Tetrahedron: Asymmetry 21 (2010) 1189-1190

Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Performance of C_1 -symmetric chiral ammonium betaines as catalysts for the enantioselective Mannich-type reaction of α -nitrocarboxylates

Daisuke Uraguchi, Kyohei Koshimoto, Chisato Sanada, Takashi Ooi*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

ARTICLE INFO

Article history: Received 11 March 2010 Accepted 6 April 2010 Available online 11 May 2010

Dedicated to Professor Henri Kagan on the occassion of his 80th birthday

1. Introduction

Over the last two decades, chiral quaternary ammonium salts have been emerging as a useful and reliable organic molecular catalyst for effecting various stereoselective transformations under mild conditions.¹ Previously elaborated chiral guaternary ammonium salts can be classified as intermolecular ion-pairing ammonium salts, and they exhibit catalytic activity in either heterogeneous (biphasic) or homogeneous systems. In both cases, the reactivity and selectivity strongly depend on the three-dimensional structure of the chiral ammonium cations as well as the properties of the counter anions. In 2008, we developed a chiral ammonium betaine, an intramolecular ion-pairing quaternary ammonium aryloxide, as a new class of ammonium salts, and successfully demonstrated its ability to function as a bifunctional organic base catalyst in a homogeneous system by achieving the highly enantioselective direct Mannichtype reaction of α -nitrocarboxylates with *N*-Boc imines.^{2,3} In the case of ammonium betaine, the entire structure of the organic ion pair can be fine-tuned by the structural modification of the backbone. Moreover, because the conjugate acid of the betaine is a quaternary ammonium cation possessing a phenolic proton, it could form a structured ion pair with a nucleophilic anion through electrostatic and hydrogen-bonding interactions, which constitutes a key element for inducing rigorous enantiocontrol. Quite recently, we introduced the second generation of this class of ammonium salts, C_1 -symmetric chiral ammonium betaine of type **1** (Fig. 1), and succeeded in determining its discrete intramolecular ion-pairing structure by single-crystal X-ray diffraction analysis. This new, structurally simple ammonium betaine exhibited high catalytic and stereocontrolling abilities, enabling the highly stereoselective Mannich-type reaction of 2-alkoxythiazol-5(4H)-ones, a unique

ABSTRACT

The catalytic performance of C_1 -symmetric chiral ammonium betaines in the enantioselective direct Mannich-type reaction of α -nitrocarboxylates with *N*-Boc imines has been investigated. The most effective catalyst structure has been identified; this provides a reliable synthetic route to a variety of enantiomerically enriched α -tetrasubstituted α , β -diamino acid derivatives.

© 2010 Elsevier Ltd. All rights reserved.

 $\alpha\text{-amino}$ acid-derived nucleophile that affords certain synthetic advantage. 4

During our continuing efforts to explore the scope and limitations of **1** as an organic base catalyst, we were interested in its performance in the direct Mannich-type reaction of α -nitrocarboxylates **3** with *N*-Boc imines **2** (see Table 2), mainly for the following two reasons: (1) this catalytic asymmetric protocol represents one of the simplest strategies to access variable precursors of α -tetrasubstituted α , β -diamino acids that are potentially valuable intermediates of biologically active, functionalized molecules; however, only a handful of effective catalyst systems have been reported in the literatures;^{5,6} (2) such an investigation offers an appropriate opportunity for evaluating the validity of having consolidated the structural features of our initially devised, pseudo C_2 -symmetric chiral ammonium betaine into **1**; this would strengthen the basis for pursuing further molecular design of this type of ammonium betaines. Herein, we report a set of results of this study.

Figure 1. Structure of C₁-symmetric chiral ammonium betaine 1.

2. Results and discussion

Initially, the reaction of *tert*-butyl 2-nitropropionate **3a** with benzaldehyde-derived *N*-Boc imine **2a** was conducted in the presence of a catalytic amount of **1a** (1 mol %) in toluene at 0 °C. Smooth bond formation occurred, and after 10 h of stirring the de-

^{*} Corresponding author. Tel.: +81 52 789 4501; fax: +81 789 3338. *E-mail address*: tooi@apchem.nagoya-u.ac.jp (T. Ooi).

^{0957-4166/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2010.04.006

Table 1

Effect of substituent on each naphthyl group of chiral ammonium betaine 1^a

^a Reactions were carried out with 0.22 mmol of **2a**, 0.2 mmol of **3a**, and 0.002 mmol of **1** in 0.4 mL of toluene at 0 °C under argon atmosphere.

91

1.6:1

47

^b Isolated yields were reported.

1d

36

^c Diastereomeric ratio was determined by ¹H NMR analysis of crude mixture.

^d Enantiomeric excess was analyzed by chiral HPLC. Absolute configuration was assigned based on the previous report.²

Table 2

4

Scope of substrate for 1c-catalyzed Mannich-type reaction of α -nitrocarboxylates with N-Boc imines^a

^a Reactions were carried out with 0.22 mmol of **2**, 0.2 mmol of **3**, and 0.002 mmol of **1**c in 0.4 mL of toluene at 0 °C under argon atmosphere.

^b Isolated yields were reported.

^c Diastereomeric ratio was determined by ¹H NMR analysis of crude mixture.

^d Enantiomeric excess was analyzed by chiral HPLC.

^e 1.5 equiv of **2** was used.

sired Mannich adduct **4a** was obtained in 92% yield. Although its diastereomeric ratio was relatively low (*syn/anti* = 2.1:1), the enantiomeric excess of the major *syn* isomer was determined to be 90% ee (Table 1, entry 1). It was of interest that the replacement of the phenyl substituent of the naphthyl unit bearing a pendent ammonium cation moiety (\mathbb{R}^2) by the sterically less demanding chlorine atom slightly improved the stereoselectivities (entry 2). Notably, the steric bulkiness of the aromatic nuclei at the 3 position of the aryloxylate unit (\mathbb{R}^1) was revealed to have significant influence on the catalytic performance of **1**. For instance, the use

of **1c** possessing a 4-*tert*-butylphenyl group as R¹ led to an improvement in both the diastereo- and enantioselectivities (entry 3), whereas a substantial decrease in catalytic efficiency and stere-oselectivities was observed when 3,5-di-*tert*-butylphenyl-substituted **1d** was tested (entry 4). Consequently, the most stereoselective catalyst **1c** was selected for further investigations.

Since the optimal structure of **1** as a catalyst was thus identified, we next examined the applicability of the present method. As shown in Table 2, a series of aromatic *N*-Boc imines with substituents having different electronic properties could be employed, and the general trend of selectivity was the moderate diastereocontrol and the rigorous enantiofacial discrimination for the major *syn* isomer (entries 1–5). It should be added that the incorporation of the *ortho* substituent seemed to be associated with a higher diastereoselectivity (entry 5). This system also tolerated heteroaromatic imines such as 2-furylaldehyde-derived one, in which the highest level of enantioselectivity was attained (entry 7). Moreover, *tert*-butyl 2-nitrobutanoate **3b** appeared to be a suitable pro-nucleophile for the **1c**-catalyzed direct Mannich-type protocol (entry 8).

3. Conclusion

We have demonstrated that structurally simplified, C_1 -symmetric chiral ammonium betaines of type **1** can function as effective catalysts for the enantioselective direct Mannich-type reaction of α -nitrocarboxylates through appropriate tuning of the backbone structure. We believe that the present study not only enhances the synthetic value of this particular transformation as a reliable tool for the catalytic asymmetric synthesis of α -tetrasubstituted α , β -diamino acid derivatives but also underscores the potential of the intramolecular ion-pairing, chiral quaternary ammonium salts as an organic molecular catalyst.

Acknowledgments

This work has been supported by the Sumitomo Foundation, the Global COE program in Chemistry of Nagoya University, and the Tatematsu Foundation.

References

- Jones, R. A. Quaternary Ammonium Salts: Their use in Phase-Transfer Catalysis; Academic Press: London, UK, 2001; Asymmetric Phase Transfer Catalysis; Maruoka, K., Ed.; Wiley-VCH: Weinheim, Germany, 2008.
- 2. Uraguchi, D.; Koshimoto, K.; Ooi, T. J. Am. Chem. Soc. 2008, 130, 10878-10879.
- For reviews on organocatalyzed Mannich-type reactions, see: (a) Ting, A.; Schaus, S. E. *Eur. J. Org. Chem.* 2007, 5797–5815; (b) Verkade, J. M. M.; van Hemert, L. J. C.; Quaedflieg, P. J. L. M.; Rutjes, F. P. J. T. *Chem. Soc. Rev.* 2008, 37, 29–41.
- 4. Uraguchi, D.; Koshimoto, K.; Ooi, T. Chem. Commun. 2010, 46, 300-302.
- (a) Knudsen, K. R.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 1362–1364; (b) Chen, Z.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 2170–2171; (c) Singh, A.; Johnston, J. N. J. Am. Chem. Soc. 2008, 130, 5866–5867; (d) Han, B.; Liu, Q.-P.; Li, R.; Tian, X.; Xiong, X.-F.; Deng, J.-G.; Chen, Y.-C. Chem. Eur. J. 2008, 14, 8094–8097; (e) Puglisi, A.; Raimondi, L.; Benaglia, M.; Bonsignore, M.; Rossi, S. Tetrahedron Lett. 2009, 50, 4340–4342.
- (a) Uraguchi, D.; Ueki, Y.; Ooi, T. J. Am. Chem. Soc. 2008, 130, 14088–14089; (b) Hernández-Toribio, J.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2008, 130, 16150–16151; (c) Kim, H.; Chin, J. Org. Lett. 2009, 11, 5258–5260; (d) Liu, X.; Deng, L.; Jiang, X.; Yan, W.; Liu, C.; Wang, R. Org. Lett. 2010, 12, 876–879.