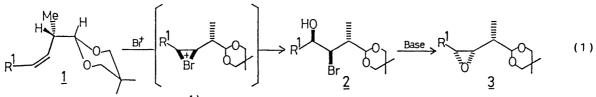
CHEMISTRY LETTERS, pp. 2133-2134, 1987.


Syn-epoxidation of Chiral (Z)-2-Methyl-3-alkenal Acetal via Stereo-selective Bromohydrin Formation

Yutaka HONDA,^{*} Yohko KATAOKA, Masahiko UNNO, and Gen-ichi TSUCHIHASHI Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223

Synthesis of syn-epoxide from chiral (Z)-2-methyl-3-alkenal acetal via stereoselective bromohydrin formation by using a reagent prepared from N-bromosuccinimide (NBS) and dimethyl sulfoxide (DMSO) under irradiation, and regioselective C-C bond formation were described.

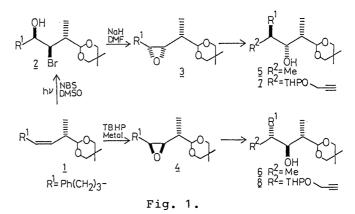
Recently we have reported the highly anti-selective epoxidation of (Z)-alkenal acetal $(\underline{1})^{1}$ via a metal catalyzed epoxidation using *tert*-butyl hydroperoxide (TBHP).²⁾ Hence it is very important to develop a synthetic procedure of the corresponding syn-epoxide. We interested in the control of stereo- and regio-selectivities by the practical use of the acetal group in acyclic systems.

Two-step conversion of an olefin to an epoxide via bromohydrin formation had been widely used. Dalton had reported a general procedure by using NBS in moist DMSO, and then proposed the mechanism where DMSO attacked to a bromonium ion and followed by hydrolysis.³⁾ We considered that 2,3-anti-bromonium ion would be generated stereoselectively by the hindrance of the methyl group, since the most stable conformation of <u>1</u> would be represented in Eq. 1. Then DMSO would attack at γ -position regioselectively by the hindrance of the methyl and the acetal groups to give 2,3-anti-bromohydrin (<u>2</u>), which would be easily converted into syn-epoxide (<u>3</u>).

The treatment of $(Z)-\underline{1}^{4}$ with NBS (2 equiv.) in moist DMSO at 15 °C showed a little anti-selectivity (anti/syn=1.5, Table 1, entry 1). As the results of examinations, the selectivity was enhanced by the solvents in the following order diethyl ether > dichloromethane > acetonitrile (Table 1, entries 2,3,4). Moreover it was proven that bromohydrin formation did not proceed at low temperature without light, when bromine was generated to give dibromide as a by-product in the presence of water (entry 5). Typical procedure was as follows: Into NBS (4 mmol) in Pyrex vessel under an argon atmosphere, anhydrous diethyl ether (4 ml) and DMSO (10 mmol) were added at -18 °C. The mixture was irradiated by using a usual fluo-

Chemistry Letters, 1987

rescent lamp, and the temperature was raised up until a precipitate (NBS) colored pale yellow. After irradiation for 15 min at -18 °C, water (5 mmol) in THF (6 ml) was added. Into the obtained clear yellow solution, $(Z)-1^{(4)}$ (1 mmol) in diethyl ether (2 ml) was added in dark. After 2 h, an aqueous Na₂S₂O₃ (4 equiv.) was added. The mixture was extracted with diethyl ether and evaporated at 0 °C. The p


Table 1. Bromohydrin formation of (Z)-1

Entr	y R ¹	NBS/equiv.	Solvent	Temp/°C Yi	ield/%	anti/syn
1	Ph(CH ₂)	3 2.0	DMSO	15 ^{a)}	90	60/40
2		"		-42+-20 ^{a)}	52	59/41
3		n	Сн,С1,	-78→-42 ^{a)} -78→-12 ^{a)} -12, ^b , ^{c)} -78	52	70/30
4		**	Et,o	-78→-12 ^{a)}	66	74/26
5	**			-12, ^{b,c)} -78	56	91/9
6	"	4.0	"	-18, ^{C)} -42	55	89/11
7	"		"	-18, ^{c)} -18	83	89/11
8	Me	**			86	84/16

mixture was extracted with diethyl ^{a) In the natural light. b) with water. c) Irradiated. ether and evaporated at 0 °C. The residue was purified by silica-gel column chromatography to give <u>2</u> (Table 1, entries 7,8).}

We assumed that a bromo radical generated by irradiation of NBS reacted with DMSO to give an unknown yellow compound,⁵⁾ which added to olefin to give an adduct or to water to give hypobromous acid. Bromohydrin (<u>2</u>) was treated with sodium hydride in DMF⁶ to give syn-epoxide (<u>3</u>) in 85% yields (Fig. 1).

(2S, 3R, 4R)-Syn-epoxide (3) and (2S, 3S, 4S)-anti-epoxide (4)¹) reacted at γ -position regioselectively with some nucleophiles. The treatment of 3 and 4 with MeLi (10 equiv.) - CuI (1 equiv.) gave (2S, 3R, 4S)-5 and (2S, 3S, 4R)-6 in 50% (recovered 46% of 3) and 85% yields, respectively. Thus all diastereomers can be prepared by the selection of R¹, R² and the chirality of

<u>1</u>. Moreover the treatment of <u>5</u> and <u>6</u> with difluoro-(3-tetrahydropyranyloxy-1-propynyl)borane at -78 $^{\circ}C^{7}$ gave 6-alkyloxy-5-alkynes (<u>7</u> and <u>8</u>) in 96% yield in both cases (Fig. 1). They are useful chiral synthons for the synthesis of three and more-serial asymmetric centers in acyclic systems. The application of these methodologies to the synthesis of natural product is under current investigation.

References

- 1) Y. Honda, M. Sakai, and G. Tsuchihashi, Chem. Lett., 1985, 1153.
- 2) Y. Honda, A. Ori, and G. Tsuchihashi, Chem. Lett., <u>1986</u>, 1417.
- 3) D. R. Dalton and D. G. Jones, Tetrahedron Lett., <u>1967</u>, 2875; D. R. Dalton, V. P. Dutta, and D. C. Jones, J. Am. Chem. Soc., <u>90</u>, 5498 (1968).
- 4) (E)-Aldehyde acetal was also converted to a bromohydrin under the same conditions, but it was easily oxidized by NBS to give a corresponding ester.
- 5) This electrophile might be Br-O-SMe₂⁺.
- 6) The treatment of <u>2</u> with t-BuOK in t-BuOH gave 4-ketone (28%, Fig. 2) as a by-product besides <u>3</u> (72%) through hydride rearrangement.
- 7) M. Yamaguchi and I. Hirao, Tetrahedron Lett., 24, 391 (1983).

(Received July 23, 1987)

Fig. 2.

2134