Tetrahedron Letters 52 (2011) 6363-6365

Contents lists available at SciVerse ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

# Chiron approach strategy to the bicyclic oxazolidinylpiperidine: a building block for preparing mono- and bi-cyclic iminosugars

Navnath B. Kalamkar, Dilip D. Dhavale\*

Department of Chemistry, Garware Research Centre, University of Pune, Pune 411 007, India

### ARTICLE INFO

### ABSTRACT

Article history: Received 4 August 2011 Revised 7 September 2011 Accepted 9 September 2011 Available online 17 September 2011

Keywords: Piperidine Iminosugar Carbohydrate Glycosidase inhibitor Chiron approach block for preparing mono- and bi-cyclic iminosugars, is reported from D-glucose using ring closing metathesis as the key step. © 2011 Elsevier Ltd. All rights reserved.

A chiron approach to the synthesis of bicyclic oxazolidinylpiperidine, a synthetically potential building

The enantiomerically pure bicyclic oxazolidinylpiperidine **1** (Fig. 1) is endowed with unique structural features such as (i) hydroxylated dehydropiperidine skeleton (ii) the presence of amine and primary hydroxyl functionality in the protected cyclic carbamate form and (iii) endocyclic C=C bond prone for *cis-/ trans*-dihydroxylation. These facts render **1** to act as a versatile building block for the preparation of a variety of mono- and bi-cyc-lic iminosugars I–IV.<sup>1–4</sup>

Iminosugars, also known as azasugars, are the polyhydroxylated heterocyclic compounds with structural resemblance to carbohydrates wherein the endocyclic ring oxygen is replaced by the basic nitrogen atom.<sup>7</sup> Nojirimycin and its 1-deoxy analog, deoxynojirimycin I, are the earliest two examples of natural iminosugars found to exhibit potent glycosidase inhibitory activity.<sup>7a,8</sup> Since then much attention has been focused to discover their use in clinical applications of carbohydrate-mediated diseases such as diabetes, cancer, lysosomal storage disorders, and viral infections (including HIV).<sup>9</sup> Recently, two derivatives of these structurebased compounds namely N-hydroxyethyl deoxynojirimycin (Miglitol<sup>™</sup>) and *N*-butyl deoxynojirimycin (Zavesca<sup>™</sup>) have been commercialized for the treatment of type II diabetes and Gaucher's disease, respectively.<sup>9c,d</sup> Although, a number of chiron as well as asymmetric approaches are known for the preparation of iminosugars<sup>10</sup> the development of a simple, efficient, and practical approach is still desirable. In this respect synthesis of oxazolidinylpiperidine **1** or its derivatives and their utility in the synthesis of different iminosugars is well established by different research groups.<sup>1-6</sup> For example, Ciufolini et al.<sup>2</sup> prepared a benzyl ether derivative of **1** from racemic furylglycine and Katsumura<sup>3</sup> and coworkers reported its *O*-TBDMS derivative from (*R*)-4-meth-oxycarbonyloxazolidinone which, in turn, was prepared from glyc-idol. Riera and coworkers described an asymmetric approach toward both enantiomers of **1** using the Sharpless asymmetric epoxidation of (*E*)-2,4-pentadienol and regioselective intramolecular epoxide ring opening as key steps<sup>1a,b</sup> while; Sato as well as Lin's group reported chiral pool approach to **1** from *D*-serine in multistep sequences.<sup>5,6</sup> In continuation of our interest in the syntheses of compounds<sup>11</sup> analogous to **1** as well as iminosugars from



Figure 1. Iminosugars from oxazolidinylpiperidine 1.





<sup>\*</sup> Corresponding author. Tel.: +91 225691727; fax: +91 20 25691728.

*E-mail addresses*: ddd@chem.unipune.ac.in, ddd@chem.unipune.ernet.in (D.D. Dhavale).

<sup>0040-4039/\$ -</sup> see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.09.039



Scheme 1. Retrosynthetic analysis of 1.

carbohydrates, we describe herein a new and efficient synthesis of (+)-1 from p-glucose.

We envisioned that, the bicyclic ring skeleton of **1** could be constructed from bisalkenyl diol **A** by ring closing metathesis (RCM) and intramolecular carbamate formation (Scheme 1). The diol functionality in **A** could be prepared from sugar-derived bisalkene **B** by the sequential reaction path of 1,2-acetonide opening, cleavage of anomeric carbon (C1), and reduction of aldehyde. The sugar appended bisalkene **B** could be synthesized from 3-azido-D-allose derivative **2**, obtained from D-glucose, by usual functional group manipulations.



**Scheme 2.** Synthesis of **1**. Reagents and conditions: (a) Ph<sub>3</sub>P, THF/H<sub>2</sub>O, rt, 30 h then aq NaHCO<sub>3</sub>, CbzCl, rt, 5 h, 90%; (b) allyl-Br, NaH, cat TBAI, THF, 0 °C to rt, 3 h, 96%; (c) 1% aq H<sub>2</sub>SO<sub>4</sub>, MeOH, rt, 10 h, 90%; (d) PPh<sub>3</sub>, l<sub>2</sub>, Imidazole, toluene, 70 °C, 3 h, 88%; (e) Grubbs first generation cat (10 mol %), CH<sub>2</sub>Cl<sub>2</sub>, reflux, 10 h, 70%; (f) (i) TFA/H<sub>2</sub>O (3:2), rt, 4 h; (ii) NaIO<sub>4</sub>, acetone/H<sub>2</sub>O, rt, 1 h; (g) NaBH<sub>4</sub>, MeOH/H<sub>2</sub>O (4:1), 0 °C to rt, 1 h; (h) Grubbs first generation cat (10 mol %), CH<sub>2</sub>Cl<sub>2</sub>, 40 °C, 5 h; (i) NaH, THF, 0 °C to rt, to rt, 45 min, overall 61% (from **6**).

The requisite C3 azido derivative **2** was prepared in three steps from D-glucose as reported earlier by us and others (Scheme 2).<sup>12</sup> The one pot Staudinger reduction of the azide functionality in 2 with PPh<sub>3</sub> in THF/water followed by N-Cbz protection using benzylchloroformate and NaHCO<sub>3</sub> furnished 3<sup>13</sup> in 90% yield. The Nallylation of **3** using allyl bromide and sodium hydride in the presence of catalytic TBAI in THF gave N-allylated compound 4 in 96% yield. The regioselective hydrolysis of 5,6-acetonide in **4** using 1%  $H_2SO_4$  in methanol afforded diol 5 that on reaction with PPh<sub>3</sub>,  $I_2$ . and imidazole in toluene at 70 °C provided bisalkenyl sugar derivative **6** in 80% yield (over two steps). The RCM<sup>14</sup> of **6** with the Grubcatalyst (first generation) afforded the requisite hs dehydropiperidine ring skeleton 7.<sup>15</sup>

Hydrolysis of 1,2-acetonide group in 7 under a variety of reaction conditions (60% TFA/H<sub>2</sub>O, Dowex-H<sup>+</sup>, 2 N H<sub>2</sub>SO<sub>4</sub>, 30% aq  $HClO_4$ ) gave a complex mixture. Therefore, we thought of an alternative pathway. Thus, compound 6 on hydrolysis of the 1.2-acetonide functionality using 60% TFA/H2O followed by oxidative cleavage with NaIO<sub>4</sub> in acetone/water gave aldehyde **X** which was found to be relatively unstable, and therefore immediately reacted with NaBH<sub>4</sub> in methanol/H<sub>2</sub>O to afford an inseparable mixture of compounds.<sup>16</sup> This mixture was directly reacted with the Grubbs catalyst (first generation) in CH<sub>2</sub>Cl<sub>2</sub> at 40 °C for 5 h to give a separable mixture of RCM products 1 and 8 in 5:2 ratio. The spectral and analytical data of compound 1 were found to be in good agreement with that reported;  $[\alpha]_D^{25}$  +18.2 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit<sup>1b</sup> for the antipode  $[\alpha]_D^{20}$  –16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>)]. The minor product **8** was characterized by spectral data<sup>13</sup> and the structure was confirmed by converting it into 1 using sodium hydride in THF at 0 °C. The combined yield of 1, from 6, was found to be 61% in overall four steps.

In summary, we have developed an efficient strategy for the preparation of synthetically useful chiral bicyclic oxazolidinylpiperidine (+)-**1**. The overall synthesis is straightforward and makes use of cheap starting material/reagents under mild reaction conditions. Utility of **1** in the syntheses of deoxyazasugars and anticancer swainsonine is known in the literature<sup>1-4</sup> however, exploration of **1** to the synthesis of new iminosugars and their biological evaluation is in progress and will be reported separately.

## Acknowledgments

We are grateful to Professor M. S. Wadia for helpful discussions. We thank the Council of Scientific and Industrial Research, New Delhi, for financial support (Project code CSIR01(2343)/09/EMR-II) and Senior Research Fellowship to N.B.K. (CSIR award No. 09/ 137(0432)/2006-EMR-I).

# Supplementary data

Supplementary data (experimental procedures and copies of  ${}^{1}\text{H}$  and  ${}^{13}\text{C}$  NMR spectra of compounds **3–8** and **1**) associated with this Letter can be found, in the online version, at doi:10.1016/j.tetlet.2011.09.039.

## **References and notes**

- (a) Martin, R.; Moyano, A.; Pericas, M. A.; Riera, A. Org. Lett. 2000, 2, 93; (b) Martin, R.; Murruzzu, C.; Pericas, M. A.; Riera, A. J. Org. Chem. 2005, 70, 2325; (c) Murruzzu, C.; Alonso, M.; Canales, A.; Jimenez-Barbero, J.; Riera, A. Carbohydr. Res. 2007, 342, 1805.
- Ciufolini, M. A.; Hermann, C. Y. W.; Dong, Q.; Shimizu, T.; Swaminathan, S.; Xi, N. Synlett **1998**, 105.
- 3. Asano, K.; Hakogi, T.; Iwama, S.; Katsumura, S. Chem. Commun. 1999, 41.
- AlRawi, S.; Hinderlich, S.; Reutter, W.; Giannis, A. Angew. Chem., Int. Ed. 2004, 43, 4366.
- 5. Shirai, M.; Okamoto, S.; Sato, F. Tetrahedron Lett. **1999**, 40, 5331.
- 6. Subramanian, T.; Lin, C.-C.; Lin, C.-C. Tetrahedron Lett. 2001, 42, 4079.

- (a) Stutz, A. E. Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond, 1st ed.; Wiley: Weinheim, Germany, 1999. p 125; (b) Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem. Rev. 2002, 102, 515.
- (a) Inouye, S.; Tsuruoka, T.; Ito, T.; Niida, T. *Tetrahedron* **1968**, *24*, 2125; (b) Ishida, N.; Kumagai, K.; Niida, T.; Tsuruoka, T.; Yumoto, H. J. Antibiot., Ser. A **1967**, *20*, 66; (c) Daigo, K.; Inamori, Y.; Takemoto, T. Chem. Pharm. Bull. **1986**, *34*, 2243; (d) lida, H.; Yamazaki, N.; Kibayashi, C. J. Org. Chem. **1987**, *52*, 3337.
- For reviews on the biological activity and therapeutic applications of iminosugars, see: (a) Horne, G.; Wilson, F. X. Prog. Med. Chem. 2011, 50, 135; (b) Horne, G.; Wilson, F. X.; Tinsley, J.; Williams, D. H.; Storer, R. Drug Discovery Today 2011, 16, 107; (c) Winchester, B. G. Tetrahedron: Asymmetry 2009, 20, 645; (d) Iminosugars: From Synthesis to Therapeutic Applications; Compain, P., Martin, O. R., Eds.; John Wiley: Chichester, UK, 2007; (e) de Melo, E. B.; Gomes, A. D. S.; Carvalho, D. S. Tetrahedron 2006, 62, 10277; (f) Asano, N. Curr. Top. Med. Chem. 2003, 3, 471; (g) Watson, A. A.; Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J. Phytochemistry 2001, 56, 265.
- For reviews and recent advances on syntheses of iminosugars, see: (a) Davis, B. G. Tetrahedron: Asymmetry 2009, 20, 652; (b) Compain, P.; Chagnault, V.; Martin, O. R. Tetrahedron: Asymmetry 2009, 20, 672; (c) Aravind, A.; Sankar, M. G.; Varghese, B.; Baskaran, S. J. Org. Chem. 2009, 74, 2858; (d) Pandey, G.; Dumbre, S. G.; Khan, M. I.; Shabab, M. J. Org. Chem. 2006, 71, 8481; (e) Pearson, M. S. M.; Mathé-Allainmat, M.; Fargeas, V.; Lebreton, J. Eur. J. Org. Chem. 2005, 2159; (f) Afarinkia, K.; Bahar, A. Tetrahedron: Asymmetry 2005, 16, 1239; (g) Ayad, T.; Genisson, Y.; Baltas, M. Curr. Org. Chem. 2004, 8, 1211; (h) Le Merrer, Y.; Poitout, L.; Depezay, J. C.; Dosbaa, I.; Geoffroy, S.; Foglietti, M. J. Bioorg. Med. Chem. 1997, 5, 519.
- (a) Kalamkar, N. B.; Kasture, V. M.; Dhavale, D. D. J. Org. Chem. 2008, 73, 3619;
  (b) Kalamkar, N. B.; Kasture, V. M.; Dhavale, D. D. Tetrahedron Lett. 2010, 51, 6745;
  (c) Kalamkar, N. B.; Kasture, V. M.; Chavan, S. T.; Sabharwal, S. G.; Dhavale, D. D. Tetrahedron 2010, 66, 8522;
  (d) Jabgunde, A. M; Kalamkar, N. B.; Chavan, S. T.; Sabharwal, S. G.; Dhavale, D. D. Tetrahedron 2010, 66, 8522;
  (d) Jabgunde, A. M; Kalamkar, N. B.; Chavan, S. T.; Sabharwal, S. G.; Dhavale, D. D. Bioorg. Med. Chem. in press. doi:10.1016/j.bmc.2011.07.059.
- (a) Chaudhari, V. D.; Ajish Kumar, K. S.; Dhavale, D. D. Org. Lett. 2005, 7, 5805;
  (b) Gruner, S. A. W.; Keri, G.; Schwab, R.; Venetianer, A.; Kessler, H. Org. Lett. 2001, 3, 3723;
  (c) Gurjar, M. K.; Patil, V. J.; Pawar, S. M. Indian J. Chem. 1987, 26B, 1115.
- 13. All compounds were characterized by IR, NMR (<sup>1</sup>H and <sup>13</sup>C) and CHN microanalysis; data for compound (3): white solid; mp = 72-73 °C;  $R_f 0.5$  (*n*hexane/ethyl acetate = 3:2);  $[\alpha]_D^{25}$  +58.3 (*c* 1.5, CHCl<sub>3</sub>); IR (neat); 1685 and 3200-3500 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>); 1.30 (6H, s, 2CH<sub>3</sub>), 1.38 (3H, s, CH<sub>3</sub>), 1.52 (3H, s, CH<sub>3</sub>), 3.85 (1H, dd, J = 9.3 and 4.0, H-3), 3.92 (1H, dd, J = 12.0 and 6.1, H-6a), 3.99-4.14 (2H, m, H-5/H-4), 4.26 (1H, dd, J = 11.5 and 6.1, H-6b), 4.60 (1H, t, J = 4.0, H-2), 5.12 (2H, AB quartet, J = 12.0, OCH<sub>2</sub>Ph), 5.21 (1H, d, J = 9.1, exchangeable with D<sub>2</sub>O, NH), 5.80 (1H, d, J = 3.6, H-1), 7.20-7.42 (5H, m, ArH); <sup>12</sup>C NMR (CDCl<sub>3</sub>) 25.3 (CH<sub>3</sub>), 26.3 (strong, 2CH<sub>3</sub>), 26.4 (CH<sub>3</sub>), 55.0 (C3), 65.2 (C6), 67.1 (OCH<sub>2</sub>Ph), 75.5 (C5), 78.5 (C4) 78.9 (C2), 103.9 (C1), 109.5 (5.6-0isopropylidene), 112.4 (1,2-O-isopropylidene) 128.0, 128.1, 128.4, 135.9 (Ar), 155.5 (NCOO). Anal. Calcd for  $C_{20}H_{27}NO_7$ : C, 61.06; H, 6.92; N, 3.56. Found: C, 61.15; H, 7.0; N, 3.76. Data for compound (4):  $R_f$  0.5 (*n*-hexane/ethyl acetate = 3:2);  $[\alpha]_D^{25}$  +140.0 (*c* 1.5, CHCl<sub>3</sub>); IR (neat); 1630 and 1685 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>); 1.30 (6H, s, 2CH<sub>3</sub>), 1.38 (3H, s, CH<sub>3</sub>), 1.59 (3H, s, CH<sub>3</sub>), 3.50–3.98 (2H, m, H-7), 3.99–4.20 (3H, m, H-3/H-6), 4.21–4.38 (1H, m, H-5), 4.39–4.52 (2H, m, H-2/H-4), 4.95–5.30 (4H, m, OCH<sub>2</sub>Ph/H-9), 5.72 (1H, br s, H-1), 5.80– 6.06 (1H, m, H-8), 7.20-7.45 (5H, m, ArH); <sup>13</sup>C NMR (CDCl<sub>3</sub>) 25.3 (CH<sub>3</sub>), 26.3 (CH<sub>3</sub>), 26.8 (CH<sub>3</sub>), 31.0 (CH<sub>3</sub>) 48.0 (C7) 59.5 (C3), 66.5 (C6) 67.6 (OCH<sub>2</sub>Ph), 75.0 (C5), 76.2 (C4), 79.8 (C2), 103.8 (C1), 109.4 (5,6-O-isopropylidene), 112.9 (1,2-O-isopropylidene) 116.1 (C9) 127.7, 127.8, 128.0, 128.3 (Ar) 135.2, 135.5 (C8/ Ar-C), 156.7 (NCOO). Anal. Calcd for C<sub>23</sub>H<sub>31</sub>NO<sub>7</sub>: C, 63.73; H, 7.21; N, 3.23. Found: C, 63.80; H, 7.25; N, 3.50. Data for compound (5): Rf 0.5 (n-hexane/ethyl acetate = 4:1)[*a*]<sub>D</sub><sup>25</sup> +41 (*c* 1.0, CHCl<sub>3</sub>); IR (neat): 1632, 3000–3600 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>); 1.30 (3H, s, CH<sub>3</sub>), 1.80 (3H, s, CH<sub>3</sub>), 2.45 (2H, br s, exchangeable acetate = 4:1) $[\alpha]_D^{25}$ with D<sub>2</sub>O, OH) 3.65 (2H, br s, H-7), 3.66–4.0 (1H, m, H-3) 4.10 (2H, dd, J = 13.5 and 6.4, H-6), 4.35 (1H, dd, J = 10.2 and 4.0, H-5), 4.42–4.58 (1H, m, H-4), 4.65 (1H, br s, H-2), 5.0–5.30 (4H, m, OCH<sub>2</sub>Ph/H-9), 5.74 (1H, d, *J* = 2.2, H-1), 5.80– 6.0 (1H, m, H-8), 7.20–7.42 (5H, m, ArH); <sup>13</sup>C NMR (CDCl<sub>3</sub>) 26.2 (CH<sub>3</sub>), 26.3 (CH<sub>3</sub>), 46.0 (C7), 61.2 (strong, C3/C6), 67.6 (OCH<sub>2</sub>Ph), 73.0 (C5) 77.2 (C4), 79.0 (C2), 105.4 (C1), 112.4 (1,2-0-isopropylidene) 123.6 (C9) 127.7, 128.0 strong, 128.3 strong (Ar), 128.5 (C8), 136.1, (Ar-C), 155.5 (NCOO). Anal. Calcd for C<sub>20</sub>H<sub>27</sub>NO<sub>7</sub>: C, 61.06; H, 6.92; N, 3.56. Found: C, 59.95; H, 7.02; N, 3.65. Data for Compound (6):  $R_1$  0.5 (*n*-became/ethyl acetate = 7.3):  $[\alpha]_D^{0.5}$  167 (*c* 1.0, CHCl<sub>3</sub>); IR (neat): 1630–1640 and 1690 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>); 1.32 (3H, s, CH<sub>3</sub>), 1.60 (3H, s, CH<sub>3</sub>), 4.13 (2H, br s, H-7), 4.30–4.46 (1H, m, H-3) 4.63 (1H, dd, *J* = 10.1 and 6.8, H-2), 4.67-4.78 (1H, m, H-4), 4.98-5.12 (2H, m, H-9a/b), 5.14 (2H, s,  $OCH_2Ph$ , 5.28 (1H, d, J = 10.2, H-6a), 5.38 (1H, br d, J = 17.3, H-6b), 5.64–5.98 (3H, m, H-1/H-5/H-8), 7.22–7.42 (5H, m, ArH); <sup>13</sup>C NMR (CDCI<sub>3</sub>) 26.2 (CH<sub>3</sub>), 26.5 (CH<sub>3</sub>), 48.0 (C7), 61.9 (C3), 67.6 (OCH<sub>2</sub>Ph), 76.1 (C2), 79.5 (C4), 103.6 (C1),

112.5 (1,2-O-isopropylidene) 116.2, 120.0 (C6/C9), 127.9 strong, 128.3 strong (Ar), 134.1 (C5), 135.6, 136.1 (C8/Ar-C), 156.6 (NCOO). Anal. Calcd for  $C_{20}H_{25}NO_5$ : C, 66.83; H, 7.01; N, 3.90. Found: C, 66.92; H, 6.95; N, 4.02. Data acetate = 7:3);  $[\alpha]_{D}^{25}$  +110 (c 0.7, CHCl<sub>3</sub>); IR (neat): 1612 and 1703 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>); 1.25 (3H, s, CH<sub>3</sub>), 1.56 (3H, s, CH<sub>3</sub>), 2.86 (1H, dd, J = 9.3 and 3.6, H-7a), 3.904.15 (2H, m, H-2/H-3), 4.42-4.52 (1H, m, H-7b) 4.95-5.20 (1H, m, H-4), 5.07 (1H, d, J = 12.1, OCH<sub>2</sub>Ph), 5.30 (1H, d, J = 12.1, OCH<sub>2</sub>Ph), 5.67-5.78 (1H, m, H-6), 5.82 (1H, d, J = 2.5, H-1), 6.24 (1H, dd, J = 8.2 and 1.9, H-5), 7.22– 7.44 (5H, m, ArH); <sup>13</sup>C NMR (CDCl<sub>3</sub>) 26.2 (CH<sub>3</sub>), 26.3 (CH<sub>3</sub>), 46.0 (C7), 61.2 (C3), 67.7 (OCH<sub>2</sub>Ph), 73.0 (C2), 78.9 (C4), 105.4 (C1), 112.4 (1,2-O-isopropylidene) 123.6 (C5), 127.7 (C6), 128.0 strong, 128.3 strong, 136.1 (Ar), 155.6 (NCOO). Data for compound (8):  $R_{\rm f}$  0.4 (*n*-hexane/ethyl acetate = 1:1);  $[\alpha]_{\rm D}^{25}$  -7.0 (*c* 0.5, CHCl<sub>3</sub>); IR (neat): 3100-3500, 1690 and 1625-1640 cm<sup>-1</sup>. The interpretation of <sup>1</sup>H NMR spectrum of this compound was found to be difficult because of broadening and additional signals due to presence of rotamers (due to N-Cbz group). However, <sup>13</sup>C NMR spectrum showed single isomer; <sup>13</sup>C NMR (CDCl<sub>3</sub>) 41.2 (C6), 57.5 (C2), 62.6 (C1), 68.2 (OCH<sub>2</sub>Ph), 69.4 (C3), 125.0, 126.1 (C4/C5), 128.0 strong, 128.4, 128.6 strong, 135.8 (Ar), 157.8 (NCOO). Anal. Calcd for  $C_{14}H_{17}NO_4$ ; C, 63.87; H, 6.51; N, 5.32. Found: C, 63.97; H, 6.41; N, 5.52. Data for compound (1): white solid; mp 85 °C; [lit.<sup>1b</sup> 86.5 °C];  $R_f$  0.4 (*n*-hexane/ethyl acetate, 1:1); [ $\alpha$ ]<sub>D</sub><sup>25</sup> +18.2 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub><sup>20</sup> -16.7 (*c* 1.2, CH<sub>2</sub>Cl<sub>2</sub>) [lit.<sup>1b</sup> for the antipode [ $\alpha$ ]<sub>D</sub> for the antipode [ $\alpha$ ] for the antipode [ $\alpha$ ] for the anti CH2Cl2)]; IR (KBr): 2900-3100, 1630 and 1698 cm-1; <sup>1</sup>H NMR (CDCl3); 1.98-2.10 (1H, br s, exchangeable with D<sub>2</sub>O, OH), 3.49 (1H, dt, J = 8.2 and 4.1, H-2), 3.63 (1H, dd, J = 18.1 and 2.6, H-6a), 4.05 (1H, dd, J = 18.1 and 2.6, H-6b), 4.13-4.20 (1H, m, H-1a) 4.34 (1H, dd, J = 9.1 and 4.1, H-1b) 4.54 (1H, dd, J = 9.0 and 8.0, H-3) 5.735.81 (2H, br s, H-4/H-5); <sup>13</sup>C NMR (CDCl<sub>3</sub>) 40.8(C6), 56.4 (C2), 67.3, 67.6 (C1/C3), 124.8, 130.0 (C4/C5), 157.9 (carbamate CO). Anal. Calcd for C<sub>7</sub>H<sub>9</sub>NO<sub>3</sub>: C, 54.19; H, 5.85; N, 9.03. Found: C, 54.25; H, 5.90; N, 8.95. The <sup>1</sup>H NMR spectra of compounds 4, 5, 6 and 8 showed broadening of signals while, <sup>13</sup>C NMR spectrum of compound **4** and **6** showed doubling of signals due to presence of N-Cbz group. In NMR data of these compounds only high intensity signals are mentioned. For the doubling/broadening of signals in NMR spectra due the isomerisation by restricted rotation around C-N bond, see: In Applications of NMR Spectroscopy in Organic Chemistry; Jackman, L. M., Sternhell, S., Eds.; Pergamon: Elmsford, NY, 1978; p 361.

- (a) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199; (b) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446.
- 15. Compound 7 was found to be highly unstable and decomposed on standing. We characterised it by spectral methods within 1 h of its preparation as it showed developing multiple spots on TLC after 1 h. Compound 7 is known; however, no (spectral/analytical) data is reported for the same. See: Ghosh, S.; Shashidhar, J.; Dutta, S. K. *Tetrahedron Lett.* **2006**, 47, 6041. We have prepared it by different methods and characterized independently. For data see Ref. 13.
- 16. In this reaction, an inseparable mixture (as evident from <sup>1</sup>H MNR) would be due to the formation of compounds Y and Z which can be probably explained as follows (Scheme 3). We believe that NaBH<sub>4</sub> reduction of an aldehyde X first results in the formation of compound Y that concomitantly undergoes partial conversion to the 5-membered carbamate ester Z via cyclization (of primary alcohol and N-Cbz group) initiated by in situ-generated base NaB(OMe)<sub>4</sub> (observed reaction pH = 8) by reaction of NaBH<sub>4</sub> and aq MeOH. On RCM reaction of this mixture the resulted products were found to be separated by column chromatography. For preparation of NaB(OMe)<sub>4</sub>, its basic nature and applications as a base, see: Campana, A. G.; Fuentes, N.; GomezBengoa, E.; Mateo, C.; Oltra, J. E.; Echavarren, A. M.; Cuerva, J. M. J. Org. Chem. 2007, 72, 8127.



Scheme 3. Mechanism for the formation of Y and Z.