

Il Farmaco 53 (1998) 480-493

IL FARMACO

Quinoxaline chemistry. Part 11. 3-Phenyl-2[phenoxy- and phenoxymethyl]-6(7) or 6,8substituted quinoxalines and *N*-[4-(6(7)-substituted or 6,8-disubstituted-3-phenylquinoxalin-2-yl)hydroxy or hydroxymethyl]benzoylglutamates. Synthesis and evaluation of in vitro anticancer activity and enzymatic inhibitory activity against dihydrofolate reductase and thymidylate synthase

Paola Corona^a, Gabriella Vitale^a, Mario Loriga^a, Giuseppe Paglietti^{a,*}, Maria Paola Costi^b ^a Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23, 07100 Sassari, Italy ^b Dipartimento di Scienze Farmaceutiche, Università di Modena, Via Campi 183, 41100 Modena, Italy

Received 22 April 1998; accepted 7 July 1998

Abstract

Twenty-four out of twenty-nine quinoxalines were selected at the National Cancer Institute, Bethesda, Md, USA, for in vitro anticancer screening. Among these, 10 derivatives exhibited high values of percent tumor growth inhibition at a concentration of 10^{-4} M in all cancer cell lines. Four of these compounds maintained these values at 10^{-5} M, whereas a certain number exhibited significant values of percent inhibition at the most diluted concentrations (10^{-8} – 10^{-6} M). Inhibitory activity against dihydrofolate reductase (DHFR) (bovine and rat liver) was determined for the most active compounds. This test showed that this type of quinoxaline exhibited an appreciable activity in comparison with the previously described aza analogues. In the other test (*Lactobacillus casei*, thymidylate synthase (TS), human HTS) no or poor activity was detected in both series of compounds.

Keywords: Antifolate agents; Anticancer agents; Enzyme inhibition; Dihydrofolate reductase

1. Introduction

In our research program on quinoxaline derivatives acting as in vitro anticancer compounds, we have described so far more than 120 compounds referring to the series of both classical and non-classical antifolate analogous agents of formulas 1 [1,2], 2 [3], and 3 [4] (Fig. 1).

The basis of this project was to establish that the quinoxaline ring might replace the pteridine nucleus in methotrexate (MTX) or quinazoline analogues of trimetrexate (TMT) and 5,8-dideazafolic acids on the grounds that the pyrimidine moiety may be substituted with a benzene ring bearing a trifluoromethyl or an amino group, or both, able to increase the affinity for dihydrofolate reductase (DHFR) or thymidylate synthase (TS) enzymes. Moreover, the pyrazine moiety could allocate hindering groups (methyl, phenyl, ethoxycarbonyl) at position 3 and in C-2 a substituted aniline 1, a substituted benzylamine 2 or p-aminobenzoylglutamate 3 to modulate biological interaction. On the other hand, by reversing these substituents on position 6 of the quinoxaline ring, we could obtain quinoxaline isosteric analogues of TMT and 5,8-dideazafolic acids. In these cases we have examined either the methylanilino derivatives (4, 5; Z=NH, N-propargyl) [5] or the phenoxymethyl derivatives (4, 5; Z=0)[6] (Fig. 1) and we have found a great number of derivatives endowed with tumor cell-line sensitivity and percent tumor growth inhibition activity between concentrations of 10^{-4} and 10^{-5} M. Examples of 2-arylquinoxalines supporting their employment in the treatment of tumors were recently described in a patent [7]. Our results of in vitro anticancer activity were very encouraging but no evidence of the suggested antifolate activity had so far been established. Thus

^{*} Corresponding author. Tel.: +39 79-22 87 19; fax: +39 79-22 87 20; e-mail: chimfarm@ssmain.uniss.it

⁰⁰¹⁴⁻⁸²⁷X/98/\$ - see front matter © 1998 Elsevier Science S.A. All rights reserved. *PII* S0014-827X(98)00054-8

Y=Cl; OMe; NH₂; Z=NH; N=CH₂=C=:CH; O X=Ph; OMe; Cl; R¹=H, Cl; OMe; R²=OMe; Cl; F; CO₂Et; CO₂H; R³=H; OMe Fig. 1.

Y-Cl; OMe; NH₂; Z-NH; N−CH₂−−C≡CH; O X=Ph; OMe; Cl; R=Et; H

we have preliminarily investigated the inhibition of the above-mentioned enzymes from the previously described compounds $\mathbf{a}-\mathbf{i}$ (Table 1) and the results seem now to confirm the grounds for our original assumption.

This prompted us to continue this investigation and in the present paper we have further considered the effect of isosteric replacement of the NH group with oxygen in compounds **6-20** and in some homologues (21-27) as well as in those with both *O*-benzoylglutamate (28-32) and methyl-*O*-benzoylglutamate (33-34) in C-2 depicted in Fig. 2.

2. Chemistry

The preparation of the desired compounds was accomplished according to the reactions depicted in Scheme 1.

The chloroquinoxalines 35a-c and bromomethylquinoxaline 35d were reacted with the substituted phenols 36 in DMF to give compounds 6-26 in good yields. The acid 27 was obtained in 82% yield on saponification of the ester 26. On the contrary, the attempts at saponification of the ester 17produced quinoxalinone 38 (50% yield) accompanied by its

Table 1

Enzymatic inhibition shown by compounds a-i against LcTS, HTS and DHFR at the indicated concentration

Comp. [Ref.]	х	R	R ¹	R ²	R ³	Conc. ^a (µM)	LcTS	HTS	DHFR (bovine) IC ₅₀
a [1]	NH	Ph	6-CF ₃	н	3',4',5'-trimethoxyphenyl	32.8	NI	NI	NI
b [1]	NH	Ph	6-CF ₃	NH ₂	3',4',5'-trimethoxyphenyl	10	NI	NI	NI
c [3]	NH-CH ₂	Ph	6-CF ₃	Н	3', 4', 5'-trimethoxyphenyl	6.83	NI	NI	NI
d [4]	NH	Н	6-CF ₃	Н	<i>p</i> -benzoylglutamate diethyl ester	10	NI	NI	NI
e [4]	NH	н	6-CF ₃	Н	<i>p</i> -benzoylglutamic acid	300	NI	NI	151
f [4]	NH	CO ₂ Et	Н	Н	<i>p</i> -benzoylglutamate diethyl ester	-	-	-	114.23
g [4]	NH	CO ₂ H	н	н	p-benzoylglutamic acid	_	-		93.8
h [4]	NH	CO ₂ Et	7-CF ₃	Н	<i>p</i> -benzoylglutamate diethyl ester	-	-	-	108.4
i [4]	NH	CO ₂ H	7-CF ₃	н	p-benzoylglutamic acid	-	-	-	95.5

^a Maximal concentration used corresponding to the solubility limit.

NI, no inhibition; -, not determined.

Compd	X	R	R ¹	R ²	R ³	R ⁴
6	0	Н	; H	OMe	OMe	ОМе
7	0	Н	H	OMe	H	OMe
8	0	H	H	Н	OMe	H
9	0	H	H	Н	CN	H
10	0	H	H	Н	F	H
11	0	H	Н	H	CO ₂ Me	H
12	0	6-CF3	H	OMe	ОМе	OMe
13	0	6-CF3	H	OMe	Н	OMe
14	0	6-CF3	H	H	OMe	H
15 -	0	6-CF3	H	н	CN	H
16	0	6-CF3	H	H	F	H
17	0	6-CF3	H	H	CO ₂ Me	H
18	0	6-CF3	NH2	OMe	OMe	OMe
19	0	6-CF3	NH2	ОМе	H	OMe
20	0	6-CF3	NH ₂	Н	OMe	H
21	CH ₂ O	7-CF3	H	OMe	OMe	OMe
22	CH ₂ O	7-CF3	H	OMe	H	OMe
23	CH ₂ O	7-CF3	H	H	OMe	H
24	CH ₂ O	7-CF3	H	Н	CN	Н
25	CH ₂ O	7-CF3	H	н	F	H
26	CH ₂ O	7-CF3	H	Н	CO ₂ Me	Н
27	CH ₂ O	7-CF3	H	H	COOH	H

Compd	X	R	R ¹	R ²
28	0	H	Н	Et
29	0	6-CF3	Н	Et
30	0	H	Н	H
31	. 0	6-CF3	NH ₂	Et
32	0	6-CF3	NH2	H
33	CH ₂ O	7-CF3	H	Et
34	CH ₂ O	7-CF3	H	H

2-ethoxy derivative 39 (45% yield), thus indicating a displacement of the substituted phenol moiety. Reaction of the intermediates 35a,b,c with the purposely prepared p-hydroxybenzoylglutamate diethyl ester 37 gave the expected esters 28, 29 and 31 in good yield (Table 2), whereas to obtain the ester 33 we submitted compound 27 to reaction with diethyl L-glutamate hydrochloride in dimethylformamide and in the presence of diethylcyanophosphonate at room temperature. Saponification of the esters 28, 31 and 33 gave the corresponding acids 30, 32 and 34, while in the case of compound 29 displacement of p-hydroxybenzoylglutamate took place, giving rise to the above-mentioned compound 38 (20% yield), whereas compound 39 (74% yield) was dominant. According to the different results obtained during saponification of compounds 26, 28 and 33 in comparison with those coming from compounds 17 and 29, it is reasonable to think that the trifluoromethyl group in position 6 plays a certain role in activating the nucleophilic displacement of the phenol derivative at position 2 since in the case of compounds 26, 28 and 33 this behaviour was not observed. An explanation for this can be supported by an additional elimination mechanism of both the ethoxide and hydroxylic anions at C-2 that rather resembles a cyclic iminoether easily undergoing hydrolysis, whereas an attack on the ester carbonyl is disfavoured (Scheme 2), the influence of the trifluoromethyl group being without effect when a concomitant NH_2 substituent was present at position 8 or when the phenol moiety was bound to a methylene bridge. In contrast, as the reaction was

Scheme 1. i: DMF, CsCO₃, 70°C, 6 or 13 h; ii: DMF, CsHCO₃, 70°C, 2 h; iii: EtOH, 1 M NaOH; iv: DMF, (EtO)₂POCN, TEA, r.t., 2 h.

carried out only in aqueous alkaline medium, we recovered the starting material.

The bromomethylquinoxaline **35d** is a new compound and it has been obtained by bromination in acetic acid of the known quinoxaline **40** [8] along with 10% of the dibromo derivative **41** according to Scheme 3.

3. Experimental

3.1. Chemistry

Melting points are uncorrected and were recorded on a Kofler or an electrothermal melting point apparatus. UV spectra are qualitative and were recorded in nm for solutions in ethanol with a Perkin-Elmer Lambda 5 spectrophotometer. IR spectra are for nujol mulls and were recorded on Perkin-Elmer 781 instruments. ¹H NMR spectra were recorded at 200 MHz with a Varian XL-200 instrument using TMS as internal standard. Elemental analyses were performed at the Laboratorio di Microanalisi, Dipartimento di Scienze Farmaceutiche, University of Padua, Italy. The analytical results for C, H, and N were within $\pm 0.4\%$ of the theoretical values.

3.1.1. Intermediates

The chloroquinoxalines 35b,c have been prepared as previously described in a recent paper [1]. The chloroquinoxaline 35a [9] and *p*-hydroxybenzoylglutamate 37 [10] were prepared according to the procedures described in the literature cited. The monobromo 35d and dibromomethylquinoxaline 41 are new compounds and are reported for the first time as described below.

3.1.1.1. 3-Phenyl-7-trifluoromethyl-2-bromomethylquinoxaline **35d** and **41**

Bromine (1.1 g, 6.9 mmol) in acetic acid (4 ml) was added dropwise (10 min), at 20°C, to a vigorously stirred mixture of 3-phenyl-7-trifluoromethyl-2-methylquinoxaline **40**, prepared as described [8] (2 g, 6.9 mmol), and 0.48 g of sodium acetate in acetic acid (40 ml). Then the mixture was heated at 100°C for an additional 30 min under stirring. After cooling the resulting solution was evaporated in vacuo and the redorange oily residue was taken up with chloroform. An inorganic product was removed by filtration and the mother liquors, dried over anhydrous sodium sulfate, were evaporated to dryness. The solid residue was purified by flash chromatography on a silica gel column eluting with a mixture of ethyl acetate/petrol ether (b.p. 40–60°C) in the ratio 98:2.

	2
	compounds of Fig. 2
	lata of the
	¹ H NMR) 6
	(IR, UV,
	ields analytical and spectroscopic
Table 2	Melting points, yi

Comp.	M.p. (°C) *	Yield (%)	Analysis for	IR (nujol) $ u_{\rm max} ({\rm cm}^{-1}) $	UV (EtOH) λ _{max} (nm)	¹ H NMR, $\delta_{\rm H}$ Solvent: [A] = CDCl ₃ , [B] = CDCl ₃ :DMSO-d ₆ (3:1)
v e	128–129 (a)	72	C ₂₃ H ₂₀ N ₂ O ₄		344, 243 205	[A] 8.26–8.10 (3H, m, arom.), 7.85–7.78 (1H, m, arom.), 7.66– 7.52 (5H, m, arom.), 6.53 (2H, s, H-2', 6'), 3.89 (3H, s, 4'-OMe),
٢	84-85 (a)	85	C ₂₂ H ₁₈ N ₂ O ₃	·	342, 242, 204	3.84 (6H, s, 3',5'-OMe) [A] 8.25-8.05 (3H, m, arom.), 7.85-7.75 (1H, m. arom.), 7.68- 7.60 (2H, m, H-2",6"), 7.56-7.48 (3H, m, H-3",4",5"), 6.58-6.36
30	137–138 (a)	88	$C_{2l}H_{16}N_2O_2$		340, 240, 204	(3H, m, H-2', 4', 6'), 3.80 (6H, s, 3,5-OMe) [A] 8.27–8.20 (2H, m, H-2", 6"), 8.15–8.08 (1H, m, arom.), 7.78– 7.72 (1H, m, arom.), 7.63–7.58 (3H, m, H-3", 4", 5"), 7.55–7.51
Ø	145-147 (a)	83	C ₂₁ H ₁₃ N ₃ O	2220	338, 245, 203	(ZH, m, arom.), 7.20 (ZH, d, J = 9.2 HZ, H-Z', b'), 6.98 (ZH, d, J = 9.0 HZ, H-3', 5'), 3.86 (3H, s, 4'-OMe) [A] 8.20-8.12 (2H, m, arom.), 7.90-7.55 (4H, m, arom.), 7.72 (2H, d, J = 8.4 HZ, H-2', 6'), 7.56-7.50 (3H, m, H-3", 4", 5"), 7.42
10	134–135 (a)	95	C ₂₀ H ₁₃ FN ₂ O		331, 239, 205	(2H, d, <i>J</i> = 8.8 Hz, H-3',5') [A] 8.28–8.22 (2H, m, arom.), 8.18–8.10 (1H, m, arom.), 7.80– 7.73 (1H, m, arom.), 7.68–7.62 (2H, m, H-2",6"), 7.62–7.52 (3H,
11	119-120 (a)	67	C ₂₂ H ₁₆ N ₂ O ₃	1720	339, 245, 203	m, H-3",4",5"), 7.30–7.10 (4H, m, H-2',3',5',6') [A] 8.23–8.12 (3H, m, arom.), 8.15 (2H, d, <i>J</i> = 8.8 Hz, H-2',6'), 7.78–7.63 (4H, m, arom.), 7.58–7.50 (2H, m, arom.), 7.35 (2H,
12	180-182 (a)	86	C ₁₄ H ₁₈ F ₃ N ₂ O ₄		340, 242, 205	d, $J = 8.6$ Hz, H-3',5'), 3.95 (3H, s, COOMe) [A] 8.43 (1H, d, $J_{5.7} = 1.8$ Hz, H-5), 8.27–8.20 (2H, m, H-2",6"), 7.90 (1H, d, $J_{8.7} = 8.6$ Hz, H-8), 7.82 (1H, dd, $J_{7.8} = 8.4$ and
13	92-94 (a)	76	C ₂₃ H ₁₇ F ₃ N ₂ O ₃		340, 244, 204, 203	$J_{7,5} = 1.0 \text{ mJ}, 1.7.7 / .7.37 / .1.1 (3.04, m, n-2, e, z) , 022 (2.04, s, n-2) / 2.6(2), 3.30 (314, s, 4'-OMe), 3.86 (614, s, 3',5'-OMe) / 2.6(114, d, J_{5,7} = 1.8 \text{ Hz}, \text{H-5}, 8.26-8.21 (214, m, H-2",6"), 7.89 (114, d, J_{8,7} = 8.6 \text{ Hz}, \text{H-5}, 7.31 (114, d, J_{7,8} = 8.6 \text{ And} / J_{10} = 1.9 \text{ Lm}, \text{H-2}, 7.40 (114, d, J_{7,8} = 8.6 \text{ And} / J_{10} = 1.9 \text{ Lm}, \text{H-2} / J_{10} = 1.0 \text{ Lm}, \text{H-2} / J_$
14	115-116 (a)	86	$C_{22}H_{15}F_3N_2O_2$		339, 243, 222, 205	$ \begin{bmatrix} A_{13} & A_{12} & A_{13} $
15	113-115 (a)	87	$C_{22}H_{12}F_3N_3O$	2220	338, 244, 223, 203	3.87 (3H, s, 4'-OMe) [A] 8.45 (1H, d, J _{5.7} – 1.8 Hz, H-5), 8.23–8.18 (2H, m, H-2",6"), 7.85–7.81 (2H, m, H-7,8), 7.80 (2H, d, J = 8.6 Hz, H-2'6'), 7.59–
16	121–122 (a)	83	C ₂₁ H ₁₂ F4N ₂ O		339, 241, 205	7.56 (3H, m, H-3",4",5"), 7.43 (2H, d, J = 8.6 Hz, H-3',5') [A] 8.43 (1H, d, J _{5,7} = 1.8 Hz, H-5), 8.26–8.21 (2H, m, H-2",6"), 7.88–7.76 (2H, as, H-7,8), 7.58–7.55 (3H, m, H-3",4",5"), 7.29–
17	123-125 (a)	73	C ₂₃ H ₁ ,F ₃ N ₂ O ₃	1720	324, 230, 206	7.12 (4H, m, H-2', 3', 5', 6') [A] 8.43 (1H, d, <i>J</i> _{5,7} = 1.8 Hz, H-5), 8.36–8.20 (2H, m, H-2", 6"), 8.17 (2H, d, <i>J</i> = 8.6 Hz, H-2', 6'), 7.85–7.76 (2H, m, H-7,8), 7.60–7.50 (3H, m, H-3", 4", 5"), 7.36 (2H, d, <i>J</i> = 8.6 Hz, H-3', 5'), 3.95 (3H, s, OMe)

Comp.	M.p. (°C) ª	Yield (%)	Analysis for	IR (nujol) v _{max} (cm ⁻¹)	UV (EtOH) λ _{max} (nm)	¹ H NMR, δ_{H} Solvent: [A] = CDCl ₃ , [B] = CDCl ₃ :DMSO-d ₆ (3:1)
81	198-199 (a)	56	$C_{24}H_{20}F_3N_3O_4$	3480, 3350	348, 288, 206	[A] $8.27-8.22$ (2H, m, H-2", 6"), $7.57-7.54$ (3H, m, H-3", 4", 5"), 7.39 (1H, d, $J_{5,7} = 1.6$ Hz, H-5), 6.96 (1H, d, $J_{7,5} = 1.6$ Hz, H-7), 6.50 (2H, s, H-2'6'), 5.19 (2H, s, NH ₂ °), 3.90 (3H, s, 4'-OME), 3.65 (2H, 2, 5', 6'), 5.19 (2H, 5, NH ₂ °), 3.90 (3H, s, 4'-OME),
19	195-196 (a)	95	C ₂₃ H ₁₈ F ₃ N ₃ O ₃	3500, 3415	345, 294, 227, 204	5.65 (604, 8, 5, 5, -0M6) [A] 8.24–8.21 (2H, m, H-2",6"), 7.55–7.52 (3H, m, H-3",4",5"), 7.41 (1H, d, $J_{5,7} = 1.6$ Hz, H-5), 6.95 (1H, d, $J_{7,5} = 1.6$ Hz, H-7), 6.46–6.42 (3H, m, H-2',4',6'), 5.17 (2H, s, NH ₂ [°]), 3.80 (6H, s,
20	102-103 (a)	40	C ₂₂ H ₁₆ F ₃ N ₃ O ₂	3490, 3390	346, 290, 227, 202	5.2 - -0 Me) [A] 8.27-8.24 (2H, m, H-2",6"), 7.55-7.52 (3H, m, H-3",4",5"), 7.33 (1H, d, $J_{5,7} = 1.6$ Hz, H-5), 7.18 (2H, d, $J = 9.0$ Hz, H-2',6'), 6.97 (2H, d, $J = 9.0$ Hz, H-3',5'), 6.29 (1H, d, $J_{7,5} = 1.6$ Hz, H-7),
21	119-120 (a)	41	C ₂₅ H ₂₁ F ₃ N ₂ O ₄		326, 238, 206	5.15 (2H, s, 8-NH ₂ ⁻¹), 3.85 (3H, s, 4 ⁻¹ OMe) [A] 8.50 (1H, d, $J_{8,6} = 2.0$ Hz, H-8), 8.31 (1H, d, $J_{5,6} = 8.8$ Hz, H- 5), 7.99 (1H, dd, $J_{6,5} = 8.8$ and $J_{6,8} = 2.0$ Hz, H-6), 7.86 (2H, m, H-2", 6"), 7.60–7.55 (3H, m, H-3", 4", 5"), 6.19 (2H, s, H-2', 6'), 5.33 (2H, s, CH ₂), 3.80 (6H, s, 3', 5'-OMe), 3.78 (3H, s, 4'-
52	67-68 (a)	40	C ₂₄ H ₁₉ F ₃ N ₂ O ₃		325, 237, 205	Conc. [A] $8.52 (1H, d, J_{s,6} = 2.0 Hz, H-8), 8.30 (1H, d, J_{s,6} = 8.6 Hz, H-5), 7.98 (1H, dd, J_{s,5} = 8.8 and J_{s,8} = 2.0 Hz, H-6), 7.80-7.75 (2H, m, H-2,"6), 7.54-7.51 (3H, m, H-3,"4,"5), 6.20-6.11 (3H, m, H-2,"6), 7.55 (2H, m, H-2,"7,"5), 7.55 (2H$
23	94-95 (b)	55	C ₂₃ H ₁₇ F ₃ N ₂ O ₂		325, 237, 204	$_{2}$, $_{3}$, $_{9}$, $_{1,2,20}$ ($_{211}$, $_{8}$, $_{212}$), $_{2,12}$, $_{011}$, $_{5,2}$, $_{2}$, $_{011}$, $_{5,5}$, $_{210}$, $_{111}$, $_{4}$, $_{4,5}$, $_{5,6}$, $_{201}$, $_{112}$, $_{121}$, $_{121}$, $_{121}$, $_{121}$, $_{121}$, $_{122}$, $_{111}$, $_{122}$, $_{121}$, $_{121}$, $_{122}$, $_{121}$, $_{122}$, $_{121}$, $_{122}$, $_{121}$, $_{122}$, $_{121}$, $_{122}$, $_{121}$, $_{122}$, $_$
24	108–109 (b)	42	C ₂₃ H ₁₄ F ₃ N ₃ O ₃	2216	324, 241, 204	HZ, H-2, $(5, 4, 5)$, $(5, 2.0, 12)$, $(241, 5, 142)$, $(541, 5, 1006)$ [A] 8.49 (1H, d, $J_{8,6} = 2.0$ HZ, H-8), 8.31 (1H, d, $J_{5,6} = 8.8$ HZ, H-5), 8.00 (1H, dd, $J_{6,5} = 8.8$ and $J_{6,8} = 2.0$ HZ, H-6), $7.78-7.72$ (2H, m, H-2',6''), 7.58 (2H, d, $J = 8.8$ HZ, H-2',6''), $7.56-7.50$ (3H, m,
25	61-63 (a)	47	$C_{22}H_{14}F_4N_2O$		325, 237, 206	H-3', 4', 5''), 6.99 (2H, d, $J = 8.8$ Hz, H-3', 5'), 7.41 (2H, s, CH ₂) [A] 8.51 (1H, d, $J_{8,6} = 1.8$ Hz, H-8), 8.33 (1H, d, $J_{5,6} = 9.0$ Hz, H- 5), 7.99 (1H, dd, $J_{6,5} = 9.0$ and $J_{6,8} = 1.8$ Hz, H-6), 7.85–7.63 (2H, m, H-2', 6''), 7.62–7.50 (3H, m, H-3', 4'', 5''), 7.03–6.79 (4H, m, H-
26	96-96 (a)	62	C24H17F3N2O3	1720	327, 239, 205	[A 2, 5, 5, 0, 5, 5, 1, (2H, 5, CH2) [A] 8.50 (1H, d, $J_{8,6} = 1.8$ Hz, H-8), 8.30 (1H, d, $J = 5.6$ Hz, H- 5), 7.98 (3H, d, $J = 9.0$ Hz, H-2, $6'$ + H-6 obscured), 7.78–7.73 (2H, m, H-2", $6''$), 7.53–7.50 (3H, m, H-3", $4',5''$), 6.95 (2H, d,
27	207-208 (a)	73	C ₂₃ H ₁₅ F ₃ N ₂ O ₃	1690	325, 239, 204	$J = 9.0 \text{ Hz}, \text{ H-5}, J^{\circ}$), $J = 40 (\text{ ZH}, \text{s}, \text{CH}_2)$, $J_{3.68}$ ($3\text{ H}, \text{s}, \text{COOMe}$) [A] 8.51 ($1\text{H}, d, J_{8.6} = 1.8 \text{ Hz}, \text{H-8}$), $8.32 (1\text{H}, d, J_{5.6} = 8.4 \text{ Hz}, \text{H-5})$, $8.05 (2\text{H}, d, J = 8.4 \text{ Hz}, \text{H-2}', 6'$), $8.01 (1\text{H}, dd^{\circ}, J = 8.4 \text{ and}$ $1.8 \text{ Hz}, \text{H-6}$), $7.84-7.70 (2\text{H}, \text{m}, \text{H-2}', 6'')$, $7.60-7.48 (3\text{H}, \text{m}, \text{H-3}'', 4'', 5'')$, $6.98 (2\text{H}, d, J = 8.4 \text{ Hz}, \text{H-3}', 5')$, $5.43 (2\text{H}, \text{s}, \text{CH}_3)$

Table 2 (continued)

Table 2 (cont.	inued)					
Comp.	M.p. (°C) *	Yield (%)	Analysis for	IR (nujol) ν _{max} (cm ⁻¹)	UV (ΕίΟΗ) λ _{max} (nm)	¹ H NMR, δ_{H} Solvent: [A] = CDCl ₃ , [B] = CDCl ₃ :DMSO-d ₆ (3:1)
38	148-149 (a)	μ	C ₃₀ H ₂₉ N ₃ O ₆	3220, 1755, 1730, 1640	341, 247, 204	[A] 8.23–8.10 (2H, m, arom.), 7.94 (2H, d, J =8.6 Hz, H-2', 6'), 7.77–7.60 (4H, m, H-2", 6' + 2H arom.), 7.60–7.50 (3H, m, H- 3", 4", 5"), 7.36 (2H, d, J =8.6 Hz, H-3', 5'), 7.14 (1H, d, J =7.2 Hz, NHCH °), 4.88–4.76 (1H, m, CH ₂ CH–NH), 4.26 (2H, q, CH ₂ CH ₃), 4.13 (2H, q, CH ₂ CH ₃), 2.54–2.06 (4H, m, CH ₂ CH ₃), 1.37 (2H, CH ₂ CH ₂), 1.34 (3H, CH ₂ CH)
53	174-175 (a)	1	C ₃₁ H ₂₈ F ₃ N ₃ O ₆	3300, 1740, 1640	339, 244, 222, 204	[A) $(24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25$
30	203–204 (a)	82	C ₂₆ H ₂₁ N ₃ O ₆	3300, 1720, 1700, 1635	340, 246, 204	[B] 8.27–8.10 (4H, m, arom.), 8.03 (2H, d, J = 8.4 Hz, H-2, 6'), 7.76–7.63 (3H, m, arom.), 7.63–7.52 (2H, m, arom.), 7.35 (2H, d, J = 8.4 Hz, H-3',5'), 4.78–4.60 (1H, m, NHCHCH ₂), 4.35 (3H, brs. 2 - COOH °), 2.65–2.06 (4H, m. CH-CH ₂)CH
31	145-146 (c)	57	C ₃₁ H ₂₉ F ₃ N₄O ₆	3480, 3380, 3280, 1740	344, 295, 242, 203	[A] $8.26-8.20$ (2H, m, $2',6'$), 7.95 (2H, d, $J=8.8$ Hz, H-2',6'), 7.57-7.53 (3H, m, H-3",4",5"), 7.35 (2H, d, $J=8.8$ Hz, H-3',5'), 7.33 (1H, d obscured, H-7), 7.13 (1H, d, $J=7.4$ Hz, NH [°]), 6.96 (1H, d, $J_{7,5}=1.8$ Hz, H-7), 5.21 (2H, s, NH ₂ [°]), 4.84 (1H, m, NHCHCH ₂), 4.26 (2H, q, CH ₂ CH ₃), 4.14 (2H, q, CH ₂ CH ₃), 2.60-2.10 (4H, m, CH ₂ CH ₂), 1.32 (3H, t, CH ₃ CH ₂), 1.25 (3H, t, CH ₂ CH ₂)
32	225-227 (d)	83	$\mathbf{C}_{27}\mathbf{H}_{21}\mathbf{F}_{3}\mathbf{N}_{4}\mathbf{O}_{6}$	3400, 3300, 1740, 1640	345, 295, 243, 203	[B] 8.31–8.24 (3H, m, H-2",6" + NH °), 8.04 (2H, d, J=8.4 Hz, H-2',6'), 7.60–7.55 (3H, m, H-3",4",5"), 7.34 (2H, d, J=8.4 Hz, H-3',5'), 7.12 (1H, s, H-5), 7.02 (1H, s, H-7), 5.80 (2H, brs, NH ₂ °), 4.73–4.60 (1H, m, CH), 4.05 (2H, brs, 2 · COOH °), 2.60–2.10 (4H, m, CH,CH,)
33	(9) 0668	81	C ₃₂ H ₃₀ F ₃ N ₃ O ₆	3290, 1730, 1640	325, 239, 204	[A] 8.50 (1H, d, $J_{8,6} = 2.0$ Hz, H-8), 8.30 (1H, d, $J_{5,6} = 8.6$ Hz, H- 5), 7.99 (1H, dd, $J_{8,5} = 8.6$ and $J_{6,8} = 2.0$ Hz, H-6), 7.86-7.75 (2H, m, H-2",6"), 7.77 (2H, d, J = 8.4 Hz, H-2',6'), 7.60-7.52 (3H, m, H-3",4",5"), 7.00 (1H, d ^b , CHNH ²), 6.96 (2H, d, J = 8.4 Hz, H- 3',5'), 5.40 (2H, s, CH ₂), 4.87-4.75 (1H, m, CH ₂ CHNH), 4.23 (2H, q, CH ₂ , 4.1), 4.30 (3H, t, CH ₂ CH ₃), 2.61-2.06 (4H, m, CH ₂ CH, q, CH), 4.30 (3H, t, CH ₂ CH ₃), 1.6 (3H, t, CH ₂ CH), m
ह	146–150 (d)	83	C ₂₈ H ₂₂ F ₃ N ₅ O ₆	3310, 1720, 1690, 1640	325, 239, 205	[B] 8.49 (1H, d, $J_{8,6} = 2.0$ Hz, H-8), 8.32 (1H, d, $J_{5,6} = 8.8$ Hz, H- 5), 8.01 (H, dd, $J_{6,5} = 8.8$ and $J_{6,8} = 2.0$ Hz, H-6), 7.83 (2H, d, J = 8.8 Hz, H-2',6'), 7.83–7.74 (2H, m, H-2",6'), 7.65 (1H, d, J = 6.8 Hz, NHCH °), 7.57–7.50 (3H, m, H-3",4",5"), 6.95 (2H, d, J = 8.8 Hz, H-3',5'), 5.41 (2H, s, CH ₂), 4.74–4.60 (1H, m, CH ₂ CHNH), 2.62–2.05 (4H, m, CH ₂ CH ₂)

486

The most mobile fraction gave on evaporation compound **41** (0.3 g, 10% yield), m.p. 121–122°C.

Anal. $(C_{16}H_9Br_2F_3N_2)$ C, H, N; UV: 332, 243, 205. ¹H NMR (CDCl₃): δ 8.62 (1H, d, $J_{8,7}$ = 1.8 Hz, H-8), 8.28 (1H, d, $J_{5,6}$ = 9.0 Hz, H-5), 8.10 (1H, dd, $J_{6,5}$ = 9.0 and $J_{6,8}$ = 1.8 Hz, H-6), 7.76–7.68 (2H, m, H-2',6'), 7.68–7.58 (3H, m, H-3',4',5'), 6.97 (1H, s, CHBr₂).

The successive fractions gave an evaporation compound **35d** (1.65 g, 65% yield), m.p. 131–133°C from ethanol.

Anal. $(C_{16}H_{10}BrF_{3}N_{2})$ C, H, N; UV: 328, 241, 206. ¹H NMR (CDCl₃): δ 8.46 (1H, d, $J_{8,7}$ = 1.8 Hz, H-8), 8.26 (1H, d, $J_{5,6}$ = 8.8 Hz, H-5), 7.96 (1H, dd, $J_{6,5}$ = 8.8 and $J_{6,8}$ = 1.8 Hz, H-6), 7.82–7.77 (2H, m, H-2',6'), 7.63–7.54 (3H, m, H-3',4',5'), 4.77 (2H, s, CH₂Br).

3.1.2. General procedure for preparation of the 2-phenoxy and 2-phenoxymethylquinoxalines 6–26

A mixture of equimolar amounts (1 mmol) of 2-chloroquinoxalines 35a-c or 2-bromoethylquinoxaline 35d and the corresponding substituted phenol (Fig. 2) in anhydrous DMF (15 ml) in the presence of one mole equivalent of caesium carbonate was stirred at 70°C for 13 h (6-20) or 6 h (21-25). In the case of compound 26, caesium hydrogencarbonate was used and the mixture heated at 70°C for 2 h. After cooling, water was added to complete precipitation of solids (6-18, 20, 23) which were collected and washed with water and eventually dried. Compounds 19, 21, 22 and 24-26 separated as oils and were extracted with ether or chloroform. The organic phase, dried over anhydrous sodium sulfate and evaporated in vacuo, gave solid compounds. Purification methods, yields, melting points, analytical and spectroscopic data are reported in Table 2.

3.1.3. 4-(3-Phenyl-7-trifluoromethylquinoxalin-2-yl) methoxybenzoic acid 27

A suspension of the ester 26 (0.44 g, 1 mmol) in a mixture of ethanol (12 ml) and 1 M NaOH aqueous solution (6 ml), was stirred at 70°C for 4 h. The clear solution which formed after evaporation of the solvent was diluted with water and made acidic with 2 M HCl aqueous solution. A cream coloured solid precipitated which was first washed with water, then recrystallized from ethanol. Yields, melting points, analytical and spectroscopic data are reported in Table 2.

3.1.4. Attempts at saponification of the esters **17** and **29**, formation of 2-ethoxy-3-phenyl-6-trifluoromethylquinoxaline **39** and 3-phenyl-6-trifluoromethylquinoxalinyl-1H-2-one **38**

(i) A suspension of the ester 17 (0.6 g, 1.4 mmol) in a mixture of EtOH (30 ml), water (20 ml) and 1 M NaOH aqueous solution (6 ml) was heated at 70–75°C under stirring for 24 h. On cooling, a white product was filtered off and thoroughly washed with water to give compound 39 (0.2 g, 45% yield), m.p. 114–116°C.

Anal. $(C_{17}H_{13}F_{3}N_{2}O)$ C, H, N; UV: 338, 288, 238, 212, 205. ¹H NMR (CDCl₃): δ 8.37 (1H, s, H-5), 8.17–8.12 (2H, m, H-2',6') 7.93 (1H, d, J=8.6 Hz, H-8), 7.82 (1H, dd, J=8.6 and 1.8 Hz, H-7), 7.54–7.50 (3H, m, H-3',4',5'), 4.66 (2H, q, CH₂–CH₃), 1.52 (3H, t, CH₂–CH₃).

The mother liquor, on acidification with 1 M HCl aqueous solution, formed a precipitate which after filtration gave compound **38** (0.29 g, 50% yield), identical with an authentic specimen previously described [10].

(ii) A suspension of the ester **29** (0.25 g) was treated with a mixture of EtOH (4 ml) and 1 M NaOH aqueous solution (3 ml) at room temperature for 10 h. The work-up of the mixture gave compounds **39** (0.1 g, 74% yield) and **38** (0.03 g, 20% yield), identical with the above-described samples.

3.1.5. General procedure for preparation of compounds 28, 29, 31 and 33

(i) A mixture of equimolar amounts (1 mmol) of 35a,b,cand diethyl 4-hydroxy-benzoyl-L-glutamate, dissolved in anhydrous DMF (10–15 ml) and in the presence of one mole equivalent of caesium carbonate, was stirred at room temperature for 13 h. Then it was diluted with water and the precipitates which formed were collected and washed with water. The white products (28, 29, 31) were further purified by recrystallization from ethanol. Yields, melting points, analytical and spectroscopic data are reported in Table 2.

(ii) Diethyl cyanophosphonate (0.125 g, 0.77 mmol) in DMF (3 ml) and TEA (0.15 g, 1.48 mmol) in DMF (3 ml)

were added under a continuous stream of nitrogen to a mixture of **27** (0.3 g, 0.71 mmol) and diethyl-L-glutamate hydrochloride (0.185 g, 0.77 mmol) in DMF (12 ml). The mixture was stirred for 4 h and then poured onto a mixture (3:1 ratio) of ethyl acetate and benzene (40 ml). The organic phase was washed, in order, with water (50 ml), saturated sodium carbonate solution (60 ml), water (50 ml), and saturated sodium chloride solution (60 ml) and eventually dried over anhydrous sodium sulfate. On evaporation, compound **33** was obtained as a solid and purified as indicated in Table 2, which also reports yields, melting points, analytical and spectroscopic data.

3.1.6. General procedure for preparation of the acids 30, 32, 34

A suspension of ester (28, 31, 33) (0.8 mmol) in a mixture of ethanol (8 ml) and 1 M NaOH aqueous solution (5 ml) was stirred at room temperature for 5 h. On evaporation of the solvent, the mixture was taken up with water and made acidic with 2 M HCl aqueous solution. The pale yellow solids formed (30, 32, 34) were collected and washed with water then recrystallized by the solvent indicated in Table 2, which also reports yields, melting points, analytical and spectroscopic data.

3.2. Pharmacology

Evaluation of anticancer and anti-HIV activity was performed on 24 out of the 29 compounds referring to structures 9, 10, 12-31, 33, 34 of Fig. 2 and Scheme 1 at the National Cancer Institute (NCI), Bethesda, Md, USA, following the well-known [11] in vitro disease-oriented antitumor screening program against a panel of 60 human tumor cell lines and the anti-HIV drug testing system [12]. No compounds exhibited anti-HIV activity. The anticancer activity of each compound is deduced from dose-response curves and is presented in three different tables according to the data provided by NCl. In Table 3 the response parameters GI_{50} , TGI and LC_{50} refer to the concentration of the agents in the assay that produced 50% growth inhibition, total growth inhibition, and 50% cytotoxicity, respectively, and are expressed as mean graph midpoints. In Table 4 we report the activities of those compounds which showed a percent growth inhibition greater than 40% on subpanel cell lines at a concentration of 10^{-4} M. In Table 5 we report the activities of those compounds which showed a percent growth inhibition greater than 40% on subpanel cell lines at 10^{-5} M.

3.2.1. Results of the in vitro pharmacological anticancer assays

The data of in vitro anticancer activity reported in Table 3 established that the average sensitivity of all cell lines towards the tested agent, represented as mean graph midpoints, falls in the concentration range $10^{-5.53}$ – 10^{-4} M. A good correlation exists between the values of $-\log GI_{50}$, $-\log TG$ and $-\log LC_{50}$, although the most active compound (18) was

Table 3

 $-\log_{10}GI_{50}$, $-\log_{10}TGI$, $-\log_{10}LC_{50}$ mean graph midpoints ^a of the in vitro inhibitory activity tests for compounds 9, 10, 12–31, 33 and 34 and against human tumor cell lines ^b

Comp.	$-\log_{10}GI_{50}$	$-\log_{10}$ TGI	$-\log_{10}LC_{50}$
9	4.00	4.00	4.00
10	4.06	4.00	4.00
12	4.59	4.15	4.03
13	4.02	4.00	4.00
14	4.20	4.00	4.00
15	4.74	4.40	4.12
16	4.21	4.01	4.00
17	4.04	4.00	4.00
18	5.53	4.44	4.04
19	4.47	4.07	4.00
20	4.58	4.18	4.04
21	4.15	4.00	4.00
22	4.07	4.00	4.00
23	4.03	4.00	4.00
24	4.09	4.00	4.00
25	4.28	4.02	4.00
26	4.01	4.00	4.00
27	4.36	4.03	4.01
28	4.68	4.25	4.08
29	4.59	4.09	4.01
30	4.00	4.00	4.00
31	5.01	4.18	4.01
33	4.26	4.04	4.01
34	4.01	4.00	4.00

^a Mean graph midpoints (MG-MIDs), the average sensitivity of all cell lines toward the test agent.

^b From NCI.

not the most cytotoxic. A survey of Table 4 better indicates the highest activities recorded on all the panel cell lines for the compounds 12, 15, 16, 18, 19, 20, 27, 28, 29, 31 and 33, while a few compounds (10, 14, 21, 25) exhibited a moderate range of both cell sensitivity and percent tumor growth inhibition, the remaining compounds (9, 13, 17, 22, 23, 24, 26, 34) exhibiting only random cell sensitivity and moderate or no tumor growth inhibition activity. Among the derivatives of the first group compound, 18 maintained high values of percent tumor growth inhibition on all cell lines at 10^{-5} M, followed to a lesser extent by compound $31 > 28 \ge 29$. A few random cell line sensitivities were recorded for the other compounds at this concentration. Interestingly, a large number of derivatives (10, 13, 14, 16, 18, 19, 21, 22, 23, 24, 25, 27, 31, 33) exhibited very significant percent tumor growth inhibition activities between 10^{-8} and 10^{-6} M (Table 6). Among these compounds 18 and 31 were the most active.

3.3. Enzymology

3.3.1. Materials and methods

Thymidylate synthase from *Lactobacillus casei* and human thymidylate synthase were purposefully prepared as reported below. Dihydrofolate reductase (DHFR) from bovine liver and rat liver was available from SIGMA as a suspension in 3.6 M ammonium sulfate solution at pH 8 and a suspension

Table 4			
Percent tumor growth inhibition recorded on subpanel cell lines at 10	⁴ M of compounds 9, 10,	12-29, 3	I, 33 and 34

Panel/Ceil-Lines	9	10	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	31	33	34
Leukemia											~				67	105		70			-	60	_
CCRF-CEM	-	-	75	-	50	151	nt	•	nt	nt	64	50	-	•	21	105	-	14	-	-		46	-
HL-60(TB)	-	80	81	-	81	146	54	43	95	128	60	50	45	-	90	109	49	95	-	-	37	40	•
K-562	-	46	71	-	53	131	nt	61	130	137	-	55	-	40	56	118	26	84	-	•	nt	60	
MOLT-4	-	-	nt	-	56	153	81	55	90	105	76	62	-	-	53	119	42	nt	44	-	-	74	42
RPMI-8226	-	55	66	59	90	nt	nt	63	98	108	61	64	•	-	46	76	-	nt	nt	nt	-	64	nt
SR	-	66	66	-	83	191	116	51	87	107	86	52	45	nt	56	82	73	94	93	-	nt	72	70
Non Small Cell	T.uno	Can	cer																				
ASAQ/ATCC		nt	133	-	m	167	81	-	80	nt	nt	68	-	-	-	45		86	66	67	91	46	•
EVIN	ш	ш	02	-		160	01	62	73	00	176	51	80	_	58	56	49	66	69	106	84	40	-
	-		120	-	-	190	-	05	03	40	145	mt		-				56	137	104	nt	nt	-
HOP-62	-	34	129	-	-	107	33	-	73	40	04	40	-	-	-	07		07	197	56	60	54	
HOP-92	-	20	134	-	6/	183	m	-	15	-	04	49	<i>.</i> .	-		31	•	52	107	176	00	70	<u>د</u> م
NCI-H226	-	-	83	-	-	at	nt	•	58	69	147	-	21	-	nt	nt	-	33	189	1/0	81	19	50
NCI-23	-	66	87	-	94	186	55	-	92	51	71	52	-	-	-	40	•	80	143	100	139	23	•
NCI-H322M	-	-	nt	nt	-	177	-	nt	65	48	76	60	nt	-	-	-	•	61	56	28	70	43	•
NCI-H460	-	-	70	-	42	200	58	55	99	98	128	45	-	-	-	47	50	91	-	59	74	61	-
NCI-H522	-	56	94	-	-	178	48	51	115	nt	nt	nt	-	nt	70	86	•	60	136	94	119	-	-
Colon Cancer																							
COLO 205	-	-	97	-	_	139	_	_	93	119	198	-	-		-	44	-	175	-	49	-	196	-
100 000	-	•	70	7	02	100	160	40	07	100	74	_	40	_	_	50	-	83	-		60	nt	-
HCC-4998	-	•	14	-	33	100	130	45	07	04	02	<u></u>	42	-	_	50	49	86	180	68	174	63	-
HCT-116	-	-	154	45	43	200	54	45	8/	94	83	21	43	-		50	40	00	100	00	147	<0	-
HCT-15	-	-	-	-	41	200	40	-	89	126	/8	-	49	-	nt	00	-	00			4/	10	•
HT29	-	-	84	56	62	173	89	45	157	88	198	-	59	-	63	120	42	90	200	110	85	49	-
KM12	-	-	58	-	-	142	-	-	92	127	164	48	-	-	-	44	-	98	58	65	73	80	•
SW-620	-	-	nt	-	-	200	nt	-	70	81	67	-	40	-	-	43	•	71	-	-	nt	42	-
SNC Cancer																							
SE-268	_	_	102	_	-	112	-		89	56	119	-	-	-	-	42		79	134	107	118	73	-
SE-205	-	50	140		_	132	87	-	96	69	156	69	-		-			97	147	100	111	79	
SE+475			100	-		105	07	-	126	50	60	70	_	_	-	41		115	200	80	95	-	
01-009	nı	TIL A.C	144	-	m	105	74	-	100	50 61	. 02	61	-	-	•	52	-	62	100	00	116		
SNB-19	-	45	nt	nt.	-	1/0	54	m	129	51	98	51	-	-	-	33	-	100	102	120	122	114	-
SNB-75	nt	nt	180	-	nt	169	89	•	103	00	154	50	-	-	•	40	-	100	193	108	123	110	•
U251	-	64	180	-	•	200	nt	•	66	71	92	73	•	-	-	40	-	78	103	72	nt	-	-
Melanoma																							
LOX IMVI	-	-	88	-	-	104	50	-	80	148	128	44	-	-	-	-	•	79	75	67	43	49	-
MALME-3M	-	-	53	-	-	142	99	-	145	nt	nt	40	-	-	43	63	nt	nt	160	127	104	55	-
M14	nt	nt	nt	nt	nt	200	74	nt	88	70	139	68	· _	-	-	52	-	56	69	51	-	54	-
SK-MEL-2	-	-	nt	nt		178	60	nt	124	129	190	-	-	-	-	-		77	100	144	143	134	-
ST MEL 29	_	_	68		_	200	77		60	50	52	60	_	_	-	-		62	80	47	nt	-	
OV MEL-20	-	•	125	-	-	145	62	-	114	74	79	95	-	-	12	77	60	04	nt	nt.	77	139	nt
SK-MEL-)	-	-	135	-	-	193	602	-	114	66	70	0.2	<u>د</u> م	-	- * #.	00	41	54	ш	62	<i></i>	50	
UACC-257	-	-	65	-	•	133	07	-	110	22	/0		50	-	•	40	41	50	-	04	70	59	•
UACC-62	-	-	54	-	•	89	80	-	145	46	90	57	-	•	-	49	•	90	/8	84	19	00	•
Ovarian Cance	r																						
IGROV1	-	-	67	-	-	156	-	•	146	99	136	49	67	nt	-	-	•	68	95	85	89	54	-
OVCAR-3	•	-	101	-	-	156	-	-	135	nt	nt	41	-	-	-	-	-	79	140	98	146	54	-
OVCAR-4	-	80	153	-	-	182	68	47	nt	54	42	51	-	40	•	51	-	nt	106	91	80	146	-
OVCAR-5	-	-	-	-	-	200	40		51	nt	nt	-	-	-	-	42	-	45	80	-	71	-	-
OVCAR-8	nt	nt	72	-	nt	164	43	-	150	68	97	58	-	-		-		77	200	153	90	50	-
SK-OV-3		-	155	_		186	53	-	77	71	135	50	-	-	nt	nt	nt	nt	151	142	135	-	
Danal Cancon										• -		•••								•			
			176			200	67		00	68	100	6 1						50	200	124	174	40	
/80-0	-	33	175	-	-	200	03	-	00	65	140	21	•	-	•	-	•	10	400	144	1/4	47	•
A498	-	-	98	-	-	189	nt	-	104	-	143	40	m	21	-	-	-	48	98	96			-
ACHN	-	-	136	-	-	200	78	61	118	100	93	43	-	-	•	42	•	125	121	87	112	51	-
CAKI-1	-	-	200	-	-	160	118	-	151	99	159	46	-	-	•	-	•	189	143	171	151	59	67
RXF 393	-	90	128	-	62	112	62	56	112	85	191	117	-	-	nt	nt	-	89	123	104	168	53	-
SN12C	-	-	88	-	-	165	46	-	78	nt	nt	nt	-	-	-	42	-	65	nt	79	55	46	-
TK-10	-	-	122	-	-	200	71	•	58	60	81	56	-	-	-	100	-	60	140	65	72	nt.	-
UO-31	-	-	41	-	69	139	74		66	42	64	43	-	-	41	44	-	185	82	84	65	78	-
Prostate Cance	r																						
PC-3			94			200	41		110		124	50			-	_	_	70	<٥	70	107	67	_
DULIAS	-	•	04	•	-	102	41	•	66		144	50	-	•	•	-	•	62	70	10	54	57	-
DU-145	-	•	•	-	-	103	-	-	05	at	шı	34	•	•	-	-	-	05	/0	-	20	22	•
preast Cancer									-									-					
MCF7	•	-	90	48	56	153	99	72	93	100	200	58	-	-	50	60	-	84	nt	41	73	197	-
MCF7/ADR-RES	nt	nt	41	•	nt	1 63	•	-	87	62	nt.	55	•	-	-	-	•	78	nt	nt	98	61	nt
MDA-MB-231/ATCC	41	-	76	•	41	153	-	-	77	101	100	42	52	64	55	-	-	67	nt.	127	76	-	-
HS 578T	49	52	97	-	-	152	100	-	nt	55	144	64	61	-	40	56	•	77	nt	nt	114	87	mt
MDA-MB-435	-	-	70		40	183	58	-	82	112	70	43	-	-	-	70		68	81	-	rnt.	54	-
BT-549	-	51	128		75	97	-	-	124	44	74	46	44	-	•	99		57	nt	nt	104	63	nt
T-47D	nt.	nt	61	65	nt	157	50	60	83	125	162	77	56	100	46	59	44	70	119	85	71	86	-
MDA-N			70	47	-	130	50	-	115			-	-		-	- 49	-	77	113	49	57	73	_
		-		Ŧ,	-			-		- 12		-	-	-	-		-		*13	÷,	51	13	-

-, below 40% growth inhibition; nt, not tested at this molar concentration.

Table	5
1 4010	-

Percent tumor growth inhibition recorded on subpanel cell lines at 10 ⁻⁵ M of c	compounds 10, 12–14, 18–30, 31, 33 and 34
--	---

Panel/Cell-Lines	10	. 12	13	14	18	19	20	21	22	23	24	25	26	27	28	29	30	31	33	34
Leukemia																				
CCRF-CEM	-	-	-	-	56	44	-	-	-	-	-	-	-	•	-	-	-	•	-	-
TL-00(1B)	45	•	•	-	83		-	-	-	-	67	-	-	-	-	•	-	•	•	-
NOLT A	-	-	-	•	112	04	-		-	-	-	79	•	•	•	•	-	nt	nt	-
PPM 2776	•	•	-		71	21	-	31	-	•	40	62	-	m	-	-	-	•	•	•
CD CD	•	-	-	3/	/1	-	•	47	•	•	40	•	•	DX.	m	nt	nt	42	-	nt
Non Small Call	• •		-	40	80	4/	•	-	•	nt	-	•	-	nt	51	-	48	nt	44	50
NOR SHAR CER.	Laug	; Can	cer	_	~															
AD49/ATCC	m	-	•	nt	62	nt	m	•	•	-	-	-	-	-	-	•	-	90	-	-
HOP-62	-	47	-	-	64	-	-	nt	-	-	-	-	•	-	-	66	-	nt	nt	-
NOT HODE	-	-	-	-	•	•	-	40	-	•	-	•	•	•	71	46	•	-	•	-
NCI-11220	-	•	•	•		•	42	-	•	•	nt	nt	•	•	52	60	-	62	46	-
NCI-23	•			115	03	•	•	•	-	•	•	•	•	-	41	-	-	54	•	-
NCI-HJZZIM	•	ш	ш	•	21	•	•	•	m	•	•	-	-	•	-	-	-	-	•	-
NOI US22	•	-	•	-	11	-	-	-	-	-	-		•	•	-	-	-	-	-	-
Normj22	•	•	•	-	/5	ш	nt	m	-	DL	55	46	-	•	45	51	-	63	•	-
Colon Cancer																				
COLO 205	-	41	-	-	61	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-
HCC-2998	•			-	54	-	•	-	•	•	•	•	•	-	-	-	-	-	•	-
HC1-116	•	47	-	•	66	-	-	-	-	-	•	•	-	•	49	-	-	111	-	-
HCT-15	•	•	•	-	75	•	•	-	•	•	•	-	-	-	-	•	•	-	-	-
H129	-	•	•	•	146	41	45	•	42	-	55	-	•	•	122	70	-	59	+	-
KM12	-	•	-	• •	84	•	-	-	-	-	-	-	•	-	-	51	-	44	-	-
SW-620	•	•	-	•	55	•	-	•	-	-	-	-	-	-	-	-	•	nt		-
SNC Cancer																				
SF-268	-	-	-	-	71	-	-	-	-	-	-	-	-	-	56	55	-	56	-	-
SF-29	-	51	-	-	84	-	•	•	-	-	-	-	-	•	-	-	-	75	-	-
SF-539	nt	-	-	nt	68	•	•	-	-	-	-	-	-	-	141	88	-	153	-	-
SNB-19	-	nt	nt	•	73	•	-	-	•	•	-	-	-	•	-	47	•	-	-	-
SNB-75	nt	52	•	nt	69	•	-	-	-	•	•	-	•	-	57	42	-	52	60	-
U251	-	-	-	-	50	•	-	-	-	-	•	-	-	-	54	48	•	nt	-	-
Melanoma																				
LOX IMVI	•	•	-	-	64	-	•	-	-	•	•	-	-	•	-	-	-	42	-	-
MALME-3M	-	-	-	-	116	nt	nt	-	-	-	-	-	nt	nt	43	-	-	49	-	-
M14	nt	nt	nt	nt	53	-	-	-	•	•	-	-	•	-	-	-	-	44	-	-
SK-MEL-2	•	nt	nt	•	84	-	-	-	-	-	-	•	-	•	-	-	-	103	-	-
SK-MEL-5	-	-	-	-	69	-	•	-	nt	-	•	-	-	-	nt	πt	πt	47	-	nt
UACC-257	•	-	-	-	64	-	-	•	•	-	•	57	-	-	-	-	-	55	-	-
UACC-62	-	45	-	-	77	•	-	-	•	•	-		-	•	-	-	-	-	-	-
Ovarian Cancer																				
IGROV1	•	-	-	-	110	-	•	•	72	nt	•	-	-	-	-	•	-	-	-	-
OVCAR-3	-	-	-	-	88	nt	nt	-	-	-	-	-	-	-	-	-	-	102	-	-
OVCAR-4	-	-	-	•	nt		•	-	-		-	•	-	nt	65	58	-	57	-	-
OVCAR-5	-	-	-	-	-	nt	nt	•	-	-	-	-	•	-	-	-	-	93	-	-
OVCAR-8	nt	-	•	nt	nt	-	-	-	-	•	-	-	•	-	86	42	-	78	-	-
SK-OV-3		•	40	•	56	-	-	•	-	-	nt	nt	nt	nt	-	-	-	59	•	-
Renal Cancer																				
786-0	-	-	-	-	65	•	-	-		-	-	-	-	-	108	71	-	134	-	-
A498	•	-	-		54		-	-	nt	•	-		-	-		-	-		-	-
ACHN	-	44	-		66	-	-	•	-		-	-	-		61	68	-	74	-	-
CAKI-1	-	69	-	-	77	•	-	•	-	-	-	-	-	64	-	82	-	113	-	-
RXF 393	-	47	-	-	54	-	40	•	-	-	nt	nt		-	-	-	-	82	•	-
SN12C	-	-	54	-	48	nt	nt	nt	-	•	•	•	-	•	nt	-	-	-	-	-
TK-10	-	-		-		•	-	-	-	•	-	82	-	-	58	51	-	58	nt	-
UO-31		-		57	44	-	-	-		-		-	-	-	-	-		-	-	-
Prostate Cancer				•	••															
PC.3	_	_		_	87	-	-			_	-	_	-	-	_	-	_	74	-	-
DUL145	-	-		-	46	mt	- nt			-	-	-			_	-	-	41	-	-
Breast Cancer																				
MCF7	_	53		_	77	57	40	_	_	_		_	-		nt		-	-	61	-
MCF7/ADD_DF9	-	30	-	-	70	نغت mt	-ru nt	-	-	-	-	-	-	-	nt	-	nt	85	-	rnt.
MDA-MB-231/ATCC	-	-	-	-	<u></u>			2		-	-	-	-	-	nt	63		-	-	-
HS 578T	-	-	-	-	69	-	-	-	-	-	-	-		-	nt	nt	nt -	62	•	nt
MD4-MR-435	-	-	-	-	75	44	-	-	-	-	-	-	-	-	-			nt.	-	
RT-149	-	-	-	113	52		-	47	45		-	-	-	-	nt.	nt	nt	-	_	nt
T-47D	nt	-		nt	53	106	53	48		43	-	-	-	-	52	•	-	-	-	-
MDA-N	-	-		•	106	nt	nt		-	-	-	-	-	-	-	-		-	-	-

-, below 40% growth inhibition; nt, not tested at this molar concentration.

Table 6

Comparison of the inhibitory activity of compounds on some cell lines at the most diluted concentrations

Cell line	Comp.	Percent tumor growth inhibition at indicated molar concentration (M)					
		10 ⁻⁶	10 ⁻⁷	10-8			
Leukemia				ş al.			
HL-60(TB)	10	27	24	20			
HL-60(TB)	18	50	14	nt			
K-562	19	39	21				
K-562	24		33	54			
K-562	25	89	31				
MOLT-4	21	30	26	23			
SR	14	29	9	18			
SR	18	66	44	16			
SR	28	36	24	32			
Non small cell lung cnacer							
A549/ATCC	31	21	30	29			
HOP-62	26	25	24	24			
HOP-62	27	28		22			
NCI H226	31	47					
NCI H226	33	47	26				
NCI-H23	14	47					
NCI-H522	25	32					
Colon cancer							
HCC-2998	16	36	28	28			
HCT-116	18	30					
HCT-116	31	55					
HT.29	18	50					
HT-29	31	61	48				
KM_12	18	40	25	21			
CNS	10	10					
SE-295	14			37			
SE-539	31	38		0.			
SNB-75	18	56	27				
SNB-75	27	27	33				
SNB-75	33	35	00				
Melanoma							
MALME-3M	18	80	15				
Ovarian cancer	10	00	10				
IGROV1	18	67	22				
IGROVI	22	53	24	16			
OVCAR-5	31	35	26	10			
Benal cancer	91		20				
A 498	23	35	37				
RXF-393	31	60	35				
SN12C	13	37	17				
TK-10	25	56	17				
UO-31	14	41					
Prostate cancer	18	40					
Breast cancer	10	-10					
NCI/ADR-RES	31	81	61				
MCF7/ADR-RES	24	~ 1	38				
MDA-MB-435	18	58	20				
BT-549	10		25	45			
BT-549	14	77	16	18			
MDA-N	18	79	10	10			
	10	70					

in glycerol, 5%, 0.7 M ammonium sulfate, pH 6.5, respectively. The enzymatic assays have been run on a UV–Vis spectrophotometer, Beckman DU 640, equipped with a thermostated circulating bath, HAAKEF3C.

3.3.2. Experimental

Plasmids that express L. casei TS (TS, EC 2.1.1.45) in the Thy-Escherichia coli strain X2913 have been described [13]. The enzyme was purified by a column chromatography method using phosphocellulose (P11, Biorad) and hydroxyapatite (HAP, Biorad) resin, with phosphate buffer as eluant [14]. Human thymidylate synthase (HTS) was purified as reported using affinity column chromatography [15]. The enzyme preparations were >95% homogeneous, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The LcTS purified enzyme was stored at -80°C in 10 mM phosphate buffer, pH 7.0, 0.1 mM EDTA until use. HTS was used immediately after purification. The activity of TS was determined by steady-state kinetic analysis, spectrophotometrically, by following the increasing absorbance at 340 nm due to the oxidation reaction of N5.N10-methylene tetrahydrofolate to dihydrofolate at the 5,6 bond [16]. Assays were performed at 20°C in the standard assay buffer which contained 50 mM N-tri(hydroxymethyl-2-aminoethane) (TES) at pH 7.4, 25 mM MgCl₂, 6.5 mM formaldehyde, 1 mM EDTA and 75 mM 2-mercaptoethanol. 1 ml of reaction mixture is formed by the standard TES buffer, pH 7.4, dUMP 120 mM, $6-(R,S)-1-CH_2CH_4$ -folate 180 mM, enzyme 0.07 mM.

The stock solutions of the inhibitors were prepared in DMSO with a concentration of about 2 mM and kept at -20° C. Control reactions were run in order to measure the effect of DMSO on enzyme activity. DMSO never exceeded 5% in the enzyme assay mixture [17].

TS inhibition studies were run under the general conditions of standard TS assays with the exception of the folate concentration which was kept at 100 mM. The assay conditions are those of the standard TS assay. DHFR (DHFR, EC 1.5.1.3) catalyses the NADPH dependent reduction of dihydrofolate (H₂folate) to tetrahydrofolate (H₄folate). The assays were run spectrophotometrically by measuring the decrease in absorbance at 340 nm upon NADPH reduction at 25°C. One unit of enzyme is defined as one nmol of H₂folate reduced per minute.

The reaction mixture was formed by 50 mM TES, pH 7.0, EDTA 1 mM, 75 mM 1-mercaptoethanol, 100 mM NADPH, 58.03 mM H₂folate [18].

All the experiments were repeated at least three times and the standard errors from non-linear least-square fits of the experimental data are less than 20% for all the values.

IC₅₀ values (inhibitor concentration that inhibits the enzyme activity at 50% of the control) were measured when the solubility of the compound allowed the experimental measures. In all the other cases only the percentage of inhibition at a fixed concentration was measured and calculated values of IC₅₀ (IC_{50c}, where c is for calculated) were determined from the dependence of the initial rates on the inhibitor concentration using the equation $V_i/V_0 = (1 - C_i/IC_{50})$, where V_i and V_0 are the initial rates in the presence and absence of inhibitor, and C_i is the concentration of inhibitor [19].

Comp.	Bovine liver DHFR		Rat liver DHFR	LcTS	HTS	
	I% (at fixed conc.)	IC ₅₀ ^a (μM)	I% (at fixed conc.)	$IC_{50}^{a}(\mu M)$		
12	NI (28.95)				NI (28.95)	NI (28.95)
15		46.2 (IC ₅₀)		70.5 (IC ₅₀)	NI (200)	NI (200)
18		88.9 (IC ₅₀)	25.7 (28.3)	81.8 (IC _{50c})	NI (100)	NI (100)
19	30.4 (14.25)	$22 (IC_{50c})$	33 (14.25)	28.84 (IC _{50c})	NI (14.25)	NI (14.25)
27		186 (IC ₅₀)	39.4 (67)	$103.1 (IC_{50c})$	NI (200)	NI (200)
29	7.9 (11.1)	129.7 (IC ₅₀)			NI (11.1)	NI (11.1)
31		18.45 (IC ₅₀)	18.7 (7.8)	36.3 (IC _{50c})	NI (31.2)	NI (31.2)
33	33.6 (9.78)	38.6 (IC _{50c})	17.2 (9.78)	42.7 (IC _{50c})	NI (9.78)	NI (9.78)

Table 7 Inhibitory activity of compounds 12, 15, 18, 19, 27, 29, 31 and 33 against LcTS, HTS and DHFR at the indicated concentration (µM)

NI, no inhibition at the indicated concentrations in parentheses corresponding to the solubility limit.

^a Experimental IC₅₀ or IC_{50c} (c for calculated) as reported in Section 3.

3.3.3. Results of inhibitory enzymatic assays

The data of Table 1 refer to compounds previously described in other papers as cited. From these it appears evident that no type of quinoxaline tested was active against LcTS and HTS, whereas in some cases (e-i), water solubility permitting a certain inhibitory activity against bovine DHFR was detected. The structure of the compounds represented in Table 1 belongs to both the non-classical (a-c) and classical (d-i) folate analogue series. It is important to note that in this test only classical folate analogues showed some inhibitory activity.

Among the novel compounds described here, only 12, 15, 18, 19, 27, 29, 31 and 33, corresponding to those endowed with the highest percent growth inhibition activity, have been assayed against both bovine and rat liver DHFR enzymes, which are considered a good model for mammalian enzymes [20], as well as against LcTS and HTS (Table 7). Comparison of the data of Table 1 with those of Table 7 clearly showed that compounds with an ether bridge (12, 15, 18, 19, 27, 29, 31, 33) exhibited the highest inhibitory activity against DHFR from bovine liver with respect to compounds a-i listed in Table 1. No compound of this type was active against both LcTS and HTS. Interestingly, compounds exhibiting some inhibitory activity (Table 7) against bovine DHFR showed more or less comparable inhibitory activity against rat liver DHFR, indicating that no selectivity can be observed between the two species. Owing to the poor water solubility of most compounds, only the percent inhibition or calculated IC_{50} (IC_{50c}) could be determined. IC_{50} was measured only for compounds 15, 19, 27, 29, 31 and 33 (Table 7).

4. Discussion and conclusions

All the classical and non-classical folate analogues are active anticancer agents, but they did not show TS inhibitory activity, indicating that TS is not the target for these compounds inside the cell. In compounds of the previous series (e-i) bearing an NH bridge with a glutamate moiety in the side chain a moderate inhibitory activity was observed against

bovine DHFR, where compound f (IC₅₀ = 114.23 μ M) was as active as its trifluoromethyl analogue h (IC₅₀ = 108.4 μ M). The results obtained from either in vitro anticancer or DHFR evaluation for compounds with an ether bridge seem to indicate an increase of inhibitory activity against DHFR, suggesting that this enzyme can be the main target inside the cell; the only exception was compound 12 which was inactive at 28.95 μ M against DHFR from bovine liver. Compounds 15, 18 19, 27, 29, 31 and 33 were endowed either with high percent tumor growth inhibition activity at 10⁻⁴ M (Table 4) or with moderate to high inhibitory activity against DHFR enzymes (Table 7). Compound 18 was the most active in the anticancer test, while compound 31 was the most active against DHFR in the enzymatic assay.

Structure-activity relationships show that the most active compound 18 in the anticancer test is a non-classical folate analogue, where the presence of an amino group in position 8 increases the activity, expressed as mean graph midpoints (Table 3), in comparison with compound 12. This behaviour is much more marked in the DHFR assay since compound 12 is inactive, while 18 is active (IC₅₀ = 88.9 μ M). It is interesting to note that compound 29 exhibited poor inhibition activity against DHFR from bovine liver (IC_{50c} = 129.7 μ M) in comparison with compound 31 (IC₅₀ = 18.4 μ M), which instead differs from it by the presence of the 8-amino group, as in compounds 18 and 12 in the same assay were the most active of the classical series, thus suggesting that this group may increase affinity for the enzyme. The deletion of one methoxy group from 18 in the benzene ring increases its inhibitory activity (IC₅₀=88.9 μ M) almost three times against 19 (IC_{50c} = 33 μ M), while this compound in the anticancer test was less active. Comparing compounds 15 and 12, the cyano group on the benzene moiety gives an IC_{50} of 46.2 μ M, against the inactivity of **12**. Considering the classical folate analogue series the introduction of the glutamate moiety in compound 33 compared to 27 increases the inhibitory activity against bovine liver DHFR (IC_{50c} = 38.6 μ M and $IC_{50} = 186 \mu M$, respectively) about four times. The same trend can be observed against rat liver DHFR ($IC_{50c} = 47.2$ and 103 µM, respectively), while their behaviour in the anticancer test show that their activities are of the same order of magnitude (Tables 3 and 4). Compound **31** has both the modifications of the amino group at position 8 and the glutamate moiety and showed the highest inhibitory activity against DHFR, which was in line with the high percent tumor growth inhibition recorded. At this stage it seems reasonable to conclude that DHFR enzymes are the target of the compounds described and that isosteric replacement of the NH with the O bridge is profitable for both anticancer and anti-DHFR activity.

References

- M. Loriga, M. Fiore, P. Sanna, G. Paglietti, Quinoxaline chemistry: Part 4. 2-(R)-Anilinoquinoxalines as non classic antifolate agents. Synthesis, structure elucidation and evaluation of in vitro anticancer activity, Farmaco 50 (1997) 289-301.
- [2] M. Loriga, P. Moro, P. Sanna, G. Paglietti, Quinoxaline chemistry. Part 8. 2-[Anilino]-3-[carboxy]-6(7)-substituted quinoxalines as non classical antifolate agents. Synthesis and evaluation of in vitro anticancer, anti-HIV and antifungal activity, Farmaco 52 (8-9) (1997) 531-537.
- [3] M. Loriga, M. Fiore, P. Sanna, G. Paglietti, Quinoxaline chemistry. Part 5. 2-(R)-Benzylaminoquinoxalines as non classical antifolate agents. Synthesis and evaluation of in vitro anticancer activity, Farmaco 51 (1996) 559-568.
- [4] M. Loriga, S. Piras, P. Sanna, G. Paglietti, Quinoxaline chemistry. Part 7. 2-[Aminobenzoates]- and 2-[aminobenzoylglutamate]-quinoxalines as classical antifolate agents. Synthesis and evaluation of in vitro anticancer, anti-HIV and antifungal activity, Farmaco 52 (3) (1997) 157-166.
- [5] M. Loriga, G. Vitale, G. Paglietti, Quinoxaline chemistry. Part 9. Quinoxaline analogues of TMQ and 10-propargyl-5,8-dideazafolic acid and its precursors. Synthesis and evaluation of in vitro anticancer activity, Farmaco 53 (2) (1998) 139-149.
- [6] G. Vitale, P. Corona, M. Loriga, G. Paglietti, Quinoxaline chemistry. Part 10. Quinoxaline 10-oxa analogues of TMQ and 10-propargyl-

5,8-dideazafolic acid and its precursors. Synthesis and evaluation of in vitro anticancer activity, Farmaco 53 (2) (1998) 150-159.

- [7] C.H. Beherens, B.A. Dusak, B.A. Harrison, M.J. Orwat, 2-[Quinoxanilyloxy)phenoxylpropenoates and related derivatives as anticancer agents (Dupont-Merck), PCT Int. Appl. WO 94 13647 [Chem. Abstr. 121 (1994) 15767j].
- [8] M. Loriga, G. Paglietti, Quinoxaline chemistry. Part 1. 6-Trifluoromethylquinoxalines and their N-oxides. Synthesis and structure elucidation, J. Chem. Res. (s) (1986) 16–17; J. Chem. Res. (M) (1986) 277–296.
- [9] Y. Ahmad, M.S. Habib, B.B Ziauddin, Quinoxaline derivates. IX. An unusual chlorine substitution in quinoxaline N-oxide. Its scope and limitation, J. Org. Chem. 31 (1966) 2613.
- [10] E.I. Fairburn, B.I. Majerlein, L. Stubberfield, E. Stapert, D.I. Weisllat, Oxygen analogues of pteroic acid, J. Am. Chem. Soc. 76 (1954) 676– 679.
- [11] M.R. Boyd, Status of the NCI Preclinical Antitumor Drug Discovery Screen, Princ. Pract. Oncol. 3 (10) (1989) 1–12.
- [12] O.W. Weislow, R. Kiser, D. Fine, J. Bader, R.H. Shoemaker, M.R. Boyd, New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDS antiviral activity, J. Natl. Cancer Inst. 81 (1989) 577–586.
- [13] S. Climie, D.V. Santi, Chemical synthesis of the thymidylate synthase genes, Proc. Natl. Acad. Sci. USA 87 (1990) 633–637.
- [14] J.T. Kealy, D.V. Santi, Purification methods for recombinant *L. casei* thymidalate synthase and mutants. A general automated procedure, Protein Expression Purification 4 (1992) 380–385.
- [15] V. Davisson, W. Sirawaraporn, D.V. Santi, Expression of human thymidylate synthase in *Escherichia coli*, J. Biol. Chem. 264 (1989) 9145–9148.
- [16] A.L. Pogolotti, P.V. Danenberg, D.V. Santi, Kinetics and mechanism of interaction of 10-propargyl-5,8-dideazafolate with thymidylate synthase, J. Med. Chem. 28 (1986) 478–482.
- [17] F. Soragni, M.P. Costi, unpublished results.
- [18] T.D. Meek, E.P. Garvey, D.V. Santi, Purification and characterisation of bifunctional thymidylate synthase-dihydrofolate reductase from methotrextate-resistant *Leishmania tropicae*, Biochemistry 24 (1985) 678–686.
- [19] L.W. Hardy, W. Matthews, B. Nare, S.M. Beverly, Biochemical and genetic test for inhibitors of *Leishmania pteridine* pathways, Experimental Parasitology 87 (1997) 157–169.
- [20] M.W. Harris, C. Smith, K. Bowder, Antifolate activities of 6-substituted 2,4-diaminoquinazoline, Eur. J. Med. Chem. 27 (1992) 7–18.