

www.elsevier.nl/locate/carres

CARBOHYDRATE RESEARCH

Carbohydrate Research 331 (2001) 107-117

Syntheses of neoglycolipids with hexitol spacers between the saccharidic and the lipidic parts

Dominique Lafont,* Barbara Gross,¹ Rene Kleinegesse,¹ Fabienne Dumoulin, Paul Boullanger

Laboratoire de Chimie Organique II, Unité Mixte de Recherche CNRS 5622, Université Lyon 1, Chimie Physique Electronique de Lyon, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France

Received 23 November 2000; accepted 18 January 2001

Abstract

Four neoglycolipids having 2-amino-2-deoxy-D-glucose or D-galactose moieties linked to the lipidic part by a glucitol or a mannitol spacer-arm have been synthesized. The key step of the synthetic strategy was the regiospecific or regioselective β -glycosylation of partially protected glucitol or mannitol acceptors by either 3,4,6-tri-*O*-acetyl-2-de-oxy-2-iodo- α -D-mannopyranosyl azide or 2,3,4,6-tetra-*O*-benzoyl- α -D-galactopyranosyl trichloroacetimidate donors. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Neoglycolipids; Glycosylation; Staudinger reaction; Imidate; Mannitol; Glucitol

1. Introduction

In a series of studies directed towards the understanding of self-organization of (neo)glycolipids with regard to their structures, we have recently synthesized several compounds with a carbohydrate hydrophilic head and two hydrophobic chains sometimes separated by an oligoethyleneglycol spacer. These compounds displayed thermotropic, as well as lyotropic properties, and the carbohydrate moiety could be used as a recognition signal towards lectins in supramolecular assemblies such as monolayers^{1,2} or liposomes.³ This paper deals with a synthesis of new class of neoglycolipids in which the carbohydrate head is separated from its hydrophobic alkyl chains by an hexitol spacer.

2. Results and discussion

To our knowledge, chemical glycosylation of a D-hexitol on one of its primary hydroxyl groups had never been reported in the literature; however, 1-O-glycosylated hexitols could be obtained by reduction of the reducing end of disaccharides or oligosaccharides.⁴⁻⁶ In the present case, O-5 and O-6 hydroxyl groups are etherified with fatty alkyl chains prior to glycosylation, which constrained us to realize the glycosylation on the linear D-hexitol.

The first part of our syntheses was the preparation of the acceptors which is depicted in Scheme 1. Thus, in order to obtain a glucitol derivative having two fatty alkyl chains at O-5 and O-6, we started from the known 3-O-benzyl-1,2-O-isopropylidene- α -D-gluco-furanose (1) prepared according to Fleet et al.⁷ Two tetradecyl residues were incorporated on the free hydroxyl groups by reacting 1 which tetradecyl bromide at 80 °C under

^{*} Corresponding author.

E-mail address: lafont@univ-lyon1.fr (D. Lafont).

¹ On leave from the University of Stuttgart.

Scheme	1.

phase transfer conditions, in the presence of 50% aqueous sodium hydroxide and tetrabutylammonium bromide. Treatment of the di-O-tetradecyl ether (2) (obtained in 63% yield) with dilute sulfuric acid in refluxing dioxane afforded an α/β mixture of 3-O-benzyl-5,6-di-O-tetradecyl-D-glucose (3) in 93% yield. Then, the 3-O-benzyl-5,6-di-O-tetradecyl-D-glucitol (4) was synthesized from derivative 3 by reduction with sodium borohydride in a 1:1 chloroform–ethanol mixture (77% yield).

Analogs in the D-mannitol series were synthesized by two different routes. Thus, starting from the known 1,2:3,4-di-O-cyclohexylidene-D-mannitol (5),⁸ we could obtain, as described for the preparation of 2 from 1, the 5,6-di-Otetradecyl derivative 7 in 50% yield. Cleavage of the cyclohexylidene groups was realized under harsh conditions, by treatment with 2 N hydrochloric acid in refluxing dioxane. The expected 5,6-di-O-tetradecyl-D-mannitol (9) was recovered in 40% yield. We also prepared a second acceptor, with only two free hydroxyl groups. Thus, 1,2:3,4-di-O-(isopropylidene)-5,6-di-O-tetradecyl-D-mannitol (8) was synthesized in 56% yield from the known 1,2:3,4-di-O-isopropylidene-D-mannitol (6)⁹ as described above for 2 and 7; selective deprotection of the terminal isopropylidene group of 8 occurred with a high regioselectivity using an excess of zinc nitrate hexahydrate in acetonitrile at 50 °C,¹⁰ affording 3,4-O-isopropylidene-5,6-di-O-tetradecyl-D-mannitol (10) in 83% yield.

Glycosylation reaction was first attempted using 3-O-benzyl-5,6-di-O-tetradecyl-D-glucitol (4) as the acceptor, 1,3,4,6-tetra-O-acetyl-2-allyloxycarbonylamino-2-deoxy-B-D-glucopyranose¹¹ as the donor and trimethylsilyl trifluoromethanesulfonate as the promotor. Previous work in the laboratory has shown the high reactivity of this donor.¹¹⁻¹³ However, in the present case, this high reactivity was a disadvantage, and a complex mixture was obtained — probably mono- and di-glycosylated products — even at -30 °C. We decided to use 3,4,6-tri-O-acetyl-2-deoxy-2iodo- α -D-mannopyranosyl azide (11)¹⁴ as the glucosamine donor: this compound reacts in the presence of triphenylphosphine with reactive alcohol, through the formation of a 1,2aziridine intermediate, leading to β -derivatives in the 2-amino-2-deoxy-D-glucose series, after double inversion of configuration at C-1 and C-2. Furthermore, it can be prepared in high yield from 1,3,4,6-tetra-O-acetyl-2-deoxy-2iodo- α -D-mannopyranose¹⁵ and trimethylsilyl azide in the presence of trimethylsilyl trifuoromethanesulfonate. Thus, the glycosylation of the alcohol 4 by the glycosyl azide 11, in the presence of a slight excess of triphenylphosphine afforded the iodotriphenylphosphonioamino salt 12 in 76% vield (Scheme 2). The structure of this salt was ascertained by ¹H and ¹³C NMR spectroscopy and comparison with literature data.^{14–16} Conversion of the salt 12 to the acetamido derivative 13 was achieved by standard procedure and the overall glycosylation yield was 58%. O-Debenzylation (H₂, Pd/C, EtOAc) followed by reacetylation gave the peracetylated disaccharide 14 in 91% yield. The analogue in the mannitol series 16 was directly obtained by glycosylation of the tetraol 9 with the same donor 11 in a lower yield (53%); that could be due to the low solubility of the acceptor in methylene chloride. However, as in the glucitol series, the formation of bis(glycosylated) derivatives was not observed.

The structure of the disaccharides 14 and 16 was fully assigned on the basis of COSY ${}^{1}\text{H}{-}{}^{1}\text{H}$ and ${}^{1}\text{H}{-}{}^{13}\text{C}$ 2D experiments in chloroform-*d* at 500 MHz. ${}^{1}\text{H}$ NMR chemical shift

Scheme 2.

for H-2, H-3 and H-4 of the hexitol residues (δ 5.50–5.00 ppm) as well as ¹³C chemical shift for C-1 (δ 67.00–67.50 ppm) confirmed the presence of acetyl protecting groups at C-2, C-3 and C-4 and the glycosylation at C-1.

Galactosylated derivatives were also synthesized by reacting the acceptors 4 and 10 with the known 2,3,4,6-tetra-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate 17¹⁷ in methylene chloride at 0 °C, using trimethylsilyl trifluoromethanesulfonate as the promotor (Scheme 3). Glycosides 18 and 21 were, respectively, obtained in 57 and 80% yield; the lower yield observed from 18 was due to the formation bis(glycosylation) of products which were not identified. Compound 18 was successively transformed into 19 by hydrogenolysis $[Pd(OH)_2/C, cyclohexene, etha$ nol] followed by O-debenzoylation and O-reacetylation by standard procedures, to afford the peracetylated product 20 in good yield. Disaccharide 23 was also prepared in high yield from 21 by cleavage of the isopropylidene group in acidic medium (80% aq AcOH, 90 °C, 14 h) affording 22, which was debenzoylated before reacetylation. As for the glucosamine derivatives, the structure of derivatives 18, 20, 22 and 23 was ascertained from 500 MHz NMR spectra.

O-Deacetylation of the peracetylated disaccharides 14, 16, 20 and 23 by the Zemplén procedure gave the fully deprotected derivatives 24-27 in high yields.

3. Experimental

General methods.—Pyridine was dried by boiling with CaH_2 prior to distillation. Dichloromethane was washed twice with water, dried with $CaCl_2$ and distilled from CaH_2 . Pyridine and CH_2Cl_2 were stored over 4 Å molecular sieves. Melting points were determined on a Büchi apparatus and were uncorrected. Thin layer chromatography was performed on aluminum sheets coated with Silica gel 60 F_{254} (E. Merck). Compounds

Scheme 3.

were visualized by spraying the TLC plates with dilute 15% aq H₂SO₄, followed by charring at 150 °C for a few minutes. Column chromatography was performed on Silica-gel Geduran Si 60 (E. Merck). Optical rotations were recorded on a Perkin-Elmer 241 polarimeter in a 1 dm cell at 21 °C. ¹H and ¹³C NMR spectra were recorded with Bruker AC-200 or DRX-500 spectrometers working at 200 or 500 MHz and 50 or 125 MHz, respectively, with Me₄Si as the internal standard. The assignments of ¹³C NMR spectra for compounds 14, 16, 18, 20, 22 and 23 were based on ¹H-¹³C HMQC experiments in $CDCl_3$ at 500 MHz. For compounds 4, 7–9, 10, 12, 13, 15, 19 and 21, ¹³C assignments were tentatives. Elemental analyses were performed by the Laboratoire Central d'Analyses du CNRS (Vernaison, France).

3-O-Benzyl-1,2-O-isopropylidene-5,6-di-Otetradecyl-a-D-glucofuranose (2).—A suspen-3-O-benzyl-1,2-O-isopropylideneof sion α -D-glucofuranose (1)⁷ (5.00 g, 16.11 mmol) in 50% NaOH solution (22.0 mL) was stirred for 1 h at 80 °C, until complete homogenization; tetradecyl bromide (20 mL, 67.2 mmol) and Bu₄NBr (2.00 g, 6.20 mmol) were then added and heating was maintained for 6 h. After cooling and addition of water, the reaction mixture was extracted three times with CHCl₃ $(3 \times 40 \text{ mL})$ and the combined organic phases were washed with water (30 mL), dried (Na_2SO_4) and concentrated. The residue was purified by silica-gel column chromatography (35:1 petroleum ether-EtOAc) affording 2 (7.14 g, 63%) as an oil. $[\alpha]_D$ – 18.8° (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 7.33 (m, 5 H, C_6H_5), 5.90 (d, 1 H, $J_{1,2}$ 3.7 Hz, H-1), 4.96 and 4.68 (2 d, 2 H, J 11.6 Hz, CH₂Ph), 4.59 (d, 1 H, H-2), 4.21 (dd, 1 H, J_{3.4} 2.9, J_{4.5} 9.1 Hz, H-4), 4.08 (d, 1 H, H-3), 3.83–3.22 (m, 7 H, H-5, H-6a, H-6b, 2 OCH₂), 1.60, 1.53 (m, 4 H, 2 OCH₂CH₂), 1.48 (2 s, 6 H, C(CH₃)₂), 1.34 (m, 44 H, 22 CH₂ alkyl chains), 0.88 (t, 6 H, 2 CH₃ alkyl chains). Anal. Calcd for $C_{44}H_{78}O_6$ (703.06): C, 75.16; H, 11.18. Found; C, 75.12; H, 11.04.

3-O-Benzyl-5,6-di-O-tetradecyl-D-glucofuranose (3).-3-O-Benzyl-1,2-O-isopropylidene-5,6-di-O-tetradecyl- α -D-glucofuranose (2) (3.52 g, 5.00 mmol), dioxane (60 mL) and 1 N

 H_2SO_4 were refluxed for 3.5 h, until TLC showed complete disappearance of the starting material. After neutralization with satd NaHCO₃ solution, the volatiles were evaporated and the residue was diluted with water (50 mL). The aqueous phase was extracted with CH_2Cl_2 (3 × 50 mL) and the combined organic phases were dried (Na₂SO₄) and concentrated. The resulting syrup was purified by flash chromatography (2:1 petroleum ether-EtOAc) to provide 3 (3:2 α/β mixture) as an oil (3.08 g, 93%). $[\alpha]_D - 6.2^\circ$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 7.33–7.26 (m, 5 H, C₆H₅), 5.49 (dd, 0.6 H, $J_{1,2}$ 4.1, $J_{1,OH}$ 6.5 Hz, H-1α), 5.11 (d, 0.4 H, $J_{1,OH}$ 12.1 Hz, H-1_β); ¹³C NMR (CDCl₃): δ 103.45 (C-1_β), 96.81 (C-1_{α}). Anal. Calcd for C₄₁H₇₄O₆ (663.00): C, 74.27; H, 11.25. Found; C, 73.74; H, 11.18. 3-O-Benzyl-5,6-di-O-tetradecyl-D-glucitol (4).—A solution of NaBH₄ (1.00 g, 26.43 mmol) in water (25 mL) was added to a solution of 3-O-benzyl-5,6-di-O-tetradecyl-Dglucofuranose (3) (3.00 g, 4.52 mmol) in 1:2 CHCl₃-EtOH (75 mL) and the mixture was stirred at rt for 15 h. After neutralization with an Amberlyst IR 120 (H⁺) resin, the solution was diluted with a 1:1 CHCl₃-EtOH mixture (200 mL); filtration and concentration of the solution provided a residue which was purified by column chromatography (1:1 petroleum ether-EtOAc) affording the pure product 4 as a solid (2.30 g, 77%). Mp 49 °C (EtOH); [α]_D -14.4° (c 1.0, CHCl₃); $R_f 0.52$ (1:1 petroleum ether-EtOAc); ¹H NMR (CDCl₃): δ 7.36-7.25 (m, 5 H, C₆H₅), 4.70 (s, 2 H, CH₂Ph), 3.86-3.23 (m, 13 H, H-1a, H-1b, H-2, H-3, H-4, H-5, H-6a, H-6b, OH, 2 OCH₂), 2.9-32.90 (m, 2 H, 2 OH), 1.52 (m, 4 H, 2 OCH₂CH₂), 1.29 (m, 44 H, 22 CH₂ alkyl chains), 0.88 (t, 6 H, 2 CH₃ alkyl chains); ^{13}C NMR (CDCl₃): δ 138.11, 128.55–128.05 (6 C, $C_{6}H_{5}$), 77.99, 77.55 (C-3, C-5), 74.25 (CH₂C₆H₅), 71.95 (OCH₂), 71.69, 71.17 (C-2,4), 70.49 (C-6), 70.28 (OCH₂), 62.48 (C-1), 31.97, 30.22, 29.74, 29.56, 29.53, 29.41, 26.27, 26.16, 22.74 (CH₂ alkyl chains), 14.15 (2 C, 2 CH_3 alkyl chains). Anal. Calcd for $C_{41}H_{76}O_6$ (665.02): C, 74.04; H, 11.52. Found; C, 73.79; H, 11.58.

1,2:3,4-Di-O-cyclohexylidene-5,6-di-O-tetradecyl-D-mannitol (7).—A suspension of

1,2:3,4-di-*O*-cyclohexylidene-D-mannitol (5)⁸ (2.50 g, 7.30 mmol) in 50% NaOH solution (8.5 mL) was stirred for 1 h at 80 °C, until complete homogenization. Tetradecyl bromide (8.8 mL, 29.6 mmol) and Bu₄NBr (0.94, 2.91 mmol) were then added and heating was maintained for 8 h at 80 °C. After cooling and addition of water, the reaction mixture was extracted three times with $CHCl_3$ (3 × 50 mL) and the combined organic phases were washed with water (30 mL), dried (Na₂SO₄) and concentrated. The residue was purified by silicagel column chromatography (20:1 petroleum ether-EtOAc) affording 7 (2.68 g, 50%) as an oil. $[\alpha]_{D}$ + 10.3° (c 1.0, CHCl₃); R_f 0.26 (40:1 petroleum ether-EtOAc); ¹H NMR (CDCl₃): δ 4.26–3.40 (m, 12 H, H-1a, H-1b, H-2, H-3, H-4, H-5, H-6a, H-6b, 2 OCH₂), 1.58 (m, 24 H, 2 OCH₂CH₂, 10 CH₂ cyclohexyl), 1.26 (m, 44 H, 22 CH₂ alkyl chains), 0.88 (t, 6 H, 2 CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 110.18, 110.09 (2 C, 2 C(CH₂)₂), 79.49, 79.35, 78.32, 76.98 (C-2, C-3, C-4, C-5), 71.55, 70.38 (2 OCH₂), 70.81 (C-6), 66.59 (C-1), 37.01, 36.95, 36.21, 35.07, 31.97 (4 C, 2 C(CH₂)₂), 30.11-29.41, 26.21, 26.18, 25.24, 24.05, 24.00, 23.92, 22.74 (CH₂ alkyl chains and cyclohexyl), 14.14 (2 C, 2 CH₃ alkyl chains). Anal Calcd for C₄₆H₈₆O₆ (735.148): C, 75.15; H, 11.79. Found; C, 75.00; H, 11.61.

1,2:3,4-Di-O-isopropylidene-5,6-di-O-tetradecyl-D-mannitol (8).—Prepared from 1,2:3,4di-O-isopropylidene-D-mannitol $(6)^9$ (3.00 g, 11.44 mmol) as described for 7. The crude product was purified by silica-gel column chromatography (10:1 petroleum ether-EtOAc) affording 8 (4.75 g, 56%) as an oil. $[\alpha]_{\rm D}$ + 7.0° (c 1.0, CHCl₃); R_f 0.50; ¹H NMR $(CDCl_3)$: δ 4.20–3.40 (m, 12 H, H-1a, H-1b, H-2, H-3, H-4, H-5, H-6, H-6b, 2 OCH₂ alkyl chains), 1.60 (m, 4 H, 2 OCH₂CH₂), 1.43, 1.40, 1.38, 1.35 (4 s, 12 H, 2 C(CH_3)₂), 1.26 (m, 44 H, 22 CH₂ alkyl chains), 0.88 (t, 6 H, 2 CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 109.67, 109.46 (2 C, 2 C(CH₃)₂), 79.55, 79.18, 78.46, 77.03 (4 C, C-2, C-3, C-4, C-5), 71.56, 71.32 (2 C, 2 OCH₂CH₂), 70.34 (C-6), 66.58 (C-1), 31.90, 30.10–29.40 (CH₂ alkyl chains), 27.31, 27.28, 26.55, 25.42 (4 C, 2 $C(CH_3)_2$), 26.20, 26.16, 22.71 (CH₂ alkyl chains), 14.12 (2 C, 2 CH₃ alkyl chains). Anal. Calcd for C₄₀H₇₈O₆ (655.02): C, 73.34; H, 12.00. Found; C, 73.53; H, 12.20.

5,6-Di-O-tetradecyl-D-mannitol (9).-Amixture of 7 (2.35 g, 3.20 mmol), dioxane (15 mL) and 2 N HCl (5.5 mL) was stirred for 8 h at 90 °C. After cooling to rt, the solution was neutralized with satd NaHCO₃ solution, and concentrated. The residue was extracted with EtOAc $(3 \times 30 \text{ mL})$ and the combined organic phases were dried (Na_2SO_4) and concentrated again. The crude product was purified by column chromatography (EtOAc) affording a white solid which was recrystallized from EtOH: 0.74 g, 40% yield. Mp 85 °C (EtOH), $[\alpha]_{D} = -5.5^{\circ}$ (c 1.0, CHCl₃), $R_{f} = 0.55$ (EtOAc); ¹H NMR (CDCl₃): δ 3.93–3.43 (m, 13 H, H-1a, H-1b, H-2, H-3, H-4, H-5, H-6a, H-6b, OH, 2 OCH₂ alkyl chains), 3.32, 2.97, 2.52 (3 m, 3 H, 3 OH), 1.56 (m, 4 H, 2 OCH₂CH₂), 1.26 (m, 44 H, 22 CH₂ alkyl chains), 0.88 (t, 6 H, 2 CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 78.92 (C-5), 71.70, 70.23, 69.29 (3 C, C-2, C-3, C-4), 71.61, 70.36 (2 OCH₂), 70.96 (C-6), 63.63 (C-1), 31.65, 20.79–29.08, 25.81, 22.38 (CH₂ alkyl chains), 14.14 (2 C, 2 CH₃ alkyl chains). Anal. Calcd for C₃₄H₇₀O₆ (574.90): C, 71.03; H, 12.27. Found; C, 70.92; H, 12.44.

3,4-O-Isopropylidene-5,6-di-O-tetradecyl-Dmannitol (10).—To a solution of 1,2:3,4-di-Oisopropylidene-5,6-di-O-tetradecyl-D-mannitol (8) (0.655 g, 1.00 mmol) in MeCN (5 mL) was added Zn(NO₃)₂·6 H₂O (1.49 g, 5.00 mmol) and the mixture was stirred at 50 °C for 8 h. After cooling, the solution was concentrated and the oily residue, diluted with CH₂Cl₂ (15 mL), washed with water and dried (Na_2SO_4) . Evaporation of the volatiles and purification of the crude product by column chromatography (3:1 petroleum ether-EtOAc) afforded 10 (0.510 g, 83%) as a solid. An analytical sample was recrystallized from EtOH. Mp 55 °C; $[\alpha]_D$ -3.0° (c 1.0, CHCl₃); R_f 0.55; ¹H NMR $(CDCl_3): \delta 4.15 (d, 1 H, OH), 3.74-3.38 (m, 1)$ 12 H, H-1a, H-1b, H-2, H-3, H-4, H-5, H-6a, H-6b, 2 OCH₂), 2.35 (dd, 1 H, CH₂OH), 1.58 (m, 4 H, 2 OCH₂CH₂), 1.39, 1.38 (2 s, 6 H, $C(CH_3)_2$, 1.26 (m, 44 H, 22 CH₂ alkyl chains), 0.88 (t, 6 H, 2 CH₃ alkyl chains); ^{13}C NMR (CDCl₃): δ 109.28 (C(CH₃)₂), 80.39, 80.18, 78.50 (3 C, C-3, C-4, C-5), 73.07 (C-2), 71.62, 71.08 (2 C, 2 OCH₂), 70.87 (C-6), 63.91 (C-1), 31.92, 29.70–29.36 (CH₂ alkyl chains), 26.78 (2 C, C(CH₃)₂), 26.14, 25.93, 22.66 (CH₂ alkyl chains), 14.06 (2 C, 2 CH₃ alkyl chains). Anal Calcd for $C_{37}H_{74}O_6$ (614.96): C, 72.26; H, 12.13. Found; C, 72.51; H, 12.34.

3,4,6-*Tri*-O-*acetyl*-2-*deoxy*-2-*iodo*-α-D*mannopyranosyl azide* (11).—Trimethysilyl azide (1.00 mL, 7.60 mmol) and Me₃SiOTf (250 µL, 0.98 mmol) were successively added to a solution of 1,3,4,6-tetra-O-acetyl-2-deoxy-iodo- α -D-mannopyranose¹⁵ (2.05 g, 4.47 mmol) in CH₂Cl₂ (10 mL); the mixture was stirred for 15 h, and then poured into a satd NaHCO₃ solution (15 mL). The product was extracted with CH_2Cl_2 (3 × 25 mL), and the combined organic phases were washed with water (20 mL), dried (Na₂SO₄) and concentrated. The residue was purified on a short column of silica-gel (1:1 petroleum ether-AcOEt) to afford the pure product 11 as an oil (1.88 g, 95%); $[\alpha]_D^{20^{-}} + 81.2^{\circ}$ (c 2, CHCl₃); lit.¹⁴ $[\alpha]_{D}^{20} + 80.4^{\circ}$ (c 3, CHCl₃).

1-O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-2,4-di-O-acetyl-3-O*benzyl-5,6-di-O-tetradecyl-D-glucitol* (13).— Triphenylphosphine (0.288 g, 1.10 mmol) was added quickly to a cooled solution (0 °C) of 3,4,6-tri-O-acetyl-2-iodo-2-deoxy-α-D-mannopyranosyl azide (11) (0.441 g, 1.00 mmol) and 3-O-benzyl-5,6-di-O-tetradecyl-D-glucitol (4) (0.652 g, 0.98 mmol) in CH₂Cl₂ (5 mL); the mixture was allowed to reach rt and stirring was maintained for 15 h. After concentration, the residue was applied to the top of a short column of silica-gel and eluted first with 1:1 petroleum ether-EtOAc, then with pure EtOAc and finally with 4:1 EtOAc-EtOH affording 1-O-(3,4,6-tri-O-acetyl-2-deoxy-2iodotriphenylphosphonioamino-β-D-glucopyranosyl)-3-O-benzyl-5,6-di-O-tetradecyl-Dglucitol (12) (0.990 g, 76%) containing traces of triphenylphospine oxide. Yellow amorphous solid; R_f 0.76 (4:1 EtOAc–EtOH); ¹H NMR (CDCl₃): δ 7.87–7.42 (m, 20 H, $CH_2C_6H_5$ and 3 PC_6H_5), 5.84 (dd, 1 H, $J_{2',3'}$ 9.5, $J_{3',4'}$ 9.5 Hz, H-3'), 5.71 (d, 1 H, $J_{1',2'}$ 8.4 Hz, H-1'), 4.79 (dd, 1 H, $J_{4'5'}$ 9.5 Hz, H-4'), 4.65 (dd, 2 H, J 11.7 Hz, CH₂C₆H₅), 4.26-3.03 (m, 16 H, H-1a, H-1b, H-2, H-3, H-4,

H-5, H-6a, H-6b, H-2', H-5', H-6'a, H-6'b, 2 OCH₂), 2.05, 1.90, 1.70 (3 s, 9 H, 3 CH₃COO), 1.28 (m, 48 H, 24 CH₂ alkyl chains), 0.88 (t, 6 H, 2 CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 170.57, 170.10, 169.10 (3 C, 3 CH₃COO), 138.21, 135.00, 134.23, 134.00, 132.07-127.85 (21 C, 3 PC₆H₅ and CH₂C₆H₅), 121.42 (d, 3 C, J_{C.P} 103.5 Hz, 3 C-ipso PC₆H₅), 100.21 (C-1'), 78.13 (C-5), 77.39 (C-3), 74.73 (C-3'), 74.24 (CH₂C₆H₅), 72.19 (C-1), 71.86 (OCH₂), 71.69, 71.29 (3 C, C-2, C-4, C-5'), 70.53 (C-6), 70.28 (OCH₂), 69.32 (C-4'), 62.03 (C-6'), 57.98 (C-2'), 31.93, 30.31, 29.72, 29.56, 29.37, 26.26, 26.18, 22.70 (CH₂ alkyl chains), 20.70, 20.67, 20.46 (3 C, 3 CH₃COO), 14.14 (2 C, 2 CH₃ alkyl chains).

Compound 12 was dissolved in a minimum amount of EtOH, and the solution was applied on the top of a column packed with Dowex 2X8 [OH⁻] resin and eluted with EtOH. After concentration of the eluate, the residue was treated overnight with a catalytic amount of MeONa in MeOH (15 mL). Concentration followed by acetylation of the residue with a 2:1 pyridine-Ac₂O mixture (10 mL) afforded a crude compound which was purified by column chromatography (1:5 petroleum ether-AcOEt) to provide the pure product **13** as an oil (0.625 g, 58%). $[\alpha]_{D}$ -18.9° (c 1.0, CHCl₃); R_f 0.77; ¹H NMR $(CDCl_3)$: δ 7.33 (m, 5 H, $CH_2C_6H_5$), 5.24– 5.10 (m, 3 H, H-3', H-2, H-4), 5.08 (dd, 1 H, $J_{3',4''}$ 9.5, $J_{4',5''}$ 9.5 Hz, H-4'), 4.69 (s, 2 H, $CH_2C_6H_5$), 4.50 (d, 1 H, $J_{1'2'}$ 8.4 Hz, H-1'), 4.29 (dd, 1 H, J_{5',6'a} 4.4, J_{6'a,6'b} 12.4 Hz, H-6'a), 4.15-3.30 (m, 13 H, H-1a, H-1b, H-3, H-5, H-6a, H-6b, H-2', H-5', H-6'b, 2 OCH₂ alkyl chains), 2.11, 2.08, 2.05, 2.02, 2.00, 1.92 (6 s, 18 H, 5 CH₃COO, 1 CH₃CON), 1.52 (m, 4 H, 2 OCH₂CH₂), 1.28 (m, 44 H, 22 CH₂ alkyl chains), 0.88 (t, 6 H, 2 CH₃ alkyl chains); ^{13}C NMR (CDCl₃): δ 170.88, 170.79, 170.72, 170.38, 170.18, 169.32 (6 C, 6 CH₃CO), 138.23, 128.46–127.59 (6 C, CH₂C₆H₅), 99.07 (C-1'), 76.48 (C-5), 75.78 74.72 (C-3), (CH₂C₆H₅), 73.10 (C-3'), 71.92 (C-5'), 71.74 (OCH₂), 71.31, 71.00 (C-2, C-4), 70.23 (C-6), 69.50 (OCH₂), 68.47 (C-4'), 66.98 (C-1), 61.89 (C-6'), 54.10 (C-2'), 31.92, 30.08-29.35, 26.16, 26.08 (CH₂ alkyl chains), 23.17 (CH₃CON), 21.14, 21.06, 20.90, 20.72, 20.60 (5 C, 5

CH₃COO), 14.14 (2 C, 2 CH₃ alkyl chains). Anal. Calcd for $C_{59}H_{99}NO_{16}$ (1078.39): C, 65.71; H, 9.25; N 1.30. Found; C, 65.44; H, 9.02; N, 1.37.

1-O-(2-Acetamido-3,4,6-tri-O-acetyl-2-de $oxy - \beta - D - glucopyranosyl) - 2,3,4 - tri - O - acetyl-$ *5,6-di-O-tetradecyl-D-glucitol* (14).—Compound 13 (0.600 g, 0.56 mmol) in EtOAc (15 mL) was hydrogenated at rt under atmospheric hydrogen pressure in the presence of 10% Pd/C (60 mg). The suspension was stirred overnight. After filtration and concentration, the crude residue was acetylated for 18 h in a 1:2 Ac₂O–pyridine mixture (15 mL). The pure compound 14 was obtained by concentration of the solution, coevaporation from toluene and column chromatography (1:5 petroleum ether-EtOAc): 0.513 g, 91% yield. An analytical sample was recrystallized from EtOH; mp 73–74 °C; $[\alpha]_D$ – 15.4° (c 1.0, CHCl₃); R_f 0.65; ¹H NMR (CDCl₃): δ 5.90 (d, 1 H, $J_{2',\text{NH}}$ 8.5 Hz, NH), 5.47 (dd, 1 H, J_{2.3} 5.6, J_{3.4} 5.5 Hz, H-3), 5.25 (dd, 1 H, J_{2',3'} 10.0, J_{3',4'} 9.7 Hz, H-3'), 5.23 (ddd, 1 H, $J_{1a,2}$ 7.0, $J_{1b,2}$ 4.5 Hz, H-2), 5.20 (dd, 1 H, $J_{4,5}$ 10.4 Hz, H-4), 5.11 (dd, 1 H, $J_{4',5'}$ 9.4 Hz, H-4'), 4.58 (d, 1 H, $J_{1',2'}$ 8.4 Hz, H-1'), 4.31 (dd, 1 H, $J_{5',6'a}$ 4.5, $J_{6'a,6'b}$ 12.3 Hz, H-6'a), 4.12 (dd, 1 H, J_{5',6'b} 1.2 Hz, H-6'b), 3.89 (ddd, 1 H, H-2'), 3.86 (ddd, 1 H, J_{1a.1b} 11.7 Hz, H-1a), 3.75 (dd, 1 H, H-1b), 3.71 (ddd, 1 H, H-5'), 3.55 (dd, 1 H, J_{5,6a} 4.6, J_{6a 6b} 10.0 Hz, H-6a), 3.50–3.37 (m, 6 H, H-5, H-6b, 2 OCH₂), 2.10, 2.09, 2.09, 2.08, 2.02, 2.01, 1.96 (7 s, 21 H, 6 CH₃COO, 1 CH₃CON), 1.52 (m, 4 H, 2 OCH₂CH₂), 1.26 (m, 44 H, 22 CH₂ alkyl chains), 0.88 (t, 6 H, 2 CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 170.64, 170.61, 170.32, 170.32, 170.00, 169.90, 169.26 (7 C, 7 CH₃CO), 99.85 (C-1'), 76.83 (C-5), 73.37 (C-3'), 72.23 (C-5'), 72.15 (OCH₂), 71.44 (OCH₂), 70.65 (C-4), 69.80 (C-3), 69.69 (C-6), 69.54 (C-2), 68.80 (C-4'), 67.16 (C-1), 62.19 (C-6'), 54.59 (C-2'), 31.88, 29.82, 29.65-29.35, 26.00, 25.96 (CH₂ alkyl chains), 23.40 (CH₃CON), 21.12, 20.90, 20.90, 20.60, 20.60, 20.60 (6 C, 6 CH₃COO), 14.06 (2 C, 2 CH_3 alkyl chains). Anal. Calcd for C₅₄H₉₅NO₁₇ (1030.31): C, 62.95; H, 9.29; N 1.36. Found; C, 62.96; H, 9.40; N, 1.63.

 $1-O-(2-Acetamido-3,4,6-tri-O-acetyl-2-de-oxy-\beta-D-glucopyranosyl)-2,3,4-tri-O-acetyl-$

5,6-di-O-tetradecyl-D-mannitol (16).—A solution of 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-α-Dmannopyranosyl azide (11) (0.441 g, 1.00 mmol) in dry CH₂Cl₂ (5 mL) was added dropwise to a suspension of 5,6-di-O-tetradecyl-Dmannitol (9) (0.470 g, 0.82 mmol) and PPh₃ (0.288 g, 1.10 mmol) in CH₂Cl₂ (20 mL) and the mixture was stirred overnight. After concentration, the residue was applied to the top of a short column of silica-gel and eluted first with pure EtOAc, then with 4:1 EtOAc-EtOH affording 1-O-(3,4,6-tri-O-acetyl-2-deoxy - 2 - iodotriphenylphosphonioamino - β - Dglucopyranosyl) - 5,6 - di - O - tetradecyl - Dmannitol (15) containing approximately 10%of starting alcohol 9 and traces of triphenylphospine oxide. Yellow amorphous solid; R_f 0.70 (4:1 EtOAc–EtOH); ¹H NMR (CDCl₃): δ 5.83 (dd, 1 H, $J_{2',3'}$ 9.8, $J_{3',4'}$ 9.3 Hz, H-3'), 5.78 (d, 1 H, J_{1',2'} 8.0 Hz, H-1'), 4.79 (dd, 1 H, $J_{4',5'}$ 9.2 Hz, H-4'), 4.25–2.95 (m, 19 H, H-1a, H-1b, H-2, H-3, H-4, H-5, H-6a, H-6b, H-2', H-5', H-6'a, H-6'b, 3 OH, 2 OC H_2 alkyl chains), 2.03, 1.99, 1.68 (3 s, 9 H, 3 CH₃COO), 1.28 (m, 48 H, 24 CH₂ alkyl chains, 0.88 (t, 6 H, 2 CH₃ alkyl chains); ^{13}C NMR (CDCl₃): δ 170.62, 169.88, 169.28 (3 C, 3 CH₃COO), 135.02, 134.18, 133.96, 132.01-128.58 (15 C, 3 PC₆H₅), 120.95 (d, 3 C, J_{CP} 104.1 Hz, 3 C-*ipso* PC_6H_5), 100.82 (C-1'), 79.09 (C-5), 74.52 (C-3'), 71.80, 71.18 (2 C, C-6, OCH₂), 71.11 (C-5'), 71.05, 70.13, 69.78, 69.35 (4 C, C-2, C-3, C-4, C-4'), 68.21 (OCH₂), 66.51 (C-1), 61.83 (C-6'), 57.87 (C-2'), 31.83, 30.09, 29.62–29.27, 26.02, 22.59 (CH₂ alkyl chains), 20.68, 20.61, 20.37 (3 C, 3 CH₃COO), 14.14 (2 C, 2 CH₃ alkyl chains).

The salt 15 was treated as described for 12, and the crude compound was purified by petroleum column chromatography (1:5)ether-AcOEt) to provide the pure product 16 as a solid (0.446 g, 53%). Mp 101-102 °C (EtOH); $[\alpha]_D - 4.7^\circ$ (c 1.0, CHCl₃); $R_f 0.65$; ¹H NMR (CDCl₃): δ 6.13 (d, 1 H, $J_{2,\text{NH}}$ 8.3 Hz, NH), 5.47 (dd, 1 H, J_{2.3} 9.1, J_{3.4} 2.0 Hz, H-3), 5.22 (dd, 1 H, $J_{4,5}$ 1.5 Hz, H-4), 5.20 (dd, 1 H, $J_{2',3'}$ 10.1, $J_{3',4'}$ 9.6 Hz, H-3'), 5.08 (dd, 1 H, $J_{4',5'}$ 9.8 Hz, H-4'), 4.98 (ddd, 1 H, $J_{1a,2}$ 2.7, $J_{1b,2}$ 3.2 Hz, H-2), 4.42 (d, 1 H, $J_{1'.2'}$ 8.4 Hz, H-1'), 4.27 (dd, 1 H, J_{5',6'a} 4.9, J_{6'a,6'b} 12.3 Hz, H-6'a), 4.08 (m, 2 H, H-1a, H-6'b), 3.98 (ddd, 1 H, H-2'), 3.57 (ddd, 1 H, J_{5',6'b} 2.3

Hz, H-5'), 3.57 (dq, 1 H, 0.5 OCH₂), 3.49-3.33 (m, 6 H, H-5, H-6a, H-6b, 1.5 OCH₂), 3.31 (dd, 1 H, J_{1a,1b} 11.6 Hz, H-1b), 2.14, 2.08, 2.05, 2.05, 2.02, 2.01, 1.97 (7 s, 21 H, 6 CH₃COO, 1 CH₃CON), 1.52 (m, 4 H, 2 OCH₂CH₂), 1.26 (m, 44 H, 22 CH₂ alkyl chains), 0.88 (t, 6 H, 2 CH₃ alkyl chains); ^{13}C NMR (CDCl₃): δ 170.40, 170.30, 170.30, 170.06, 170.06, 169.82, 169.30 (7 C, 7 CH₃CO), 101.15 (C-1'), 77.01 (C-5), 73.55 (C-3'), 72.43 (C-5'), 72.18, 71.64 (2 C, 2 OCH₂), 71.16 (C-6), 70.04 (C-4), 68.87 (C-2, C-4'), 68.67 (C-3), 67.58 (C-1), 62.47 (C-6'), 54.58 (C-2'), 32.36, 30.32–29.69, 26.44, 26.30 (CH₂) alkyl chains), 23.45 (CH₃CON), 21.32, 21.15, 21.03, 20.90, 20.60, 20.60 (6 C, 6 CH₃COO), 14.44 (2 C, 2 CH₃ alkyl chains). Anal. Calcd for C₅₄H₉₅NO₁₇ (1030.31): C, 62.95; H, 9.29; N 1.36. Found; C, 62.78; H, 9.56; N, 1.51.

1-O-(2,3,4,6-Tetra-O-benzoyl-β-D-galactopyranosyl)-3-O-benzyl-5,6-di-O-tetradecyl-Dglucitol (18).—To a suspension of 2,3,4,6tetra - O - benzoyl - α - D - galactopyranosyl trichloroacetimidate (17)¹⁷ (0.700 g, 0.94 mmol), alcohol 4 (0,780 g, 1.18 mmol) and crushed activated 4 Å molecular sieves in CH₂Cl₂ (10 mL) at 0 °C, was added in 1 h a solution of Me₃SiOTf (15 μ L) in CH₂Cl₂ (0.5 mL). The mixture was stirred overnight, then neutralized with triethylamine (20 µL), diluted with CH_2Cl_2 (50 mL) and filtrated over celite. After concentration, the residue was purified by chromatography (5:3 column petroleum ether-EtOAc) to afford the pure galactoside **18** (0.660 g, 57%) as an oil. $[\alpha]_{\rm D}$ + 51.6° (c 1.0, CHCl₃); R_f 0.55 (2:1 petroleum ether-EtOAc); ¹H NMR (CDCl₃): δ 8.12–7.18 (m, 25 H, 5 C₆ H_5), 6.02 (dd, 1 H, $J_{3',4'}$ 3.4, $J_{4',5'}$ 0.5 Hz, H-4'), 5.84 (dd, 1 H, $J_{1',2'}$ 7.9, $J_{2',3'}$ 10.4 Hz, H-2'), 5.63 (dd, 1 H, H-3'), 4.87 (d, 1 H, H-1'), 4.62 (dd, 1 H, J_{5',6'a} 7.2, J_{6'a,6'b} 11.4 Hz, H-6'a), 4.60 and 4.54 (2 d, 2 H, J 11.0 Hz, $CH_2C_6H_5$, 4.53 (dd, 1 H, $J_{5',6'b}$ 6.0 Hz, H-6'b), 4.37 (ddd, 1 H, H-5'), 4.14 (m, 1 H, H-2), 4.00 (bd, 1 H, $J_{1a,2}$ 7.0, $J_{1a,1b}$ 10.9 Hz, H-1a), 3.97 (dd, 1 H, $J_{1b,2}$ 5.0 Hz, H-1b), 3.85 (m, 1 H, H-4), 3.83 (m, 1 H, H-3), 3.68 (dd, 1 H, $J_{5.6a}$ 4.0, J_{6a.6b} 10.2 Hz, H-6a), 3.61 (dq, 1 H, 0.5 OCH₂), 3.59 (dd, 1 H, J_{5.6b} 4.7 Hz, H-6b), 3.49-3.40 (m, 4 H, H-5, OH, OCH₂), 3.39 $(dq, 1 H, 0.5 OCH_2), 2.93 (d, 1 H, J_{4,OH} 6.3)$

Hz, OH), 1.55 (m, 4 H, 2 OCH₂CH₂), 1.27 (m, 44 H, 22 CH₂ alkyl chains), 0.90 (t, 6 H, 2 CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 166.12, 165.63, 165.6, 165.34 (4 C, 4 C₆H₅COO), 138.23, 133.67–133.27, 130.09-127.84 (30 C, 5 C₆H₅), 102.26 (C-1'), 78.35 (C-5), 76.91 (C-3), 74.28 (CH₂C₆H₅), 72.63 (C-1), 71.82 (OCH₂), 71.79–71.72 (4 C, C-2, C-4, C-3', C-5'), 70.59 (C-6), 70.31 (OCH₂), 69.92 (C-2'), 68.29 (C-4'), 62.35 (C-6'), 32.00, 30.24–29.45, 26.23, 22.77 (CH₂ alkyl chains), 14.18 (2 C, 2 CH₃ alkyl chains). Anal. Calcd for C₇₅H₁₀₂NO₁₅ (1243.57): C, 72.43; H, 8.27. Found; C, 72.34; H, 8.46.

 $1-O-(2,3,4,6-Tetra-O-benzoyl-\beta-D-galac$ topyranosyl) - 5,6 - di - O - tetradecyl - D - glucitol (19).—Palladium hydroxide (0.100 g) was added to a solution of the galactoside 18 (0.635 g, 0.51 mmol) in EtOH (8 mL) and freshly distilled cyclohexene (4 mL) and the suspension was stirred for 8 h at 80 °C. After filtration over celite, the solution was concentrated and the residue was purified on a short column of silica-gel (2:1 petroleum ether-EtOAc) to provide the pure galactoside 19 (0.524 g, 89%) as an oil. $[\alpha]_{D} + 55.6^{\circ}$ (c 1.0, CHCl₃); $R_f 0.50$ (2:1 petroleum ether–EtOAc; ¹H NMR (CDCl₃): δ 8.12–7.18 (m, 20 H, 4 C_6H_5), 6.01 (dd, 1 H, $J_{3',4'}$ 3.4, $J_{4',5'}$ 0.6 Hz, H-4'), 5.82 (dd, 1 H, $J_{1',2'}$ 7.8, $J_{2',3'}$ 10.4 Hz, H-2'), 5.62 (dd, 1 H, H-3'), 4.91 (d, 1 H, H-1'), 4.63 (dd, 1 H, J_{5',6'a} 7.3, J_{6'a,6'b} 11.4 Hz, H-6'a), 4.61 (dd, 1 H, J_{5'.6'b} 6.0 Hz, H-6'b), 4.39 (ddd, 1 H, H-5'), 3.99 (m, 2 H, H-1a, H-1b), 3.80-3.41 (m, 12 H, H-2, H-3, H-4, H-5, H-6a, H-6b, 2 OH, 2 OCH₂), 2.98 (d, 1 H, J 6.7 Hz, OH), 1.52 (m, 4 H, 2 OCH₂CH₂), 1.26 (m, 44 H, 22 CH₂ alkyl chains), 0.88 (t, 6 H, 2 CH₃) alkyl chains); ¹³C NMR (CDCl₃): δ 166.05, 165.58, 165.55, 165.46 (4 C, 4 C₆H₅COO), 133.65-133.34, 130.08–128.32 (24 C, 4 C_6H_5), 102.51 (C-1'), 78.58 (C-5), 73.56, 73.29 (C-2, C-4), 73.19 (C-1), 71.90 (OCH₂), 71.75 (C-3', C-5'), 71.27 (OCH₂), 70.57 (C-6), 69.93 (C-2'), 68.84 (C-3), 68.24 (C-4'), 62.33 (C-6'), 30.09-29.45, 26.15, 26.12, 22.75 (CH₂ alkyl chains), 14.19 (2 C, 2 CH₃ alkyl chains). Anal. Calcd for $C_{68}H_{96}NO_{15}$ (1153.43): C, 70.80; H, 8.39. Found; C, 70.56; H, 8.47.

 $1-O-(2,3,4,6-Tetra-O-acetyl-\beta-D-galacto-pyranosyl)-2,3,4-tri-O-acetyl-5,6-di-O-tetra-$

decyl-D-*glucitol* (20).—The glycoside - 19 (0.440 g, 0.50 mmol) was treated overnight in MeOH (30 mL) containing a catalytic amount of MeONa. After concentration, the residue was acetylated for 16 h at rt in a 2:1 pyridine-Ac₂O mixture (40 mL). After a new concentration, the crude product was purified by column chromatography (2:1)petroleum ether-EtOAc) to afford the pure peracetylated glycoside 20 (0.360 g, 92%) as an oil. $[\alpha]_{\rm D} = 6.8^{\circ} (c \ 1.0, \ \text{CHCl}_3); R_f \ 0.58; \ ^1\text{H} \ \text{NMR}$ (CDCl₃): δ 5.46 (dd, 1 H, J_{2,3} 5.0, J_{3,4} 5.7 Hz, H-3), 5.40 (dd, 1 H, $J_{3',4'}$ 3.4, $J_{4',5'}$ 0.7 Hz, H-4'), 5.23 (m, 1 H, H-4), 5.22 (ddd, 1 H, J_{1a.2} 7.0, $J_{1b,2}$ 3.9 Hz, H-2), 5.17 (dd, 1 H, $J_{1',2'}$ 7.9, J_{2',3'} 10.4 Hz, H-2'), 5.02 (dd, 1 H, H-3'), 4.47 (d, 1 H, H-1'), 4.17 (d, 2 H, J 6.9 Hz, H-6'a, H-6'b), 3.93 (dd, 1 H, J_{1a.1b} 11.5 Hz, H-1a), 3.91 (ddd, 1 H, H-5'), 3.71 (dd, 1 H, H-1b), 3.58-3.38 (m, H-5, H-6a, H-6b, 2 OCH₂), 2.17, 2.11, 2.11, 2.09, 2.07, 2.07, 1.99 (7s, 21 H, 7 CH₃CO), 1.55 (m, 4 H, 2 OCH₂CH₂), 1.29 (m, 44 H, 22 C H_2 alkyl chains), 0.89 (t, 6 H, 2 CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 170.10, 170.04, 169.85, 169.61, 169.73, 169.45, 169.30 (7 C, 7 CH₃COO), 100.92 (C-1'), 76.53 (C-5), 71.59 (OCH₂), 70.79 (C-6), 70.64 (C-3'), 70.20 (C-5'), 70.16 (C-2, C-4), 69.66 (OCH₂), 69.11 (C-3), 68.42 (C-2'), 67.15 (C-1), 66.96 (C-4'), 61.05 (C-6'), 31.85, 29.75, 29.60, 29.50, 29.41, 29.37, 29.27, 26.03, 25.91, 22.58 (CH₂) alkyl chains), 20.67, 20.65, 20.60, 20.47, 20.47, 20.47, 20.37 (7 C, 7 CH₃COO), 14.00 (2 C, 2 CH_3 alkyl chains). Anal. Calcd for $C_{54}H_{94}O_{18}$ (1031.29): C, 62.88; H, 9.19. Found; C, 62.93; H, 9.37.

1-O-(2,3,4,6-Tetra-O-benzoyl-β-D-galactopyranosyl) - 3,4 - O - isopropylidene - 5,6 - di - Otetradecyl-D-mannitol (21).-To a suspension 2,3,4,6-tetra-O-benzoyl-a-D-galactopyraof nosyl trichloroacetimidate $(17)^{17}$ (741 mg, 1.00 mmol), alcohol 10 (0.615 g, 1.00 mmol) and crushed activated 4 Å molecular sieves in CH₂Cl₂ (5 mL) at 0 °C, was added in 1 h a solution of Me₃SiOTf (10 μ L) in CH₂Cl₂ (0.5 mL). The mixture was stirred overnight, then neutralized with triethylamine (20 μ L), diluted with CH_2Cl_2 (50 mL) and filtrated over celite. After concentration, the residue was purified by column chromatography (3:1 petroleum ether-EtOAc) to afford the pure glycoside 21

(0.955 g, 80%) as an oil. $[\alpha]_{\rm D}$ + 54.3° (c 1.0, CHCl₃); R_f 0.64; ¹H NMR (CDCl₃): δ 8.12– 7.21 (m, 20 H, 4 C₆ H_5), 6.01 (dd, 1 H, $J_{3'4'}$ 3.3, $J_{4'.5'}$ 0.7 Hz, H-4'), 5.85 (dd, 1 H, $J_{1',2'}$ 7.9, $J_{2',3'}$ 10.3 Hz, H-2'), 5.62 (dd, 1 H, H-3'), 4.98 (d, 1 H, H-1'), 4.70 (dd, 1 H, $J_{5',6'a}$ 5.9, $J_{6'a,6'b}$ 10.6 Hz, H-6'a), 4.44 (dd, 1 H, J_{5',6'b} 6.8 Hz, H-6'b), 4.35 (ddd, 1 H, H-5'), 4.24 (bd, 1 H, J_{1a,2} 0.8, $J_{1a,1b}$ 10.3 Hz, H-1a), 3.88–3.15 (m, 12 H, H-1b, H-2, H-3, H-4, H-5, H-6a, H-6b, 1 OH, 2 OCH₂), 1.54 (m, 4 H, 2 OCH₂CH₂), 1.26 (m, 50 H, $C(CH_3)_2$, 22 CH₂ alkyl chains), 0.88 (t, 6 H, 2 CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 166.05, 165.61, 165.61, 165.19 (4 C, 4 C₆H₅COO), 133.56–133.26, 129.84–128.29 (24 C, 4 C₆H₅), 109.39 (C(CH₃)₂), 102.34 (C-1'), 80.11 (C-5), 78.80 (2 C, C-3, C-4), 72.76 (C-2), 71.90 (C-3'), 71.76, 71.63 (2 C, C-1, OCH₂), 71.32 (C-5'), 71.23 (OCH₂), 70.84 (C-6), 70.06 (C-2'), 68.20 (C-4'), 62.02 (C-6'), 31.98, 29.77-29.42 (CH₂ alkyl chains), 26.84 (2 C, C(CH₃)₂), 26.21-25.89, 22.74 (CH₂ alkyl chains), 14.18 (2 C, 2 CH₃ alkyl chains). Anal. Calcd for $C_{71}H_{100}NO_{15}$ (1193.51): C, 71.44; H, 8.44. Found; C, 71.28; H, 8.47.

1-O-(2,3,4,6-Tetra-O-benzoyl-β-D-galactopyranosyl) - 5,6 - di - O - tetradecyl - D - mannitol (22).—A solution of the pure glycoside 21 (0.478 g, 0.40 mmol) in 80% aq AcOH was heated for 14 h at 90 °C. After concentration and coevaporation from toluene $(2 \times 10 \text{ mL})$, the residue was purified on a short column of silica-gel (5:4 petroleum ether-EtOAc) to afford the pure glycoside 22 (0.410 g, 89%) as an oil. $[\alpha]_D + 48.9^\circ$ (c 1.0, CHCl₃); $R_f 0.35$ (2:1 petroleum ether–EtOAc); ¹H NMR (CDCl₃): δ 8.13–7.26 (m, 20 H, 4 C₆H₅), 6.02 (dd, 1 H, $J_{3',4'}$ 3.4, $J_{4',5'}$ 0.6 Hz, H-4'), 5.82 (dd, 1 H, $J_{1',2'}$ 7.8, J_{2',3'} 10.5 Hz, H-2'), 5.65 (dd, 1 H, H-3'), 4.94 (d, 1 H, H-1'), 4.67 (dd, 1 H, $J_{5'6'a}$ 6.6, $J_{6'a.6'b}$ 11.4 Hz, H-6'a), 4.48 (dd, 1 H, $J_{5'.6'b}$ 6.4 Hz, H-6'b), 4.38 (ddd, 1 H, H-5'), 4.22 (bd, 1 H, J_{1a.2} 2.4, J_{1a.1b} 10.0 Hz, H-1a), 3.94–3.89 (m, 2 H, H-2, H-4), 3.87 (dd, 1 H, J_{1b.2} 6.6 Hz, H-1b), 3.67 (ddd, 1 H, $J_{2,3}$ 6.3, $J_{3,4}$ 2.4, $J_{3,OH}$ 6.0 Hz, H-3), 3.59 (dq, 1 H, 0.5 OCH₂), 3.55-3.50 (m, 3 H, H-5, H-6a, H-6b), 3.46 (dq, 1 H, 0.5 OCH₂), 3.42 (dq, 2 H, 1 OCH₂), 3.16 (d, 1 H, J 5.7 Hz, OH), 3.14 (d, 1 H, J 6.3 Hz, OH), 2.78 (d, 1 H, J 6.0 Hz, OH), 1.54 (m, 4 H, 2 OCH₂CH₂), 1.27 (m, 44 H, 22 CH₂ alkyl chains), 0.90 (t, 6 H, 2 CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 166.02, 165.60, 165.53, 165.53 (4 C, 4 C₆H₅COO), 133.56–133.25, 130.50–128.28 (24 C, 4 C₆H₅), 102.22 (C-1'), 79.96 (C-5), 72.46 (C-1), 71.84 (OCH₂), 71.75 (C-3'), 71.56 (C-5'), 71.36 (OCH₂), 70.82 (C-6), 70.77 (C-2), 70.50 (C-3), 70.13 (C-2', C-4), 68.34 (C-4'), 62.20 (C-6'), 31.97, 30.11–29.41, 26.14, 22.73 (CH₂ alkyl chains), 14.17 (2 C, 2 CH₃ alkyl chains). Anal. Calcd for C₆₈H₉₆NO₁₅ (1153.44): C, 70.80; H, 8.39. Found; C, 70.64; H, 8.45.

1-O-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)-2,3,4-tri-O-acetyl-5,6-di-O-tetradecyl-D-mannitol (23).—The glycoside 22 (0.577 g, 0.50 mmol) was treated overnight in MeOH (30 mL) containing a catalytic amount of MeONa. After concentration, the residue was acetylated for 16 h at rt in a 2:1 pyridine-Ac₂O mixture (40 mL). After a new concentration, the residue was purified by column petroleum chromatography (2:1 ether-EtOAc) to afford the pure peracetylated glycoside 23 (0.480 g, 93%) as a solid. Mp 60 °C (EtOH); $[\alpha]_{D}$ + 42.5° (*c* 1.0, CHCl₃); R_f 0.58; ¹H NMR (CDCl₃): δ 5.47 (dd, 1 H, $J_{2,3}$ 8.4, $J_{3,4}$ 2.3 Hz, H-3), 5.39 (dd, 1 H, $J_{3',4'}$ 3.4, $J_{4',5'}$ 0.8 Hz, H-4'), 5.20 (dd, 1 H, J_{1',2'} 7.9, J_{2',3'} 10.4 Hz, H-2'), 5.18 (dd, 1 H, J_{4.5} 7.8 Hz, H-4), 5.14 (ddd, 1 H, $J_{1a,2}$ 3.2, $J_{1b,2}$ 6.7 Hz, H-2), 5.00 (dd, 1 H, H-3'), 4.48 (d, 1 H, H-1'), 4.18 (dd, 1 H, J_{5',6'a} 6.6, J_{6'a,6'b} 11.2 Hz, H-6'a), 4.13 (dd, 1 H, J_{5',6'b} 6.9 Hz, H-6'b), 3.99 (dd, 1 H, J_{1a 1b} 11.3 Hz, H-1a), 3.90 (ddd, 1 H, H-5'), 3.60 (dq, 1 H, 0.5 OCH₂), 3.57 (dd, 1 H, H-1b), 3.50 (dd, 1 H, J_{5,6a} 3.5, J_{6a,6b} 9.8 Hz, H-6a), 3.44 (m, 1 H, H-5), 3.43–3.36 (m, 3 H, H-6b, OCH₂), 3.31 (dq, 1 H, 0.5 OCH₂), 2.16, 2.14, 2.09, 2.08, 2.07, 2.05, 1.99 (7s, 21 H, 7 CH₃COO), 1.53 (m, 4 H, 2 OCH₂CH₂), 1.27 (m, 44 H, 22 CH₂ alkyl chains), 0.90 (t, 6 H, 2 CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 170.10, 170.02, 169.85, 169.85, 169.68, 169.68, 169.68 (7 C, 7 CH₃COO), 100.91 (C-1'), 76.35 (C-5), 71.58, 71.13 (2 C, 2 OCH₂), 70.80 (C-3'), 70.63 (C-5'), 70.46 (C-6), 69.46 (C-4), 69.14 (C-2), 68.98 (C-3), 68.40 (C-2'), 67.48 (C-1), 66.97 (C-4'), 62.10 (C-6'), 31.82, 29.83-29.26, 26.01, 25.90, 22.57 (CH₂ alkyl chains), 13.99 (2 C, 2 CH₃ alkyl chains). Anal. Calcd

for $C_{54}H_{94}O_{18}$ (1031.29): C, 62.88; H, 9.19. Found; C, 62.58; H, 9.20.

1-O-(2-Acetamido-2-deoxy-β-D-glucopyranosyl)-5,6-di-O-tetradecyl-D-glucitol (24).— Compound 14 (0.402 g, 0.39 mmol) in MeOH (15 mL) was stirred for 24 h in the presence of a catalytic amount of MeONa. The solubilization occurred after a few minutes, and the deacetylated product started to crystallize some minutes later. The product 24 (0.175 g, 90%) was obtained by filtration and washed with MeOH (3 × 5 mL): solid, mp 193 °C (MeOH). Anal. Calcd for C₄₂H₈₃NO₁₁ (778.09): C, 64.83; H, 10.75; N 1.80. Found; C, 64.76; H, 11.13; N, 1.92.

1-O-(2-Acetamido-2-deoxy-β-D-glucopyranosyl)-5,6-di-O-tetradecyl-D-mannitol (25).— Compound 16 (0.360 g, 0.35 mmol) in MeOH (15 mL) was treated as described for 14. The product 25 was recovered as a solid (0.253 g, 93%); mp 191 °C (MeOH). Anal. Calcd for $C_{42}H_{83}NO_{11}$ ·H₂O (796.11): C, 63.36; H, 10.76; N 1.76. Found; C, 63.17; H, 10.61; N, 1.86.

1-O-β-D-Galactopyranosyl-5,6-di-O-tetradecyl-D-glucitol (26).—The glycoside 20 (0.300 g, 0.29 mmol) was treated overnight in MeOH (10 mL) containing a catalytic amount of sodium methylate. After neutralization with an Amberlyst IR 120 (H⁺) resin, the solution was concentrated to afford a solid which was just washed with deionized water, recovered by filtration and crystallized from abs EtOH (0.195 g, 89% yield). Mp 192 °C (EtOH). Anal. Calcd. for C₄₀H₈₀O₁₁·H₂O (755.06): C, 63.62; H, 10.95. Found; C, 63.47; H, 10.85. 1-O-β-D-Galactopyranosyl-5,6-di-O-tetra-

decyl-D-*mannitol* (27).—The glycoside 23 (0.343 g, 0.42 mmol) was treated as described for 16 to afford 27 as a solid (0.291 g, 92% yield). Mp 199 °C (MeOH). Anal. Calcd. for $C_{40}H_{80}O_{11}$ ·H₂O (755.06): C, 63.62; H, 10.95. Found; C, 63.47; H, 10.84.

References

- Boullanger, P.; Sancho-Camborieux, M.-R.; Bouchu, M.-N.; Marron-Brignone, L.; Morélis, R. M.; Coulet, P. R. *Chim. Phys. Lipids* 1997, 90, 63–74.
- Berthelot, L.; Rosilio, V.; Costa, M. L.; Chierici, S.; Albrecht, G.; Boullanger, P.; Baszkin, A. Coll. Surf. B: Biointerfaces 1998, 11, 239-248.

- Gehlhausen, M.; Besson, F.; Chierici, S.; Lafont, D.; Boullanger, P.; Roux, B. Coll. Surf. B: Biointerfaces 1998, 10, 395–404.
- 4. Levene, P. A.; Tipson, R. S. J. Biol. Chem. 1938, 125, 355-360.
- Wolfrom, M. L.; Gardner, T. S. J. Am. Chem. Soc. 1940, 62, 2553–2555.
- Lau, J. M.; McNeil, M.; Darvill, A. G.; Albersheim, P. Carbohydr. Res. 1987, 168, 219–244.
- 7. Fleet, G. W.; Witty, D. R. *Tetrahedron Asymmetry* **1990**, *1*, 119–136.
- Bourne, E. J.; Corbett, W. M.; Erilinne, D. J. Chem. Soc. 1950, 786–790.
- Brauer, N.; Kirschning, A.; Schaumann, E. Eur. J. Org. Chem. 1998, 2729–2732.

- 10. Vijayasaradhi, S.; Singh, J.; Singh Aidhen, I. Synlett. 2000, 110-112.
- 11. Boullanger, P.; Banoub, J.; Descotes, G. Can. J. Chem. 1987, 65, 1343-1348.
- Boullanger, P.; Jouineau, M.; Bouammali, B.; Lafont, D.; Descotes, G. Carbohydr. Res. 1990, 202, 151–164.
- 13. Lafont, D.; Boullanger, P.; Fenet, B. J. Carbohydr. Chem. **1994**, *13*, 565–584.
- 14. Lafont, D.; Guilloux, P.; Descotes, G. Carbohydr. Res. 1989, 193, 61-73.
- 15. Lafont, D.; Boullanger, P.; Rosenzweig, M. J. Carbohydr. *Chem.* **1998**, *17*, 1377–1393.
- Lafont, D.; Wollny, A.; Boullanger, P. Carbohydr. Res. 1998, 310, 9–16.
- 17. Rio, S.; Beau, J. M.; Jacquinet, J.-C. Carbohydr. Res. 1993, 244, 295-313.