

TETRAHEDRON LETTERS

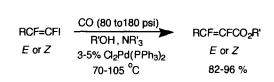
Palladium-Catalyzed Stereospecific Carboalkoxylation of 1,2-Difluoro-1iodoalkenes and α,β-Difluoro-β-iodostyrenes

Craig A. Wesolowski and Donald J. Burton*

Department of Chemistry, The University of Iowa, Iowa City, IA, 52242, U.S.A.

Received 17 November 1998; revised 12 January 1999; accepted 14 January 1999 **Abstract:** (E)- and (Z)-1,2-Difluoro-1-iodoalkenes and (E)- and (Z)- α , β -difluoro- β -

Abstract: (E)- and (E)-1,2-Difutoro-1-totabakenes and (E)- and (E)-a, p-alphoro-piodostyrenes give the corresponding esters in the presence of catalytic $Cl_2Pd(PPh_3)_2$, alcohol, trialkylamine, and carbon monoxide (80-180 psi) under mild conditions in excellent yields with retention of configuration. © 1999 Elsevier Science Ltd. All rights reserved.


It is well established that the Van der Waals radii of fluorine ($r_F \sim 1.35$ Å) and hydrogen ($r_H \sim 1.10$ Å) are quite similar, thereby rendering fluorine the only element that can replace hydrogen in biological systems without changing steric demands.¹ However, the strong electronegative nature of fluorine, relative to that of hydrogen, imparts a strong electron-withdrawing inductive effect causing substantial differences in the reactivity of neighboring functional groups. Consequently, site-specific fluorination of organic molecules has attracted interest for applications in polymer, medicinal, and agricultural chemistry.²

Fluorinated acrylic esters, in particular, are interesting sythons due to their prolific chemistry and potential for further elaboration into fluorinated analogs of natural products. For example, fluoroacrylic esters are excellent Michael acceptors and have been employed as such in the synthesis of γ -fluoroglutamic acid derivatives,³ angiotensin II derivatives,³ and a fluorinated analog of Captopril, an angiotensin converting enzyme inhibitor.⁴ α -Trifluoromethylacrylic acid has found utility in the preparation of trifluoromethyluracil derivatives *via* an annulation process.⁵ Furthermore, fluoroacrylic esters are suitable dienophiles for Diels-Alder cycloadditions, and have been employed as dienophiles in the synthesis 6-trifluoromethylshikimic acid⁶ and a fluorinated analog of retinal.⁷

Fluoroacrylic esters of the type CFH=CHCO₂R,⁸ CH₂=CFCO₂R,⁹ CF₂=CHCO₂R,¹⁰ CH₂=C(CF₃)CO₂R,¹¹ (*E*)-CF₃CH=CHCO₂R,¹² and (*Z*)-CF₃CH=CHCO₂R⁶ have been prepared by multistep sequences in which the α , β -unsaturated double bonds were introduced late in the synthesis by β -elimination reactions. Other approaches to fluorinated acrylates involved the quenching of fluorovinyllithium reagents with CO₂ at low temperatures,^{10b,11b,13} condensation reactions with hexafluoroacetone for the synthesis of (CF₃)₂C=CHCO₂R,¹⁴ Ojima's synthesis of CH₂=C(CF₃)CO₂H *via* palladium-catalyzed carbonylation of CH₂=C(CF₃)Br,⁵ and palladium-catalyzed cross-coupling of (*Z*)-RCF=CFZnCl with ethyl chloroformate.¹⁵ However, in our hands, (*Z*)-PhCF=CFZnI coupled with ClCO₂Et under palladium catalysis to give only low yields of the corresponding ester.¹⁶ The lack of general and convenient methodology for the stereospecific synthesis of (*E*)- and (*Z*)- α , β -difluoroacrylate ester derivatives and α , β -difluorocinnamate esters has impeded the investigation of this interesting class of compounds.

Recent publications from this laboratory have described strategies for the stereospecific introduction of

cis - and trans -1,2-difluoroethylene units into organic molecules.¹⁷ Given the available methodology for the stereospecific preparation of cis - and trans -1,2-difluoro-1-iodoalkenes and α , β -difluoro- β -iodostyrenes developed by our group^{17,18} and others,¹⁹ we anticipated that these may be ideal precursors for the synthesis of (*E*)- and (*Z*)- α , β -difluoroacrylate ester derivatives and α , β -difluorocinnamate esters. Herein we wish to report the stereospecific palladium-catalyzed carboalkoxylation of 2-substituted-1,2-difluorovinyl iodides to form the corresponding fluorinated esters.

The palladium catalyzed carboalkoxylation of non-fluorinated alkenyl and aryl halides has been previously explored by Heck²⁰ and Stille.²¹ However, Heck and coworkers found that the carboalkoxylation of terminal vinylic halides suffers from isomerization under the reaction conditions.²⁰ For example, *cis* -CH₃(CH₂)₃CH=CHI yields *cis* -CH₃(CH₂)₃CH=CHCO₂Bu and *trans* -CH₃(CH₂)₃CH=CHCO₂Bu in 79% and 6% yield, respectively. When the steric bulk of the substituent on the double bond increased from butyl to phenyl, the severity of isomerization is even more pronounced, with *cis* -PhCH=CHBr affording *cis* - and *trans* -PhCH=CHCO₂Bu in 52% and 30% yield, respectively. In contrast to their hydrocarbon counterparts, *no isomerization was observed* in the carboalkoxylation of 2-substituted-1,2-difluoro-1-iodoalkenes or α , β -difluoro- β -iodostyrenes. The results are summarized in Table 1. Alt hough palladium-catalyzed carbobutoxylation of non-fluorinated vinyl halides proceeds readily under 1 atm of carbon monoxide, the fluorinated substrates required elevated carbon monoxide pressure (80 to 180 psi) to react at reasonable rates (entries 5 and 6). Effective conditions for rapid carboalkoxylation of the various fluorinated substrates investigated are the reaction of fluoroorganic halide (1.0 eq), trialkylamine (1.2 eq), CO (80 to 180 psi), 3-5% Cl₂Pd(PPh₃)₂, and excess alcohol as solvent at 80-125 °C for 12-24 hours, and the reaction progress is conveniently monitored by noting the carbon monoxide pressure throughout the course of the reaction.

In a typical experiment, (Z) - p-cyano- α , β -difluoro- β -iodostyrene (0.50 g, 1.72 mmol), tri-*n*-butylamine (0.42 g, 2.24 mmol), 3-5% dichlorobis(triphenylphosphine) palladium(II) and 5 ml of 1-butanol were added to a 100 mL Fischer-Porter glass pressure reactor.²² (*Caution: All reactions should be carried out behind a safety shield.*) The reactor was pressurized to 100 psi with carbon monoxide, and the pressure was released. This was repeated for four cycles to rid the system of air. Finally, the reactor was filled to 100 psi and heated at 80 °C for 12 hours, or until carbon moxoxide consumption ceases. The reactor was allowed to cool, and the pressure was carefully released. The reaction mixture was transferred to a separatory funnel containing 40 mL of ethyl acetate. The organic layer was washed successively with aqueous 10% hydrochloric acid (2 x 15 mL), 15 mL of saturated aqueous sodium bicarbonate, and 15 mL of brine. After drying the organic layer over anhydrous magnesium sulfate, the mixture was concentrated by rotary evaporation. The crude ester was chromatographed on a silica gel column, eluting with 10% ethyl acetate in hexanes (10% ethyl acetate in hexanes, R_f 0.33) to yield 0.44 g (96%) of butyl (*E*)-*p*-cyano- α , β -difluorocinnamate as a clear, colorless oil which crystallized to a white solid on

	RCF=CFI <i>E</i> or <i>Z</i>	CO (80 to 180 psi) R'OH , NR' ₃ 3-5% Cl ₂ Pd(PPh ₃) ₂ 70-105 ^o C	RCF=CFCO ₂ R' E or Z		
Entry	Fluoroorganic Halide	Products	CO Pressure (psi)	Temperature ([°] C)	Yield (%) ^a
1	(Z)-t-BuCF=CFI	(E)-t-BuCF=CFCO2Bu	80	105	85
2	(Z)-t-BuCF=CFI		80	85	N.R.
3	(Z)-sec-BuCF=CFI	(E)-sec-BuCF=CFCO2Bu	80	105	92
4	(Z)-PhCF=CFI	(E)-PhCF=CFCO2Bu	80	105	89
5	(E)-n-BuCF=CFI	(Z)-n-BuCF=CFCO2Et	1 atm	85	33 ^b
6	(E)-n-BuCF=CFI	(Z)-n-BuCF=CF002Et	50	95	82
7	(E)-t-BuCF=CFI	(Z)-t-BuCF=CFCO ₂ Bu	180	80	83
8	(Z)-p-CH3OC6H4CF=CFI	(E)-p-CH3OC6H4CF=CFCO2	Bu 80	80	86
9	(Z)-p-CNC ₆ H ₄ CF=CFI	(E)-p-CNC ₆ H ₄ CF=CFCO ₂ Bu	100	80	96
10	(Z)-m-CF ₃ C ₆ H ₄ CF=CFI	(E)-m-CF ₃ C ₆ H ₄ CF=CFCO ₂ B	u 80	80	89
11	(<i>Z</i> , <i>Z</i>)- <i>p</i> -C ₆ H ₄ (-CF = CFI) ₂	(<i>E, E</i>)- <i>p</i> -C ₆ H ₄ (-CF=CFCO ₂ B	u) ₂ 100	80	95
12	(E)-p-CH ₃ OC ₆ H ₄ CF=CFI	(Z)-p-CH ₃ OC ₆ H ₄ CF=CFCO ₂	Bu 180	70	88

Table 1. Palladium-Catalyzed Carboalkoxylation Reactions of Fluoroorganic Halides

a) Isolated Yields. All products gave satisfactory ¹⁹F, ¹H, ¹³C NMR and HRMS data. b) 32% of unreacted starting material was recovered.

standing: mp 42-43 °C; ¹⁹F NMR (CDCl₃) δ -137.4 (d, ³*J* _{FF(trans)} = 128.5 Hz, 1 F), -156.9 (d, ³*J* _{FF(trans)} = 128.5 Hz, 1 F); ¹H NMR (CDCl₃) δ 7.90 (dm, *J* = 8.7 Hz, 2 H), 7.79 (d, *J* = 8.5 Hz, 2 H), 4.37 (t, *J* = 6.6 Hz, 2 H), 1.76 (quintet, *J* = 6.7 Hz, 2 H), 1.47 (sextet, *J* = 7.6 Hz, 2 H), 0.98 (t, *J* = 7.3 Hz, 3 H); ¹³C NMR (CDCl₃) δ 159.5 (dd, ²*J* _{CF} = 30.8 Hz, ³*J* _{CF} = 5.9 Hz), 153.4 (dd, ¹*J* _{CF} = 259.3 Hz, ²*J* _{CF} = 39.7 Hz), 141.0 (dd, ¹*J* _{CF} = 250.6 Hz, ²*J* _{CF} = 43.3 Hz), 132.5 (d, ⁴*J* _{CF} = 1.654 Hz), 132.5 (dd, ²*J* _{CF} = 23.3 Hz, ³*J* _{CF} = 6.7 Hz), 127.5 (dd, ³*J* _{CF} = 10.6 Hz, ⁴*J* _{CF} = 8.0 Hz), 117.9, 114.6 (d, ⁵*J* _{CF} = 2.7 Hz), 66.1, 30.5, 19.1, 13.7; GC-MS, *m* / *z* (relative intensity) 265 (M⁺, 7), 245 (5), 223 (4), 209 (M⁺ - C4H₈, 55), 192 (M⁺ - OC₄H9, 44), 164 (M⁺ - CO₂C4H9, 12), 144 (30), 130 (23), 124 (9), 57 (C₄H9⁺, 20), 56 (C₄H₈⁺, 100); HRMS calc for C₁₄H₁₃F₂NO₂ 265.0914, obs 265.0939.

In conclusion, we have described a stereospecific, high yielding method for the synthesis of α , β -difluoroacrylate ester derivatives and α , β -difluorocinnamate esters. These unique classes of compounds should find important applications in medicinal and agricultural chemistry due to their potential for further elaboration into biologically active products. Future reports will describe the details of this and related work.

Acknowledgment

We gratefully acknowledge the National Science Foundation for financial support of this research.

References

- Schlosser, M. Tetrahedron 1978, 34, 3. 1.
- a) Resnati, G.; Soloshnok, V.A. Fluoroorganic Chemistry: Synthetic Challenges and Biomedical Rewards 2. Tetrahedron Symposia in-Print No. 58, Tetrahedron 1996, 52, 1; b) Hudlicky, M.; Pavlath, A.E., Eds.; Chemistry of Organic Fluorine Compounds, American Chemical Society, #187, 1996; c) Banks, R.E.; Smart, B.E.; Tatlow, J.C., Eds.; Organofluorine Chemistry: Principles and Commercial Applications, Plenum Press: New York, 1994; d) Filler, R.; Kobayashi, Y.; Yagupolskii, L.M., Eds.; Organofluorine Compounds in Medicinal and Biomedical Applications, Elsevier: Amsterdam, 1993; e) Welch, J.T.; Eswarakrishman, S. Fluorine in Bioorganic Chemistry, Wiley: New York, **1991**; f) Welch, J.T. Tetrahedron **1987**, 43, 3123; g) Filler, R.; Kobayashi, Y., Eds.; Biomedical Aspects of Fluorine Chemistry, Kodasha/Elsevier: New York, 1982; h) Banks, R.E., Ed.; Organofluorine Chemicals and Their Industrial Applications, Ellis Horwood Ltd.: Chichester, 1979; i) Man, J. Chem. Soc. Rev. 1987, 16, 381.
- Hudlicky, M. Tetrahedron Lett. 1960, 1, 21. 3.
- Ojima, I.; Jameison, F.A. Biomed. Chem. Lett. 1991, 1, 581. 4.
- 5. a) Fuchikami, T.; Yamanouchi, A.; Ojima, I. Synthesis 1984, 766; b) Fuchikami, T.; Yamanouchi, A. Chem. Lett. 1984, 1595.
- 6.
- Leroy, J.; Fischer, N.; Wakselman, C. J. Chem. Soc., Perkin Trans. 1 1990, 1281. Hanzawa, Y.; Suzuki, M.; Kobayashi, Y.; Taguchi, T.; Itaka, Y. J. Org. Chem. 1991, 56, 1718. 7
- a) Molines, H.; Wakselman, C. J. Fluorine Chem. 1984,25, 447; b) Molines, H.; Wakselman, C. J. 8. Fluorine Chem. 1989,45, 155; c) Nguyen, T.; Leroy, J.; Wakselman, C. J. Org. Chem. 1993,58, 3772.
- 9. a) Tolman, V.; Spronglova, P. Collect. Czech. Chem. Commun. 1983,48, 319; b) Boguslavskaya, L.S.; Chuvatkin, N.N. J. Fluorine Chem. 1991, 54, 138; c) Molines, H.; Nguyen, T.; Wakselman, C. Synthesis 1985, 755; d) Nguyen, T.; Molines, H.; Wakselman, C. Synth. Commun. 1985, 15, 925; e) Gassen, K.R.; Bielefeldt, D.; Marhold, A.; Andres, P. J. Fluorine Chem. 1991, 55, 149; f) Dapperheld, S.; Heumüller, R.; Ulmschneider, D. J. Fluorine Chem. 1991, 54, 74.
- 10. a) Paleta, O.; Svoboda, J.; Dedek, V. J. Fluorine Chem. 1983, 23, 171; b) Gillet, J.P.; Sauvêtre, R.; Normant, J.F. Synthesis 1982, 297; c) Leroy, J.; Molines, H.; Wakselman, C. J. Org. Chem. 1987, 52, 290.
- a) Buxton, M.W.; Stacey, M.; Tatlow, J.C. J. Chem. Soc. 1954, 366; b) Drakesmith, F.F.G.; Stewart, 11. O.J.; Tarrant, P. J. Org. Chem. 1967,33, 280.
- Ratier, M.; Pereyre, M.; Davies, A.G.; Sutcliffe, R. J. Chem. Soc., Perkin Trans. 2 1984, 1907. 12.
- Martinet, P.; Sauvêtre, R.; Normant, J.F. J. Organomet. Chem. 1989, 367, 1. 13.
- a) Knunyants, I.L.; Cherbukov, Y.A. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1960**, 2162; b) Middleton, W.J. *J. Org. Chem.* **1965**, *30*, 1307; c) Vine, W.H.; Hsieh, K.; Marshall, G.R. *J. Med. Chem.* 14. 1981,24, 1043.
- Gillet, J.P.; Sauvêtre, R.; Normant, J.F. Tetrahedron Lett. 1985, 26, 3999. 15.
- (Z)-PhCF=CFZnI was prepared in 95% yield from (Z)-PhCF=CFI in THF. Treatment of (Z)-16. PhCF=CFZnI with ClCO₂Ét and catalytic Pd(PPh₃)₄ afforded (E)-PhCF=CFCO₂Et and (E,E)-PhCF=CF=CF=CFPh in 11% and 63% yield, respectively.
- a) Lu, L.; Burton, D.J. Tetrahedron Lett. 1997, 38, 7673; b) Davis, C.R.; Burton, D.J. J. Org. Chem. 17. **1997**, 62, 9217; c) Davis, C.R.; Burton, D.J. Tetrahedron Lett. **1996**, 37, 7237; d) Xue, L.; Lu, L.; Pedersen, S.D.; Liu, Q.; Narske, R.M.; Burton, D.J. Tetrahedron Lett. **1996**, 37, 1921; e) Xue, L.; Lu, L.; Pedersen, S.D.; Liu, Q.; Narske, R.M.; Burton, D.J. J. Org. Chem. 1997,62, 1064; f) Fontana, S.A.; Davis, C.R.; He, Y.-B.; Burton, D.J. Tetrahedron 1996, 52, 37; g) Yang, Z.-Y.; Burton, D.J. Tetrahedron Lett. 1990,31, 1369.
- 18. Lu, L.; Wesolowski, C.A.; Xue, L. University of Iowa, unpublished results.
- Normant, J.F. J. Organomet. Chem. 1990, 400, 19, and references cited therein. 19.
- 20.
- Schoenberg, A.; Bartoletti, I.; Heck, R.F. J. Org. Chem. 1974,39, 3318. a) Martin, L.D.; Stille, J.K. J. Org. Chem. 1982,47, 3630; b) Cowell, A.; Stille, J.K. Tetrahedron 21. Lett. 1979, 20, 133; c) Wong, P.K.; Stille, J.K. J. Org. Chem. 1975, 40, 532.
- 22. For reactions conducted at CO pressures greater than 100 psi, a 120 mL Hastelloy Parr pressure reactor was employed rather than the Fischer-Porter glass apparatus.