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a b s t r a c t

A chiron approach to the synthesis of bicyclic oxazolidinylpiperidine, a synthetically potential building
block for preparing mono- and bi-cyclic iminosugars, is reported from D-glucose using ring closing
metathesis as the key step.

� 2011 Elsevier Ltd. All rights reserved.
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The enantiomerically pure bicyclic oxazolidinylpiperidine 1
(Fig. 1) is endowed with unique structural features such as (i)
hydroxylated dehydropiperidine skeleton (ii) the presence of
amine and primary hydroxyl functionality in the protected cyclic
carbamate form and (iii) endocyclic C@C bond prone for cis-/
trans-dihydroxylation. These facts render 1 to act as a versatile
building block for the preparation of a variety of mono- and bi-cyc-
lic iminosugars I–IV.1–4

Iminosugars, also known as azasugars, are the polyhydroxylated
heterocyclic compounds with structural resemblance to carbohy-
drates wherein the endocyclic ring oxygen is replaced by the basic
nitrogen atom.7 Nojirimycin and its 1-deoxy analog, deoxynojiri-
mycin I, are the earliest two examples of natural iminosugars
found to exhibit potent glycosidase inhibitory activity.7a,8 Since
then much attention has been focused to discover their use in clin-
ical applications of carbohydrate-mediated diseases such as diabe-
tes, cancer, lysosomal storage disorders, and viral infections
(including HIV).9 Recently, two derivatives of these structure-
based compounds namely N-hydroxyethyl deoxynojirimycin
(Miglitol™) and N-butyl deoxynojirimycin (Zavesca™) have been
commercialized for the treatment of type II diabetes and Gaucher’s
disease, respectively.9c,d Although, a number of chiron as well as
asymmetric approaches are known for the preparation of imino-
sugars10 the development of a simple, efficient, and practical ap-
proach is still desirable. In this respect synthesis of
ll rights reserved.
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oxazolidinylpiperidine 1 or its derivatives and their utility in the
synthesis of different iminosugars is well established by different
research groups.1–6 For example, Ciufolini et al.2 prepared a benzyl
ether derivative of 1 from racemic furylglycine and Katsumura3

and coworkers reported its O-TBDMS derivative from (R)-4-meth-
oxycarbonyloxazolidinone which, in turn, was prepared from glyc-
idol. Riera and coworkers described an asymmetric approach
toward both enantiomers of 1 using the Sharpless asymmetric
epoxidation of (E)-2,4-pentadienol and regioselective intramolecu-
lar epoxide ring opening as key steps1a,b while; Sato as well as Lin’s
group reported chiral pool approach to 1 from D-serine in multistep
sequences.5,6 In continuation of our interest in the syntheses of
compounds11 analogous to 1 as well as iminosugars from
(+) or (−) 1
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Figure 1. Iminosugars from oxazolidinylpiperidine 1.
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Scheme 1. Retrosynthetic analysis of 1.
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carbohydrates, we describe herein a new and efficient synthesis of
(+)-1 from D-glucose.

We envisioned that, the bicyclic ring skeleton of 1 could be con-
structed from bisalkenyl diol A by ring closing metathesis (RCM)
and intramolecular carbamate formation (Scheme 1). The diol
functionality in A could be prepared from sugar-derived bisalkene
B by the sequential reaction path of 1,2-acetonide opening, cleav-
age of anomeric carbon (C1), and reduction of aldehyde. The sugar
appended bisalkene B could be synthesized from 3-azido-D-allose
derivative 2, obtained from D-glucose, by usual functional group
manipulations.
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Scheme 2. Synthesis of 1. Reagents and conditions: (a) Ph3P, THF/H2O, rt, 30 h then
aq NaHCO3, CbzCl, rt, 5 h, 90%; (b) allyl-Br, NaH, cat TBAI, THF, 0 �C to rt, 3 h, 96%; (c)
1% aq H2SO4, MeOH, rt, 10 h, 90%; (d) PPh3, I2, Imidazole, toluene, 70 �C, 3 h, 88%; (e)
Grubbs first generation cat (10 mol %), CH2Cl2, reflux, 10 h, 70%; (f) (i) TFA/H2O
(3:2), rt, 4 h; (ii) NaIO4, acetone/H2O, rt, 1 h; (g) NaBH4, MeOH/H2O (4:1), 0 �C to rt,
1 h; (h) Grubbs first generation cat (10 mol %), CH2Cl2, 40 �C, 5 h; (i) NaH, THF, 0 �C
to rt, 45 min, overall 61% (from 6).
The requisite C3 azido derivative 2 was prepared in three steps
from D-glucose as reported earlier by us and others (Scheme 2).12

The one pot Staudinger reduction of the azide functionality in 2
with PPh3 in THF/water followed by N-Cbz protection using ben-
zylchloroformate and NaHCO3 furnished 313 in 90% yield. The N-
allylation of 3 using allyl bromide and sodium hydride in the pres-
ence of catalytic TBAI in THF gave N-allylated compound 4 in 96%
yield. The regioselective hydrolysis of 5,6-acetonide in 4 using 1%
H2SO4 in methanol afforded diol 5 that on reaction with PPh3, I2,

and imidazole in toluene at 70 �C provided bisalkenyl sugar deriv-
ative 6 in 80% yield (over two steps). The RCM14 of 6 with the Grub-
bs catalyst (first generation) afforded the requisite
dehydropiperidine ring skeleton 7.15

Hydrolysis of 1,2-acetonide group in 7 under a variety of reac-
tion conditions (60% TFA/H2O, Dowex–H+, 2 N H2SO4, 30% aq
HClO4) gave a complex mixture. Therefore, we thought of an alter-
native pathway. Thus, compound 6 on hydrolysis of the 1,2-aceto-
nide functionality using 60% TFA/H2O followed by oxidative
cleavage with NaIO4 in acetone/water gave aldehyde X which
was found to be relatively unstable, and therefore immediately re-
acted with NaBH4 in methanol/H2O to afford an inseparable mix-
ture of compounds.16 This mixture was directly reacted with the
Grubbs catalyst (first generation) in CH2Cl2 at 40 �C for 5 h to give
a separable mixture of RCM products 1 and 8 in 5:2 ratio. The spec-
tral and analytical data of compound 1 were found to be in good
agreement with that reported; ½a�25

D +18.2 (c 1.2, CH2Cl2) [lit1b for
the antipode ½a�20

D �16.7 (c 1.2, CH2Cl2)]. The minor product 8
was characterized by spectral data13 and the structure was con-
firmed by converting it into 1 using sodium hydride in THF at
0 �C. The combined yield of 1, from 6, was found to be 61% in over-
all four steps.

In summary, we have developed an efficient strategy for the
preparation of synthetically useful chiral bicyclic oxazolidinylpi-
peridine (+)-1. The overall synthesis is straightforward and makes
use of cheap starting material/reagents under mild reaction condi-
tions. Utility of 1 in the syntheses of deoxyazasugars and antican-
cer swainsonine is known in the literature1–4 however, exploration
of 1 to the synthesis of new iminosugars and their biological eval-
uation is in progress and will be reported separately.
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