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Abstract: A series of poly-N-acetyllactosamines representative of those found on complex N-glycans was 
synthesized for use in the kinetic characterization of recently cloned glycosyltransferases. The syntheses 
involved the iterative addition of a selectively "protected N-acetyllactosaminyl donor to an octyl S-D- 
mannopyranosyl-l,6-~D-mannopyranoside acceptor, followed by deprotection. In addition, non-reducing 
galactosyl residues were removed with/3-galactosidase to furnish GlcNAc terminated compounds. In this 
manner tetra- to octasaccharides were efficiently produced. © 1999 Elsevier Science Ltd. All rights reserved. 

Poly-N-acetyllactosamine-based oligosaccharides are widespread in higher organisms and influence many 

biological processes, notably cell- cell adhesion and immune response) Composed of repeats of the 
disaccharide ~D-Gal-I,4-~-D-GlcNAc they make especially attractive synthetic targets as they can be readily 

2 
transformed to a range of complex carbohydrates with commercially available enzymes. Poly-N- 

acetyllactosamines are assembled by two glycosyltransferases, ]31,4-galactosyltransferase and the /31,3-N- 

acetylglucosaminyltransferase (i-GlcNAc transferase). Interestingly, the average chain length of 
polylactosamines differs according to whether they occur on N-linked or O-linked glycans, the latter rarely 
consisting of more than two or three repeats) In order to further understand lactosamine biosynthesis we have 
synthesized a series of oligolactosamines 1- 5 for use in enzyme kinetic studies. 
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Several methods for the synthesis of polylactosamines have been detailed previously, all of which utilize a 
protected lactosaminyl donor with an orthogonally removable protective group at 0-3' of galactose. 4 Selective 
deprotection followed by glycosylation allows the stepwise addition of lactosamine units. Unfortunately, these 
methods often involve considerable protective group manipulation of lactosamine disaccharides, requiring a 
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significant amount of labor. In this communication, we describe the synthesis of compounds containing up to 

three lactosamine repeats from a readily accessable lactosaminyl donor. In addition, we have synthesized two 

N-acetylglucosamine terminated structures through enzymatic removal of non-reducing galactose with 
fl-galactosidase. 
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We sought to assemble a differentially protected lactosamine synthon from monosaccharide precursors in a 
minimum number of steps in order to improve somewhat on previous procedures. The disaccharide 6 was 

selected as a possible candidate in that the chloroacetyl and 2-trimethylsilylethyl (SE) groups are orthogonally 
removable, with the latter easily cleaved prior to conversion to the highly reactive trichloroacetimidate 

functionality. In fact, Nicolaou et al. successfully employed a similar disaccharide bearing a thiophenyl 
glycoside in the synthesis of trimeric Lewis x. s 
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(i) 2,2-dimethoxypropane, CSA, 24 h; (ii) AcOH/EtOH, 1:4, 40"C; (iii) Ac20, pyridine; (iv) AcOH/H20, 

4:1, 80°C; (v) (C1Ac)20, pyridine; (vi) C12CHOCH3, ZnCI2, 2 h; (vii) AgOTf, collidine, 4 /k  mol. sieves, 

CH2C12, -20°C; (viii) TFA, CH2C12 ; (ix) C13CCN, DBU, CH2C12, -20°C. 

Scheme 1 

Conversion of 2-trimethylsilylethyl fl-D-galactopyranoside 6 7 to the 3,4-di-O-chloroacetyl galactosyl chloride 8 

was achieved in 6 steps and 65% overall yield (Scheme 1). Glycosylation of the glucosamine acceptor 6 9 
required over 2 equivalents of the chloride 8, but gave the lactosamine 6 in 81% yield. Two step conversion to 

the trichloroacetimidate 10 was achieved in 75% yield giving the required bifunctional donor (Scheme 2). In a 

similar fashion, glycosylation of 9 with 2,3,4,6-tetra-O-acetyl-galactosyl chloride 7, followed by protective 
group manipulation, gave the imidate 11 (76% overall) which was ultimately used to introduce the terminal 

lactosamine unit as detailed below. 
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Treatment of the mannosyl acceptor 8 12 with the imidate l0  in the presence of triethylsilyl triflate at -40°C 

gave the tetrasaccharide 13 in 62% yield. Removal of the chloroacetyl groups with thiourea and 2,6-1utidine 

gave the diol 14 in 81% yield following chromatography. Repetition of this two step cycle gave the 

hexasaccharide 15 in 56% overall yield. Finally, the triol 15 was glycosylated efficiently with the tetra-O- 
acetylated imidate 11 to furnish the octasaccharide 16 (63%). 
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Deprotection of the lactosamines 14, 15 and 16 was achieved in four steps involving initial conversion to the 

N-acetyl derivatives through treatment with ethylenediamine in hot 1-butanol, followed by acetylation with 
Ac20 in pyridine. 9 Removal of the remaining protecting groups (0.1 M NaOMe then H2 over 10% Pd/C) gave 

the products 1, 2, and 3 in low to average yields (27-42%) following purification on LH-20 Sephadex. The 
two GlcNAc terminated compounds 4 and 5 were conveniently obtained from structures 2 and 3 through 
removal of non-reducing galactose by fl-galactosidase (2 U per /.tmol) from E. coli. The reactions were 

typically performed on a 2 I.tmol scale. The products were characterized by ~H NMR spectroscopy and high 
resolution FAB mass spectrometry. 1°'1~ 

Compounds 1- 5 were evaluated as substrates for the i- and I-GlcNAc transferases, as well as several fll ,4- 

galactosyltransferases and were determined to be efficient primers for in vitro poly-N-acetyllactosamine 
biosynthesis. In contrast, poly-N-acetyllactosamine biosynthesis in O-linked glycans was found to become 
less efficient as chain length increased. ~2 
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