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Abstract: The first synthesis of the inositol-containing marine gly-
colipid dioctadecanoyl discoside is reported. The key glycosylation
reaction proceeds with b-selectivity at reduced temperature. The
separable anomers could be readily progressed to afford discoside,
its peracetate and the unnatural b-derivatives. 
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The mannose-myo-inositol linkage is a ubiquitous struc-
tural feature of glycosylphosphatidylinositol (GPI) an-
chored cell surface proteins essential for cell–cell
recognition processes in animals and bacteria.1 The phos-
phatidylinositol mannosides (PIMs) and their multiglyco-
sylated lipomannan (LM) forms present in the cell walls
of pathogenic Mycobacterium are implicated in initial in-
fection and subsequent modulation of the immune re-
sponse.2 The resurgence of Mycobacterium tuberculosis
and the onset of multidrug resistance3 has prompted sig-
nificant interest in the evaluation of smaller natural PIMs4

and synthetic analogues5 as biological probes and poten-
tial new therapeutic agents that act via activation of cyto-
kine production, thus promoting a pro-inflammatory
response. Studies by Dunne and co-workers have also
shown that carbohydrate fatty acid ester derivatives dis-
play inhibitory activity against Gram-positive Straphylo-
coccus aureus.6

Isolated in 2005 by Fattorusso and co-workers, discoside
(1; Figure 1) is a unique marine glycolipid, obtained from
the Caribbean deep-sea sponge Discodermia dissoluta,7

which has proven to be a rich source of novel bioactive
secondary metabolites. Structurally, discoside is the first
example to be isolated from either marine or terrestrial
sources of a 4,6-O-diacylated mannoside a-linked to the
2-hydroxyl of a myo-inositol unit; the 4,6-O-fatty acyl
chains in discoside are present as a mixture of octade-
canoate (33% by lipid composition), 10- (51%) and 12-
methyloctadecanoate (16%) homologues, which were not
separated. The only closely related analogue to 1 is 1-O-
pentadecanoyl-2-O-(6-O-heptadecanoyl-a-D-mannopyra-
nosyl)-myo-inositol (2), isolated in 1968 from strains of

terrestrial Propionibacterium,8 which suggests that 1 is
produced by a symbiotic cyanobacteria associated with
the marine sponge. The unknown biological function and
unusual structure of discoside, coupled with our ongoing
interest in the synthesis of myo-inositol-containing com-
pounds and their value as biological probes,9 prompted
this synthetic venture. Herein, we report the total synthe-
sis of dioctadecanoyl discoside (3) and its corresponding
peracetate derivative.

As outlined in Scheme 1, our synthetic strategy relied on
a challenging glycosylation of the axial C2 alcohol in ben-
zyl-protected inositol 4 with the D-mannose-derived
thioglycoside 5. In order to increase overall convergency,
we chose to incorporate the C18 lipid sidechains directly
in 5, thereby minimizing the number of post-coupling
transformations and allowing direct access to 3 by global
benzyl deprotection, in preference to employing anchi-
meric assistance and the necessity for further protecting
group manipulations.
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As shown in Scheme 2, the synthesis of the inositol sub-
unit 4 started with benzylation of the axial hydroxyls of
the orthoformate 6.10–12 Allylation of the remaining hy-
droxyl in 7 was followed by cleavage of the orthoformate
(3M HCl/MeOH, reflux) and benzylation (NaH/BnBr/
DMF) to afford 8 in 72% yield over three steps. Boon’s
modified Rh-mediated isomerisation of allyl ether 8
[(Ph3P)3RhCl, n-BuLi],13 and acidic methanolysis (AcCl/
MeOH), completed the inositol subunit 4 in 66% yield.

With the inositol subunit 4 in hand, attention was then di-
rected towards the preparation of the thiomannoside do-
nor 5, as shown in Scheme 2. Starting from a-D-
phenylthiomannoside 9, which was readily available in
three steps from D-mannose,14 temporary protection of the
4- and 6-position hydroxyl groups was achieved by treat-
ment with p-MeOC6H4CH(OMe)2 and CSA (20 mol%) to
give 10 in 61% yield.14a The remaining two hydroxyl
groups were then benzylated under standard conditions
(BnBr, NaH, TBAI), prior to acidic methanolysis (CSA,
MeOH/CH2Cl2) of the anisylidene acetal to provide diol

11 in 57% yield over two steps. The required introduction
of the two octadecanoate ester sidechains proceeded
smoothly under Steglich conditions (DCC, DMAP,
CH2Cl2) to provide the a-thiomannoside donor 5 in excel-
lent yield.15

With key subunits 4 and 5 in hand, we then focused on the
key glycosylation reaction (Scheme 3). Thus, activation
of 5 [NIS (2.5 equiv), TESOTf (1.9 equiv), CH2Cl2, –40
to –20 °C] and reaction with 6 afforded a mixture of ano-
mers 12 and 13 in 63% yield with an a:b ratio of 1:4,16,17

which were separable by column chromatography. In an
effort to improve the a-selectivity of the process, we
found that performing the reaction at 0 °C led to a com-
bined 43% yield of 12 and 13 with an a:b ratio of 1:1.5.
The observed b-selectivity can be rationalised by the for-
mation of a low-temperature stable a-triflate intermediate
following the activation of 5,14a,17 which, in combination
with the preferential equatorial addition of the axial 2-hy-
droxyl of the inositol acceptor, leads to the b-linkage.4a,18

Completion of the total synthesis by global debenzylation
via hydrogenolysis of 12 with catalytic Pd black at atmo-
spheric pressure provided 4,6-octadecanoyl discoside 3 in
excellent yield, as an amorphous solid. 

Spectroscopic characterization of 3 proved challenging
due to its insolubility across a range of solvents (DMSO-
d6, CD3OD,  CDCl3, D2O, CD3OD/CDCl3).

19 In order to

Figure 1 Structure of discoside (1) and structurally related 1-O-
pentadecanoyl-2-O-(6-O-heptadecanoyl-a-D-mannopyranosyl)-myo-
inositol (2)
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Scheme 1 Retrosynthetic strategy for dioctadecanoyl discoside (3)
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Scheme 2 Reagents and conditions: (a) NaH, BnBr, DMF,
0 °C→r.t., 18 h; (b) AllBr, NaH, imidazole, DMF, 0 °C→r.t., 22 h; (c)
HCl, MeOH, 20 min, reflux; (d) NaH, BnBr, DMF, 0 °C→r.t., 5 h; (e)
(i) (Ph3P)3RhCl, n-BuLi, THF, reflux, 5 h; (ii) HCl, MeOH, CH2Cl2,
r.t., 3 h; (f) p-MeOC6H4CH(OMe)2, p-TsOH·H2O (15 mol%), DMF,
50 °C, 130 mmHg, 3 h; (g) NaH, BnBr, TBAI, DMF, 0 °C→r.t., 3 h;
(h) CSA (20 mol%), MeOH–CH2Cl2 (3:1), 75 °C, 1 h; (i) octadecan-
oic acid, DCC, DMAP, CH2Cl2, 16 h.
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overcome this problem, synthetic 3 was treated with Ac2O
in pyridine to give the peracetate 14 in 76% yield
(Scheme 3), according to the original isolation by Fat-
torusso.7 In this case, the spectroscopic data (1H and 13C
NMR, IR, MS) and specific rotation {synthetic [a]D

20

+11.3 (c 0.37, CHCl3) cf. natural [a]D
25 +12 (c 0.5,

CHCl3)}
7 for the synthetic material were in excellent

agreement with those reported for natural discoside per-
acectate.20 In an analogous manner, the b-anomer 13 was
readily transformed into its respective b-peracetate 15.21

This allowed detailed NOE and HSQC analysis of the
synthetic a- and b-anomers. Characteristic 1JC1¢-H1¢ ano-
meric coupling constants of 175 and 162 Hz for 14 and 15
were observed in the respective HSQC experiments, thus
providing unambiguous confirmation of the C1¢-configu-
ration in 1.7 

In conclusion, we have completed the first synthesis of di-
octadecanoyl discoside (3) and its peraceatate derivative
via a convergent route that proceeds in eight steps from
myo-inositol. The key glycosylation reaction proceeds
with high levels of b-selectivity at low temperature, and
further studies of 4,6-O-acylated phenylthiomannosides
are underway to examine the utility of this effect for the
synthesis of b-glycosides. With access to both anomers,
deprotection directly afforded both the dioctadecanoyl
discoside (3) and the unnatural b-analogue, and the re-
spective peracetate derivatives enabled direct spectro-
scopic comparison. Assessment of both the natural and
unnatural anomers for biological function and antimicro-
bial activity is currently being undertaken and will be re-
ported in due course.
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for C62H104O20Na: 1191.7019; found: 1191.7015.
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