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This Letter describes the first report of a highly stereoselective synthesis of triethereal cyclohexanones via
copper(I) mediated 1,4-addition of organometallic reagents to glucose-derived triethereal cyclohexe-
none. The cyclohexanones generated can be reduced with modest stereoselectivity to afford a variety
of substituted inositol derivatives as potential pyranose sugar mimetics. The protocol generated a range
of substituted cyclohexanones in good yield as single stereoisomers.

© 2011 Elsevier Ltd. All rights reserved.

The stereoselective synthesis of C-glycosides has received in-
creased attention in recent years as interest has grown in the
development of selective inhibitors of glycoside transporter pro-
teins for clinical application.! The inhibition of sodium dependent
glucose cotransporter-2 (SGLT-2), a transporter protein located in
the kidney responsible for the reabsorption of glucose in the kid-
ney, has received particular consideration as potential treatment
of type Il diabetes mellitus and obesity. This interest has led to sev-
eral C-glycoside compounds, such as Dapagliflozin 1 and Canagli-
flozin 2, reaching advanced clinical trials to investigate this
mechanism (Fig. 1).2 During the investigation of the spirocyclic
SGLT-2 inhibitor 3, we became interested in the utility of inositol
carbocyclic mimics of the pyranose sugar core as SGLT-2
inhibitors.?

The proposed targets in this series were to be biaryl substituted
inositols such as 4 to emulate the activity of the pyranose system.
The ideal approach would be to introduce the aryl group at the ino-
sitol C-1 position at a late stage of the route, followed by manipu-
lation of the functionality at the inositol C-5 (Scheme 1). We
believed that we could achieve our synthetic goal by entering the
system via the known triethereal cyclohexenone 5 using 1,4-addi-
tion of organocuprate reagents.*>

The ketone of cyclohexanone 6 would then offer ample scope to
vary the functionality of the inositol C-5 position. The initial targets
in this series would be the C-5 hydroxy compounds 4 that would
require a stereoselective reduction of ketone 6.

Currently, minimal literature precedent exists for the 1,4-addi-
tion to triethereal cyclohexenones, such as 5, and no reports exist
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describing copper(l) mediated addition to this system.® The
organocuprate addition to cyclic enones is an established approach
to substituted cyclohexanones, however, the introduction of a -
oxygen function impacts the stability of the products due to elim-
ination to cyclohexenones under basic conditions or aromatization
to phenol 7.5 The inclusion of an ether group adjacent to the ke-
tone, will further increase the acidity of the ketone o-proton,
enhancing the system’s propensity to eliminate and aromatize to
a phenol (Scheme 2).5° There is no literature precedent for copper
mediated 1,4-additions to cyclohexenones with ethereal groups at

Figure 1. Recently published SGLT-2 inhibitor C-glycosides.
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Scheme 1. Synthetic approach to aryl inositol targets.
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Scheme 2. Literature precedent for 1,4-addition approach. Reagents and condi-
tions: (a) Ref. 6b; dimethylmalonate, NaH or NaOEt, THF, rt, 45 min; (b) Ref. 6a;
TBSOC(OEt)=CH,, LiClOy4, Et,0, rt, 48 h; (c) Ref. 6a; ethyl 1,3-dithiolane-2-carbox-
ylate, n-BuLi, THF, —78 to —20°C, 3 h.

both alpha- and beta-positions relative to the ketone. The stereo-
chemical outcome of the addition was also unclear. Of the two
reports detailing 1,4-addition to triethereal cyclohexenones such
as 5, one describes the anti-addition product 9 that would be antic-
ipated from addition to y-substituted enone % whereas the other
report describes a lithium perchlorate mediated syn-addition of
silyl enol ether to afford 8.5°

The prototype experiments to add aryl groups 10-5 via the gen-
eration of an organocuprate without additives at a range of tem-
peratures and stoichiometries afforded the phenol elimination
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Scheme 3. Optimization of copper(l) mediated 1,4-addition.

Table 1

Summary of copper(l) mediated addition optimization
Aryl n-Buli (equiv) Cul (equiv) T(°C)  Add (equiv) Products
10a 3 3 -20 None 7
10a 3 3 -20 TMS-Cl (3) 5
10a 3 1.5 -20 BF3-Et,0 (1) 7 (25%)

11a (25%)

10b 5 25 —78 BF3-Et,0 (2)  11b (75%)

product 7 (Scheme 3, Table 1). It is well established that certain
additives alter the outcome of organocuprate reagents.® When tri-
methylsilyl chloride was included in the reaction, we were encour-
aged to find that the reaction returned starting material 5 rather
than the phenol elimination product 7, suggesting that the condi-
tions could be effectively modulated to improve substrate stability
during the addition reaction. Indeed, it was found that the addition
of 1 equiv of boron(Ill) fluoride etherate complex to the mixture
and performing the addition at —20 °C afforded 25% conversion
to the desired cyclohexane 11a as a single stereoisomer and 25%
yield of phenol 7.8°¢ Further optimization found that performing
the reaction at —78 °C with 2.5 equiv of aryl organocuprate in the
presence of 2 equiv of boron(lll) fluoride etherate afforded cyclo-
hexane 11b in 75% yield as a single stereoisomer (Table 1). We
found that quenching the reaction by slow addition of 1 N HCl at
—78 °C was key to preventing epimerization of the inositol C-4
ethereal carbon.’

The stereochemistry of the addition products were confirmed
by NOE experiments and subsequently via the X-ray crystal struc-
ture of the 4-chlorophenyl adduct 12c (Fig. 2).

Figure 2. X-ray structure of 4-chlorophenyl adduct 12c.
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Having established conditions in hand to generate cyclohexa-
nones such as 11 in good yield as single stereoisomers, we sought
to investigate the scope of the reaction as a general method for
generating triethereal substituted cyclohexanones via this novel
methodology.

We were gratified to find that the reaction did indeed translate
to a broader application and allowed a range of organocuprates to
be added to cyclohexenone 5 ((Scheme 4), Table 2). A range of aryl
rings, with a variety of steric and electronic characteristics could be
added in good yield and as single stereoisomers 12a-121. Even the
challenging o-tolyl cuprate successfully afforded product 12h in
70% yield. Simple alkyl (methyl adduct 12i), cyclic alkyl (cyclobu-
tane adduct 12j), and t-butyl adduct 12k groups were added in
50-77% yield and as a single stereoisomer. The addition of furanyl
ester (121) suggested the potential to incorporate heterocycles
using this methodology.

With a general method for the stereoselective generation of
cyclohexanones 12a-121 in hand, attention turned to the stereose-
lective reduction of the cyclohexanone and deprotection to com-
plete the synthesis of 1-substituted-1,6-dideoxyinositols
(Scheme 5). Our approach to exploring SAR required that we
needed access to both inositol C-5 stereoisomers. The initial condi-
tions attempted were the reduction of tolyl adduct 12d with so-
dium borohydride at 0 °C to afford an inseparable 5:1 mixture of
C-5 epimers (o:13a and B:13b) in 99% yield.!!? The stereoselectiv-
ity of the reduction was improved to 8:1 a:B ratio by cooling to
—10 °C. Testing a range of alternative reducing agents did not af-
ford highly stereoselective conditions, a finding consistent with
the results reported for related carbasugar systems.!!

The stereochemical outcome of the reduction could be inverted
by the addition of cerium(III) chloride heptahydrate which gener-
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Scheme 4. Scope of copper(I) mediated addition.

Table 2
Conditions and results of copper(I) mediated additions
Entry R R’ Condition Yield (%)
12a R' H A 75
12b /©/ F B 73
12¢ a A 83
12d Me A 76
12e CO,Et C 82
12f OMe A 79
12g F A 72
R’
Me
12h D - A 70
12i Me - A 50
12§ ):I _ A 61
12k t-Bu — A 77
ﬂ\(o
121 < - D 65
o OMe

Conditions: A—commercial Grignard reagent; B—lithium/halogen exchange at
—78 °C for 1 h; C—magnesium/iodine exchange at —40 °C for 40 min (see Ref. 10);
D—magnesium/bromine exchange at —15 °C for 40 min.
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Scheme 5. Selective reduction of cyclohexanone adducts. Reagents and conditions:
(a) NaBH4, THF-MeOH, —10 °C; 13a:13b = 8:1; (b) DIBALH, THF-toluene, —78 °C;
13a:13b = 1:4 (1:12 recrystallized).
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Figure 3. X-ray structure of 1-(3-methoxyphenyl)-1,6-dideoxyinositol 15.

ated a 1:3 a::B C-5 epimer ratio in 90% yield. The addition of di-iso-
butylaluminium hydride at —78 °C and warming to 0 °C afforded a
1:4 o:p C-5 epimer ratio in 99% yield.'? The ratio of diastereoiso-
mers could be enhanced to a 1:12 ai: C-5 epimer mix by a single
recrystallization from heptanes. It has been reported by Gomez
that a hydroxyl group adjacent to the cyclohexanone carbonyl
greatly enhances the stereoselectivity in the reduction step by
affording anchimeric delivery of the borohydride reagent to the
carbonyl.''® However, in this system removal of the benzyl pro-
tecting groups from 12d resulted in epimerization of the hydroxyl
group adjacent to the ketone during the hydrogenation, and subse-
quent sodium borohydride reduction afforded a complex mixture.

The route to the 1-substituted-1,6-dideoxyinositol targets was
completed by hydrogenolysis of 13a to deprotect the hydroxyl
groups. Once the protecting groups had been removed, the diaste-
reomeric aryl inositol products could be separated either by chro-
matography or crystallization. The p-tolyl adduct 12d was
converted into p-tolyl dideoxyinositol 14 as a single isomer in
53% overall yield. This chemistry was applied to meta-methoxy ad-
duct 12f to afford crystalline product 15 that confirmed the inositol
C-5 stereochemical assignment by X-ray crystallography (Fig. 3).

In this Letter, we have demonstrated the stereoselective synthe-
sis of 1-aryl-1,6-dideoxyinositols via the first reported organocup-
rate addition of aryl groups to a triethereal cyclohexenone derived
from glucose. The highly substituted cyclohexanone provides a
useful synthon for further elaboration into carbasugar systems. In
this Letter, the novel cyclohexanone products were reduced with
modest stereoselectivity and deprotected to afford either inositol
C-5 hydroxyl stereoisomers.
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