 169. (k) Rubinstenn, G.; Mallet, J.-M.; Sinaÿ, P. Tetrahedron Lett. 1998, 39, 3697. (l) Du, Y.; Polat, T.; Linhardt, R. J. Tetrahedron Lett. 1998, 39, 5007. (m) Dondoni, A.; Kleban, M.; Zuurmond, H.; Marra, A. Tetrahedron Lett. 1998, 39, 7991. (n) Mekai, E. D.; Rubinstenn, G.; Mallet, J.-M.; Sinaÿ, P. Synlett. 1998, 831. (o) Sazaki, M.; Fuwa, H.; Inoue, M.; Tachibana, K. Tetrahedron Lett. 1998, 39, 9027. (p) Patro, B.; Schmidt, R. R. Synthesis 1998, 1731. (q) Jarreton, O.; Skrydstrup, T.; Espinosa, J.-F.; Jiménez-Barbero, J.; Beau, J.-M. Chem.-Eur. J. 1999, 5, 430. (r) Pham-Huu, D.-P.; Petrušová, M.; Bemiller, J. N.; Petruš, L. Tetrahedron Lett. 1999, 40, 3053. (s) Postema, M. H. D.; Calimente, D. Tetrahedron Lett. 1999, 40, 4755. (t) Roy, R.; Dominique, R.; Das, S. K. J. Org. Chem. 1999, 64, 5408.

- (4) (a) Dyer, U. C.; Kishi, Y. J. Org. Chem. 1998, 53, 3383.
 (b) Wang, Y.; Goekjian, P. G.; Ryckman, D. M.; Kishi, Y. J. Org. Chem. 1998, 53, 4151. (c) Bimbala, R. M.; Vogel, P. Tetrahedron Lett. 1991, 32, 1429. (d) Bimbala, R. M.; Vogel, P. J. Org. Chem. 1992, 57, 2076.
- (5) (a) Schmidt, R. R.; Beyerbach, A. Liebigs Ann. Chem. 1992, 983. (b) Zhu, Y.-H.; Vogel, P. Tetrahedron Lett. 1998, 39, 31. (c) Gerber, P.; Vogel, P. Tetrahedron Lett. 1999, 40, 3165. (d) Zhu, Y.-H.; Demange, R.; Vogel, P. Tetrahedron: Asymmetry 2000, 11, 263.
- (6) Dawson, I. M.; Johnson, T.; Paton, R. M.; Rennie, A. C. J. Chem. Soc., Chem. Commun. 1988, 1339.

Downloaded by: Queen's University. Copyrighted material

- (7) (a) Dondoni, A.; Kniežo, L.; Martinková, M. J. Chem. Soc., Chem. Commun. 1994, 1963. (b) Dondoni, A.; Kniežo, L.; Martinková, M.; Imrich, J. Chem.-Eur. J. 1997, 3, 424.
- (8) Kniežo, L.; Buděšínský, M.; Vojtíšek, P.; Martinková, M. Enantiomer 1999, 4, 351.
- (9) (a) Pasquarello, C.; Demange, R.; Vogel, P. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 793. (b) Pasquarello, C.; Picasso, S.; Demange, R.; Malissard, M.; Berger, E. C.; Vogel, P. *J. Org. Chem.* **2000**, *65*, 4251.
- (10) Abdel-Rahman, A. A.-H.; El Ashry, E.-S. H.; Schmidt, R. R. *Carbohydr. Res.* **1999**, *315*, 106.
- (11) Brenna, E.; Fuganti, C.; Grasseli, P.; Serra, S.; Zambotti, S. *Chem.-Eur. J.* **2002**, 8, 1872.
- (12) Dondoni, A.; Marra, A.; Merino, P. J. Am. Chem. Soc. **1994**, *116*, 3224.
- (13) Selected data of compound 4: pale yellow oil; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.02 (d, 1 H, J = 2.9 Hz, CH-thiazole); 7.70 (d, 1 H, J = 2.9 Hz, CH-thiazole); 7.71 (d, 1 H, J = 15.7 Hz, H-1a); 7.25 (ddd, 1 H, J = 15.7 Hz, J = 7.1 Hz, J = 3.0 Hz, H-2a); 5.34 (dd, 1 H, J = 9.2 Hz, J = 8.9 Hz, H-3); 5.13 (dd, 1 H, J = 8.9 Hz, J = 5.5 Hz, H-2); 4.96 (dd, 1 H, J = 8.87 Hz, J = 8.80 Hz, H-4); 4.42 (ddd, 1 H, J = 4.9 Hz, J = 4.8 Hz, J = 5.5 Hz, H-1); 4.25 (dd, 1 H, J = 12.2 Hz, J = 6.0, H-6'); 4.04 (dd, 1 H, J = 12.2 Hz, J = 2.1 Hz, H-6); 3.92 (m, H-5); 2.85 (m, 1 H, H-7), 2.63 (m, 1 H, H-7'); 2.06, 2.05, 2.04, 2.00 (s, $4 \times 3H$, Ac). ¹³C NMR (125 MHz, CDCl₃) δ (ppm) : 180.85 (CO-C=C); 170.55, 196.88, 169.5, 169.41, 169.37 ($4 \times O=C$ -CH₃); 167.65 (thiazole C-2); 144.68 and 126.46 ($2 \times$ CH-thiazole); 144.62 and 126.46 ($2 \times$ -CH=); 71.16 (C-1); 69.87 (C-3); 69.73 (C-2); 69.17 (C-5); 68.40

Synlett 2003, No. 7, 963-966 ISSN 1234-567-89 © Thieme Stuttgart · New York

 $\begin{array}{l} ({\rm C-4});\, 61.90\,({\rm C-6});\, 29.74({\rm C-7});\, 20.49,\, 20.47,\, 20.44,\, 20.38\,(4\\ \times\,{\rm O=}C\text{-}{\rm CH}_3). \text{ ESI MS: } 676.4\,\,({\rm M+H}). \end{array}$

- (14) The NOE experiments with the obtained mixture of cycloadducts proved the *cis* relative configurations on dihydropyran ring in both componds 6 and 7. The NMR spectra did not reveal any *endo*-cycloadducts in the reaction mixture.
- (15) Ethyl vinyl ether (1.5mL, 15 mmol) and Eu(fod)₃ (460 mg, 0.4 mmol) were added to a solution of **5** (4 g, 6.2 mmol) in dichloromethane (10.7 mL) and the reaction mixture was sonicated for 6 h at room temperature. The solvent and the excess ethyl vinyl ether were evaporated. Chromatography of the residue (light petroleum–EtOAc, 8:1) afforded 2.05 g (48%) of compound **8** ($R_f = 0.29$) and 1.94 g (46%) of compound **9** ($R_f = 0.42$).

Selected data of compound 8: ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.83 (d, 1 H, J = 3.3 Hz, CH-thiazole); 7.17–7.32 (m, 21 H, $4 \times C_6 H_5$, CH-thiazole); 6.08 (d, 1 H, J = 3.4 Hz, H-4a); 5.20 (dd, 1 H, J = 2.1 Hz, J = 6.8 Hz, H-1a); 4.96– 4.48 (m, 8 H, $4 \times C_6H_5$ -CH₂); 4.30 (m, 1 H, H-1); 4.02 (dq, 1 H, J = 9.6 Hz, J = 7.0, -O-CH₂-CH₃); 3.82–3.62 (m, 8 H, H-2, H-3, H-4, H-5, H-6, H-6', -O-CH₂-CH₃); 2.62 (m, 1 H, H-3a); 2.17 (ddd, 1 H,, J = 2.1 Hz, J = 4.6 Hz, J = 11.5, H-2a_{ea}); 1.98 (m, 2 H, H-7, H-7'); 1.88 (ddd, 1 H, J = 6.8 Hz, J = 11.5 Hz, J = 11.5, H-2a_{ax}); 1.30 (t, 3 H, J = 7.0, -O-CH₂-CH₃). ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 164.62 (thiazole C-2); 143.73 (C-5a); 143.28 (CH-thiazole); 138.36, 138.27, 138.22, 138.12 (4×ipso C₆H₅-CH₂), 128.36-127.57 $(20 \times C_6H_5$ -CH₂); 118.48 (CH-thiazole); 104.24 (C-4a); 99.61 (C-1a); 82.36, 80.13, 78.07, 72.31, 71.48 (C-1, C-2, C-3, C-4, C-5); 75.42, 74.96, 73.53, 73.14 $(4 \times C_6H_5-CH_2)$; 69.1 (C-6); 64.65 (O-CH₂-CH₃); 33.76 (C-2a); 30.22 (C-7); 27.67 (C-3a); 15.27 (O-CH₂-CH₃). ESI MS: 748.2 (M + H). Selected data of compound **9**: ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.82 (d, 1 H, J = 3.3 Hz, CH-thiazole); 7.15–7.38 (m, 21 H, $4 \times C_6 H_5$, CH-thiazole); 5.97 (d, 1 H, J = 3.2 Hz, H-4a); 5.20 (dd, 1 H, J = 1.7 Hz, J = 6.7 Hz, H-1a); 4.97– $4.50 \text{ (m, 8 H, } 4 \times C_6 H_5 - CH_2\text{)}; 4.25 \text{ (m, 1 H, H-1)}; 4.05 \text{ (dq,}$ $1 \text{ H}, J = 9.6 \text{ Hz}, J = 7.0 \text{ Hz}, \text{ O-CH}_2\text{-CH}_3$; 4.08-3.59 (m, 8 H,)H-2, H-3, H-4, H-5, H-6, H-6', O-CH₂-CH₃); 2.67 (m, 1 H, H-3a), 2.22 (ddd, 1 H, J = 1.7 Hz, J = 2.6 Hz, J = 13.3 Hz, H-2a_{eq}); 2.09 (m, 1 H, H-7); 1.87 (m, 1 H, H-7'); 1.75 (ddd, 1 H, J = 6.7 Hz, J = 13.3 Hz, J = 13.3 Hz, H-2a_{ax}); 1.30 (t, 3) H, J = 7.0 Hz, O-CH₂-CH₃). ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 164.40 (thiazole C-2); 143.86 (C-5a); 143.29 (CHthiazole); 138.68, 138.22, 138.04 (4 × *ipso* C₆H₅-CH₂); 128.49-127.57 ($20 \times C_6 H_5$ -CH₂); 118.40 (<u>C</u>H-thiazole); 105.65 (C-4a); 99.85 (C-1a); 82.53, 79.95, 77.99, 71.45, 71.32 (C-1, C-2, C-3, C-4, C-5); 77.56, 76.36, 73.47, 72.83 $(4 \times C_6H_5-CH_2)$; 68.89 (C-6); 64.74 (O- CH_2-CH_3); 32.36 (C-2a); 30.16 (C-7); 27.15 (C-3a); 15.28 (O-CH₂-CH₃). ESI MS: 748.2 (M + H).

- (16) Dondoni, A.; Marra, A.; Scherrmann, M.-C.; Bertolasi, V. *Chem.–Eur. J.* **2001**, *7*, 1371.
- (17) A solution of aldehyde **10** (230 mg, 0.33 mmol) in tetrahydrofuran (3.4 mL) was cooled to 0 °C and then treated with 1 M solution of $(CH_3)_2S \cdot BH_3$ in tetrahydrofuran (0.69 mL, 0.69 mmol). The reaction mixture was stirred for 20 min at 0 °C and for 18 h at room temperature. Then, 0.37 mL of 30% NaOH and 0.37 mL of 30% H₂O₂ were added at 0 °C, and the solution was stirred at room temperature for 40 min. After dilution with brine (10 mL), the solution was extracted with ethyl acetate (3 × 10 mL), and the combined organic layers were dried (Mg₂SO₄). Evaporation of the solvent under reduced pressure and chromatography of the residue (light petroleum–ethyl acetate 1:1) afforded 143 mg (60%) of **12** (R_f = 0.5) as a colorless oil.
- (18) Selected data of compound **14**: ¹H NMR (CDCl₃) : δ (ppm) 5.25 (dd, 1 H, *J* = 9.4 Hz, *J* = 9.4 Hz, H-3); 4.98 (dd, 1 H, J = 9.4 Hz, J = 5.7 Hz, H-2); 4.93 (dd, 1 H, J = 9.4 Hz, J = 9.2 Hz, H-4); 4.75 (dd, 1 H, J = 9.0 Hz, J = 10.0 Hz, H-4a); 4.52 (dd, 1 H, J = 1.0 Hz, J = 9.4 Hz, H-1a); 4.31–4.20 (m, 4 H, H-1, H-6a, H-6, H-6'); 4.12 (dd, 1 H J = 2.2 Hz, J = 12.1 Hz, H-6a'); 3.95 (m, 1 H, O-CH₂-CH₃); 3.85 (m, 1 H, H-5); 3.59-3.51 (m, 2 H, H-5a, -O-CH₂-CH₃); 2.20 (m, 1 H, H-2a_{ea}); 2.14–2.04 (m, 19 H, 6 × Ac, H-7); 1.65 (m, 2 H, H-3a, H-7'; 1.54 (m, 1 H, H-2a_{ax}); 1.23 (t, 1 H, J = 7.0 Hz, O-CH₂-CH₃). ¹³C NMR (125 MHz CDCl₃) δ (ppm): 100.74 (C-1a); 74.50 (C-5a); 72.58 (C-1); 71.70 (C-4a); 70.05 (C-2); 69.56 (C-3); 68.77 (C-5); 68.66 (C-4); 64.67 (O-CH₂-CH₃); 62.63 (C-6); 62.38 (C-6a); 37.16 (C-2a); 36.00 (C-7); 27.50 (C-3a); 20.50 (Ac); 15.00 (O-CH₂-CH₃). ESI MS: 627.3 (M + Na).
 - Selected data of compound 17: ¹H NMR (CDCl₃) : δ (ppm) 5.25 (dd, 1 H, J = 8.9 Hz, J = 8.9 Hz, H-3); 5.09 (dd, 1 H, *J* = 9.2 Hz, *J* = 5.7 Hz, H-2); 4.94 (dd, 1 H, *J* = 8.9 Hz, J = 8.9 Hz, H-4); 4.74 (dd, 1 H, J = 9.9 Hz, J = 9.9 Hz H-4a); 4.53 (d, 1 H, J = 8.1 Hz, H-1a); 4.33–4.18 (m, 4 H, H-1, H-6a, H-6, H-6'); 4.08 (dd, 1 H, *J* = 2.3 Hz, *J* = 12.1 Hz, H-6a'); $3.96 (dq, 1 H, J = 9.2 Hz, J = 7.1 Hz, O-CH_2-CH_3); 3.82 (m,$ 1 H, H-5); 3.59–3.51 (m, 2 H, H-5a, O-CH₂-CH₃); 2.17–2.02 (m, 19 H, 6 × Ac, H-2a_{eq}.); 1.99–1.87 (m, 2 H, H-7, H-3a); 1.41 (ddd, 1 H,, J = 8.1 Hz, J = 9.7 Hz, J = 12.7 Hz, H-2a_{ax}); 1.3–1.18 (m, 1 H, H-7'); 1.24 (t, 3 H, J = 7.1 Hz, -O-CH₂-CH₃). ¹³C NMR (125 MHz CDCl₃) δ (ppm) : 101.22 (C-1a); 74.51 (C-5a); 70.44 (C-4a); 69.99 (C-3); 69.90 (C-2); 69.11 (C-4); 68.60 (C-5); 68.45 (C-1); 64.66 (O-CH₂-CH₃); 62.80 (C-6a); 62.1(C-6); 35.04 (C-2a); 34.41 (C-3a); 26.57 (C-7); 20.62 (Ac), 14.94 (O-CH₂-CH₃). ESI MS: 627.3 (M + Na).
- (19) Crystallographic data for the structure 17 have been deposited with the Cambridge Crystallographic Data Centre; reference number CCDC 203383. Copies of the data can be obtained on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (E-mail: deposit@ccdc.cam.ac.u).