Tetrahedron Letters 53 (2012) 6355-6357

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Direct β -amination reaction in porphyrin systems—a simple route to compounds containing two nitrogen substituents at both β -positions of the same pyrrole unit

Stanisław Ostrowski*, Sebastian Grzyb

Institute of Chemistry, Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach (formerly University of Podlasie), ul. 3 Maja 54, 08-110 Siedlce, Poland

ARTICLE INFO

Article history: Received 11 June 2012 Revised 25 August 2012 Accepted 6 September 2012 Available online 14 September 2012

Keywords: Porphyrins β-Amination N,N,N-Trimethylhydrazinium iodide Aromatic nucleophilic substitution of hydrogen

ABSTRACT

The direct β -amination of porphyrin derivatives is described. 2-Nitro-*meso*-tetraarylporphyrins (zinc and copper complexes) react with *N*,*N*,*N*-trimethylhydrazinium iodide (TMHI) in the presence of a base (KOH/ DMSO system, ca 70–80 °C) to give products of nucleophilic aromatic substitution of hydrogen. In this process, the nucleophilic replacement of a H-atom by an NH₂ group takes place. The products obtained, bearing two neighbouring nitrogen substituents on the same pyrrole ring, are valuable intermediates for various synthetic uses.

© 2012 Elsevier Ltd. All rights reserved.

etrahedro

β-Functionalized porphyrins are very useful and versatile intermediates for the synthesis of more complex moieties (e.g., Lacerda et al.;¹ Alonso et al.;² Silva et al.;³ Silva et al.;⁴ Wang et al.;⁵ Ostrowski and Wyrębek⁶). Among others, β-amino derivatives appear to be very attractive starting materials.⁷ They were used for the preparation of *N*-linked bis-porphyrins (e.g., Tröger's base analogues^{7a}), new porphyrins with extended π-system (pyrazine- and quinoxaline-fused porphyrins,^{7b} pyridine-fused porphyrins,^{2,7c,7d} imidazole-fused porphyrins,^{7e,7f} etc.), or porphyrins conjugated with a fused peripheral *N*-heterocyclic carbene moiety (NHC).^{7e,7f} β-Amino functionalization also offers the possibilities for modulation of physico-chemical properties of the parent compounds (e.g., sensitivity to oxidation and very interesting electrochemical properties^{7b}).

Simple β -aminoporphyrins are usually prepared by reduction of the corresponding nitro-derivatives. Their synthesis could be possible, as well, by the aromatic nucleophilic substitution of hydrogen in appropriate electrophilic porphyrin systems. However, in the literature there are only occasional known examples of this type of nucleophilic substitution in β -positions of porphyrins by nitrogen nucleophiles.^{7b,7e,7f,8}

In continuation of our ongoing research, investigations towards the synthesis of β -amino-porphyrins via vicarious nucleophilic substitution of hydrogen⁹ were undertaken. We have already suc-

cessfully applied this methodology for the amination of porphyrins in *meso*-aryl rings.¹⁰

Herein, electrophilic β -nitroporphyrins were used as the starting materials, which can be easily prepared according to literature methods (Scheme 1).¹¹ Some are known compounds and they were previously used in our laboratory.

Initially, the NH groups inside the core ring were protected to avoid *N*-anion generation under the strong basic conditions employed.^{10,12} *N*,*N*,*N*-Trimethylhydrazinium iodide ([Me₃N⁺-NH₂]I⁻)

 $\begin{array}{l} \textbf{a:} \ M = Zn, \ Ar = Ph; \ \textbf{b:} \ M = Cu, \ Ar = 3-F-C_6H_4; \ \textbf{c:} \ M = Cu, \ Ar = 3-Cl-C_6H_4; \\ \textbf{d:} \ M = Cu, \ Ar = 3-Me-C_6H_4; \ \textbf{e:} \ M = Cu, \ Ar = 3-MeO-C_6H_4 \end{array}$

Scheme 1.

^{*} Corresponding author. Tel.: +48 25 643 1113; fax: +48 25 644 2045. *E-mail address:* stan@uph.edu.pl (S. Ostrowski).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.09.024

was chosen as the aminating agent, which has been previously successfully applied in several reactions. We also used other aminating reagents (sulfenamides, hydroxylamine, and 4-amino-4*H*-1,2,4-triazole) which were tested for various porphyrin systems in our laboratory, but only with moderate success.¹³ Similarly, in the present case, when using the above listed reagents, we did not observe promising results. It should be mentioned, however, that for 4-amino-4*H*-1,2,4-triazole Richeter et al. reported good yields of the β -amination of two similar porphyrinates.^{7e,7f}

In the first experiment, β -nitroporphyrin-zinc(II) **3a** was reacted with TMHI to give the expected 2-amino-3-nitro-substituted product **4a** (KOH/DMSO, 70–80 °C, 1.5 h).¹⁴ The yield of this product was very high (89%). In its ¹H NMR spectrum the characteristic signal of the β -proton neighbouring the NO₂ group had disappeared. This provided clear evidence that the substitution occurred on the same pyrrole ring containing the NO₂ group. Additionally, a broad singlet was observed at 6.54 ppm (NH₂) and three doublets: 8.98 ppm (*J* = 4.9 Hz, 1H), 8.84 ppm (*J* = 4.9 Hz, 1H), and 8.54 ppm (*J* = 4.9 Hz, 1H) due to three of the remaining β -protons. The other three β -protons appeared as a multiplet at 8.75–8.81 ppm. These signals confirmed the structure of product **4a**. Three similar compounds were obtained by Crossley et al.^{7b} and Richeter et al.^{7e, 7f} They used other *N*-nucleophiles, generated from amides and from 4-amino-4*H*-1,2,4-triazole.

Amination of several other porphyrin complexes with the use of TMHI gave good yields of the expected products:¹⁴ [2-amino-3-nitro-5,10,15,20-tetrakis(3-fluorophenyl)porphyrinato]copper(II) (**4b**, 64%), [2-amino-3-nitro-5,10,15,20-tetrakis(3-chlorophenyl)porphyrinato]copper(II) (**4c**, 65%), [2-amino-3-nitro-5,10,15,20-tetrakis(3-methylphenyl)porphyrinato]copper(II) (**4d**, 79%), and [2-amino-3-nitro-5,10,15,20-tetrakis(3-methoxyphenyl)porphyrinato]copper(II) (**4e**, 70%) (Scheme 2). It is worth noting that labile groups such as F or Cl in *meso*-aryl rings did not enter into an S_NAr substitution reaction with the hydrazinium anion.

In the reaction of **3e**, the desired product **4e** was accompanied by small amounts of [2-hydroxy-3-nitro-5,10,15,20-tetrakis(3methoxyphenyl)porphyrinato]copper(II) (**5e**, 6%). Probably, this is due to an OH⁻addition to the nitroporphyrin complex and subsequent oxidation of the σ^{H} -adduct formed, according to the oxidative nucleophilic substitution mechanism (ONSH).^{10b,15,16}

The products described in this communication represent valuable intermediates for further syntheses, which sometimes can be realized under acidic conditions. To avoid potential problems in these transformations, we decided to convert the above chelates into the free porphyrin bases. Therefore, the synthesized compounds were demetallated in reactions carried out in $H_2SO_4/CF_3COOH/CHCl_3$ mixture at room temperature (Scheme 3).¹⁷ Thus, a new set of valuable products (**6a,b,d,e**) was obtained and

the yields of the decomplexation were very good (67–88%). The structures of the final products were confirmed by ¹H NMR, UV–vis, and MS methods. Interestingly, in the ¹H NMR spectra, diagnostic signals originating from the β -protons, situated at the opposite side to the substituted pyrrole ring, appeared as AB systems in all cases in the region 8.61–8.66 ppm.

In conclusion, the described amination represents an important tool in porphyrin chemistry. This method is of high utility because the corresponding amino-/nitro-moieties allow for various synthetic transformations. Currently, we are investigating the utility of these compounds and results concerning the synthesis of new attractive porphyrin hybrids will be reported in due course.

Acknowledgments

This work was financially supported by the Ministry of Science and Higher Education, Grant N N204 218535 (2008–2012).

References and notes

- Lacerda, P. S. S.; Silva, A. M. G.; Tomé, A. C.; Neves, M. G. P. M. S.; Silva, A. M. S.; Cavaleiro, J. A. S.; Llamas-Saiz, A. L. Angew. Chem., Int. Ed. 2006, 45, 5487–5491.
- Alonso, C. M. A.; Neves, M. G. P. M. S.; Tomé, A. C.; Silva, A. M. S.; Cavaleiro, J. A. S. Eur. J. Org. Chem. 2004, 3233–3239.
- Silva, A. M. G.; Tomé, A. C.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S. Synlett 2002, 1155–1157.
- Silva, A. M. G.; Tomé, A. C.; Neves, M. G. P. M. S.; Silva, A. M. S.; Cavaleiro, J. A. S. J. Org. Chem. 2005, 70, 2306–2314.
- Wang, H. J. H.; Jaquinod, L.; Nurco, D. J.; Vicente, M. G. H.; Smith, K. M. Chem. Commun. 2001, 2646–2647.
- 6. Ostrowski, S.; Wyrębek, P. Tetrahedron Lett. 2006, 47, 8437-8440.
- (a) Crossley, M. J.; Hambley, T. W.; Mackay, L. G.; Try, A. C.; Walton, R. J. Chem. Soc., Chem. Commun. 1995, 1077-1079; (b) Crossley, M. J.; King, L. G.; Newsom, I. A.; Sheehan, C. S. J. Chem. Soc., Perkin Trans. 1 1996, 2675-2684; (c) Alonso, C. M. A.; Neves, M. G. P. M. S.; Tomé, A. C.; Silva, A. M. S.; Cavaleiro, J. A. S. Tetrahedron Lett. 2001, 42, 8307-8309; (d) Alonso, C. M. A.; Serra, V. I. V.; Neves, M. G. P. M. S.; Tomé, A. C.; Silva, A. M. S.; Paz, F. A.; Cavaleiro, J. A. S. Org. Lett. 2007, 9, 2305-2308; (e) Richeter, S.; Hadj-Aïssa, A.; Taffin, C.; van der Lee, A.; Leclercq, D. Chem. Commun. 2007, 2148-2150; (f) Lefebvre, J.-F.; Leclercq, D.; Gisselbrecht, J.-P.; Richeter, S. Eur. J. Org. Chem. 2010, 1912-1920; (g) Crossley, M. J.; Govenlock, L. J.; Prashar, J. K. J. Chem. Soc., Chem. Commun. 1995, 2379-2380; (h) Johnston, M. R.; Gunter, M. J.; Warrener, R. N. Tetrahedron 2002, 58, 3445-3451.
- (a) Richeter, S.; Jeandon, Ch.; Ruppert, R.; Callot, H. J. *Tetrahedron Lett.* **2001**, *42*, 2103–2106;
 (b) Richeter, S.; Jeandon, Ch.; Ruppert, R.; Callot, H. J. *Chem. Commun.* **2002**, 266–267;
 (c) Richeter, S.; Jeandon, Ch.; Gisselbrecht, J.-P.; Ruppert, R.; Callot, H. J. *J. Am. Chem. Soc.* **2002**, *124*, 6168–6179;
 (d) Richeter, S.; Jeandon, Ch.; Gisselbrecht, J.-P.; Graff, R.; Ruppert, R.; Callot, H. J. *Inorg. Chem.* **2004**, *43*, 251–263.
- 9. Mąkosza, M.; Białecki, M. J. Org. Chem. 1998, 63, 4878-4888.
- (a) Ostrowski, S.; Grzyb, S. Jordan J. Chem. 2007, 2, 297–299; (b) Ostrowski, S.; Grzyb, S.; Mikus, A. Helv. Chim. Acta 2007, 90, 2000–2008.
- Substrates: [2-Nitro-5,10,15,20-tetrakis(3-chlorophenyl)porphyrinato]copper (II) (3c) and [2-nitro-5,10,15,20-tetrakis(3-methylphenyl)porphyrinato]-copper(II) (3d) were obtained according to known procedures¹⁸ (yields: 80% and 85%, respectively). (2-Nitro-5,10,15,20-tetraphenylporphyrinato)zinc(II) (3a) was prepared according to a modified literature procedure¹⁹ (0.13 mmol of 2a in 180 ml of CHCl₃; addition of 32.5 ml of 50% HNO₃; 0.5 min); yield-35%. Synthesis of 3b: 5,10,15,20-Tetrakis(3-fluorophenyl)porphyrin (1b)²⁰ was converted into complex 2b according to a procedure applied for similar

Scheme 2.

compounds²¹ (with the use of $Cu(OAc)_2 H_2O$); yield–97%. Then, the above complex was nitrated (also according to a procedure described for similar compounds:¹⁸ 30% HNO₃, rt, 15 min) to give [2-nitro-5,10,15,20-tetrakis(3fluorophenyl)porphyrinato]copper(II) (3b); yield-93%. Synthesis of 3e: 5,10,15,20-Tetrakis(3-methoxyphenyl)porphyrin ($1e^{22}$ was converted into complex **2e** according to a procedure applied for similar compounds²¹ (with the use $G_{12}(2x) = 10^{-22}$ with G_{1 the use of Cu(OAc)₂:H₂O); yield-75%. Then, the above complex was nitrated (also according to a procedure described for similar compounds:¹⁸ 20% HNO₃, rt, 5 min) to give [2-nitro-5,10,15,20-tetrakis(3-methoxyphenyl)porphyrinato]copper(II) (3e); yield-89%. Data for new compounds: [5,10,15,20-Tetrakis(3fluorophenyl)porphyrinato]copper(II) (**2b**): mp >300 °C. UV-vis (CHCl₃), λ_{max} (log ɛ): 570 (3.13), 537.5 (4.06), 499.5 (3.28), 413.5 nm (5.34, Soret band). MS (FD) *m*/*z* (% rel int.): 751 (4), 750 (20), 749 (56), 748 (44), 747 (100) [isotope M⁺]. HR-MS (FD) calculated for C44H24N4F4Cu [M⁺]: 747.1233; Found: 747.1275. [5,10,15,20-Tetrakis(3-methoxyphenyl)porphyrinato]copper(II) (2e): mp >300 °C. UV-vis (CHCl₃), λ_{max} (log ε): 591.5 (3.76), 549 (3.96), 514 (3.43), 424.5 nm (5.11, Soret band). MS (APPI) m/z (% rel int.): 800 (9), 799 (30), 798 (66), 797 (58), 796 (100) [isotope (M+H)⁺]. HR-MS (FD) calculated for C₄₈H₃₆N₄O₄Cu [M⁺]: 795.2033: Found: 795.1981. [2-Nitro-5,10,15,20-tetrakis(3-fluorophenyl) porphyrinato]copper(II) (**3b**): mp >300 °C. UV-vis (CHCl₃), λ_{max} (log ε): 589.5 (4.04), 547 (4.27), 513 (3.79), 419.5 nm (5.36, Soret band). MS (FD) m/z (% rel int.): 796 (7), 795 (28), 794 (65), 793 (45), 792 (100) [isotope M⁺]. HR-MS (FD) calculated for C44H23N5O2F4Cu [M⁺]: 792.1084; Found: 792.1108. [2-Nitro-5,10,15,20-tetrakis(3-methoxyphenyl)porphyrinato]-copper(II) (3e): mp >300 °C. UV-vis (CHCl₃), λ_{max} (log ε): 591.5 (3.99), 548.5 (4.18), 511 (3.64), 422.5 nm (5.32, Soret band). MS (APPI) m/z (% rel int.): 845 (8), 844 (26), 843 (57), 842 (58), 841 (100) [isotope (M+H)⁺]. MS (FD) m/z (% rel int.): 844 (1), 843 (15), 842 (54), 841 (52), 840 (100) [isotope M⁺]. HR-MS (FD) calculated for C₄₈H₃₅N₅O₆Cu [M⁺]: 840.1883; Found: 840.1852.

- Ostrowski, S.; Mikus, A.; Shim, Y. K.; Lee, J.-Ch.; Seo, E.-Y.; Lee, K.-I.; Olejnik, M. Heterocycles 2002, 57, 1615–1626.
- 13. Grzyb, S.; Ostrowski, S. Jordan J. Chem. 2012, 7, 231-237.
- General procedure for the amination of β -nitro-5,10,15,20-tetraarylporphyrin complexes. To a stirred solution of zinc(II) or copper(II) complex 3a-e (0.20 mmol) in DMSO (4 ml), N,N,N-trimethylhydrazinium iodide (TMHI; 122 mg, 0.60 mmol) [for 3a: 200 mg, 0.99 mmol] and KOH (120 mg, 2.14 mmol) [for 3a: 170 mg, 3.03 mmol] were added. The reaction was carried out under argon in a flask equipped with a reflux condenser at 75 °C for 45 min (for 3a-1.5 h). The reaction mixture was cooled to room temperature and was poured into a 3% aqueous solution of HCl (50 ml) with ice. The product was extracted with $CHCl_3$ (3 × 15 ml), the combined organic layers were washed with H_2O (3 \times 50 ml), and dried over MgSO₄. After evaporating the solvent, the crude residue was chromatographed (silica gel, 230-400 mesh) to give: 4a-131 mg (eluent: CHCl₃), yield 89%; 4b-104 mg (eluent: CHCl₃), yield 64%; **4c**-114 mg (eluent: CHCl₃), yield 65%; **4d**-125 mg (eluent: CHCl₃), yield 79%; 4e-120 mg (eluent: CHCl₃/MeOH, 250:1), yield 70%. In the last reaction, the desired product 4e was accompanied by [2hydroxy-3-nitro-5,10,15,20-tetrakis(3-methoxyphenyl)porphyrinato[copper(II) (5e), 10.5 mg (eluted with CHCl₃/MeOH, 100:1), yield 6%. Data for new compounds: [2-Amino-3-nitro-5,10,15,20-tetraphenylporphyrinato]zinc(II) (4a): mp >300 °C. ¹H NMR (200 MHz, CDCl₃): 8.98 (d, J = 4.9 Hz, 1H, H^{β}-pyrrole), 8.84 $(d, J = 4.9 \text{ Hz}, 1\text{H}, \text{H}^{\beta}\text{-pyrrole}), 8.81-8.75 (m, 3\text{H}, \text{H}^{\beta}\text{-pyrrole}), 8.54 (d, J = 4.9 \text{ Hz}, 10.10 \text{ Hz})$ 1H, H^{β}-pyrrole), 8.27–8.09 (m, 8H, H-Ph), 7.93–7.62 (m, 12H, H-Ph), 6.54 (br s, 11, 11–19, 102–31, 32, 12–3, 35, 11, 31, 11–11, 7, 73–7, 52, (11, 121, 11–11, 13, 10–13, (10, 8), 24, NH₂), UV–vis (CHCl₃), λ_{max} (log ε): 609 (4,07), 567.5 (4,29), 531.5 (3,70), 442 nm (5.34, Soret band). MS (FD) m/z (% rel int.): 743 (2), 742 (7), 741 (21), 740 (47), 739 (39), 738 (69), 737 (50), 736 (100) [isotope M⁺]. HR-MS (FD) calculated for C₄₄H₂₈N₆O₂Zn [M⁺]: 736.1565; Found: 736.1602. [2-Amino-3nitro-5,10,15,20-tetrakis(3-fluorophenyl)porphyrinato]copper(II) (4b): mp $300 \degree$ C UV-vis (CHCl₃), λ_{max} (log ϵ): 608.5 (4.08), 561 (4.07), 521 (3.73), 432 nm (5.18, Soret band). MS (FD) m/z (% rel int.): 811 (4), 810 (21), 809 (53), 808 (38), 807 (100) [isotope M^+]. HR-MS (FD) calculated for $C_{44}H_{24}N_6O_2F_4Cu$ $[M^*]$: 807.1193; Found 807.1202. [2-Amino-3-nitro-5,10,15,20-tetrakis(3-chlorophenyl)porphyrinato]copper(II) (4c): mp ≥300 °C. UV-vis (CHCl₃), λ_{max} (log ε): 606 (4.15), 562.5 (4.30), 522 (3.85), 438 (5.31, Soret band), 321 nm (4.37). MS (FD) m/z (% rel int.): 880 (4), 879 (5), 878 (12), 877 (20), 876 (23), 875 (61), 874 (29), 873 (100), 872 (21), 871 (53) [isotope M⁺]. HR-MS (FD) calculated for $C_{44}H_{24}N_6O_2^{-35}Cl_3^{-37}Cl_1Cu$ [M⁺]: 872.9981; Found: 872.9976. [2-Amino-3-nitro-5,10,15,20-tetrakis(3-methylphenyl)porphyrinato]copper(II) (4d): 793 (54), 792 (48), 791 (100) [isotope M⁺], HR-MS (FD) calculated for $C_{48}H_{36}N_6O_2Cu$ [M⁺]; 791.2196; Found: 791.2238. [2-Amino-3-nitro-5,10,15,20tetrakis(3-methoxyphenyl)porphyrinato]copper(II) (4e): mp >300 °C. UV-vis

 $\begin{array}{l} ({\rm CHCl}_3), \lambda_{\rm max} ~(\log\varepsilon): 604.5~(3.84), 561.5~(4.00), 440~{\rm nm}~(5.06, {\rm Soret band}).~{\rm MS} \\ ({\rm ES1})~m/z~(\%~{\rm rel~int}): 881~(4), 880~(7), 879~(6.5), 878~(11)~[isotope~(M^+Na^+)]; 860 \\ (6), 859~(16), 858~(43), 857~(74), 856~(71), 855~(100)~[isotope~M^+].~{\rm HR-MS}~({\rm ES1}) \\ calculated~for~C_{a8}H_{36}N_{6}O_{6}U~[M^+]: 855.1992;~{\rm Found}: 855.1946, [2-Hydroxy-3-nitro-5,10,15,20-tertakis(3-methoxyphenyl)porphyrinato]copper(II)~(5e): mp \\ >300~{\rm c}.~UV-vis~({\rm CHCl}_3), \lambda_{\rm max}~(\log\varepsilon): 605~(3.88), 557.5~(3.95), 430.5~{\rm nm}~(4.97, {\rm Soret~band}).~{\rm MS}~({\rm ES1})~m/z~(\%~{\rm rel~int}): 861~(17), 860~(28), 859~(62), 858~(94), 857~(100), 856~(97)~[isotope~M^+~{\rm and}~(M^+H)^+].~{\rm HR-MS}~({\rm ES1})~calculated~for~C_{48}H_{35}N_{50}/{\rm Cu}~[M^+]: 856.1832;~{\rm Found}: 856.1821. \end{array}$

- 15. Mąkosza, M.; Staliński, K. Tetrahedron 1998, 54, 8797-8810.
- 16. Mąkosza, M.; Staliński, K. Polish J. Chem. 1999, 73, 151-161.
- 17. General procedure for the demetallation of 2-amino-3-nitro-5,10,15,20-tetraarylporphyrinates. To a stirred solution of 2-amino-3-nitro-5,10,15,20tetraarylporphyrinate (4a,b,d,e; 0.03 mmol) in 1 ml of CHCl3 in a roundbottomed flask, concentrated H₂SO₄ (1 ml) and CF₃COOH (1.5 ml) were added dropwise. The reaction was continued with stirring at room temperature for 10-15 min. Then, the mixture was poured into H₂O (20 ml). The aqueous phase was extracted with $CHCl_3$ (3 × 10 ml), the combined organic layers were washed with $H_2O(3 \times 50 \text{ ml})$, and dried over MgSO₄/Na₂CO₃. After evaporating the solvent, the residue was chromatographed (silica gel, 230-400 mesh; eluent: CHCl₃/n-hexane, 2:1) to yield the respective 2-amino-3-nitro-5,10,15,20-tetraarylporphyrins: (a) 17 mg of **6a**, 84%; (b) 15 mg of **6b**, 67%; (c) 17.5 mg of 6d, 80%; (d) 21 mg of 6e, 88%. Data for new compounds: 2-Amino-3-*nitro*-5,10,15,20-tetraphenylporphyrin (**Ga**): This compound has been already described in the literature;^{7b} the additional data are given below for more detailed and accurate characterizarion of the product. mp >300 °C. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: 8.96 (d, J = 5.2 Hz, 1H, H^{\beta}-pyrrole), 8.78 (d, J = 5.2 Hz, 1H, H^{\beta}pyrrole), 8.76 (d, J = 4.8 Hz, 1H, H^{β}-pyrrole), 8.63 and 8.61 (AB, J = 4.6 Hz, 2H, H^{β}pyrrole), 8.59 (d, J = 4.8 Hz, 1H, H^{β}-pyrrole), 8.36 (d, J = 7.2 Hz, 2H, H-Ph), 8.24– 8.15 (m, 6H, H-Ph), 7.94–7.89 (m, 3H, H-Ph), 7.81–7.63 (m, 9H, H-Ph), 6.81 (br s, 2H, NH₂), -2.32 and -2.54 (2 × s, 2H, 2 × NH). UV-vis (CHCl₃), λ_{max} (log ε): 661 (3.49), 604.5 (3.62), 568.5 (3.81), 529.5 (4.05), 431 nm (5.26, Soret band). MS (FD) *m/z* (% rel int.): 677 (2), 676 (13), 675 (50), 674 (100) [isotope M⁺]. HR-MS (FD) calculated for C44H30N6O2 [M⁺]: 674.2430; Found: 674.2405. 2-Amino-3nitro-5,10,15,20-tetrakis(3-fluorophenyl)porphyrin (6b): mp >300 °C. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: 8.97 (d, J = 5.1 Hz, 1H, H^β-pyrrole), 8.79 (d, J = 5.1 Hz, 1H, H^βpyrrole), 8.77 (d, J = 5.1 Hz, 1H, H^{β}-pyrrole), 8.63 and 8.61 (AB, J = 4.7 Hz, 2H, H^{β}pyrrole), 8.60 (d, J = 5.0 Hz, 1H, H^{β}-pyrrole), 8.15–7.86, 7.78–7.61, and 7.56– $7.47 (3 \times m, 15H, H-Ar(F)), 7.38 (td, J = 8.4, 2.2 Hz, 1H of H-Ar(F)), 6.88 (br s, 2H, 1)$ NH₂), -2.40 and -2.63 (2 × s, 2H, 2 × NH). UV-vis (CHCl₃), λ_{max} (log ε): 669 (3.48), 606.5 (3.98), 571 (4.07), 532.5 (4.38), 434.5 nm (5.36, Soret band). MS (ESI) m/z (% rel int.): 749 (16), 748 (51), 747 (100) [isotope (M+H)⁺]. HR-MS (ESI) calculated for C44H27N6O2F4 [(M+H)⁺]: 747.2132; Found: 747.2138. 2-Amino-3nitro-5,10,15,20-tetrakis(3-methylphenyl)porphyrin (6d): mp >300 °C. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: 8.96 (d, $I = 5.0 \text{ Hz}, 1\text{ H}, \text{H}^\beta$ -pyrrole), 8.78 (d, $I = 5.0 \text{ Hz}, 1\text{ H}, \text{H}^\beta$ pyrrole), 8.76 (d, J = 5.0 Hz, 1H, H^{β}-pyrrole), 8.63 and 8.61 (AB, J = 4.8 Hz, 2H, H^{β}pyrrole), 8.59 (d, J = 5.0 Hz, 1H, H^{β}-pyrrole), 8.18–8.11 (m, 2H, H-Ar(CH₃)), 8.05– 7.94 (m, 6H, H-Ar(CH₃)), 7.79 (apparent t, J = 7.8 Hz, 1H, H-Ar(CH₃)), 7.74–7.51 $(m, 6H, H-Ar(CH_3))$, 7.46 $(d, J = 7.8 Hz, 1H, H-Ar(CH_3))$, 6.83 $(br s, 2H, NH_2)$, 2.68 (s, 3H, CH₃), 2.66 (s, 3H, CH₃), 2.64 (s, 6H, 2 × CH₃), -2.35 and -2.58 (2 × s, 2H, 2 × NH). UV-vis (CHCl₃), *λ*_{max} (log ε): 668.5 (3.47), 609.5 (3.83), 573.5 (3.92), 534 (4.19), 437.5 nm (5.21, Soret band). MS (FD) *m/z* (% rel int.): 733 (3), 732 (15), 731 (55), 730 (100) [isotope M⁺]. HR-MS (FD) calculated for C₄₈H₃₈N₆O₂ [M⁺]: 730.3056; Found: 730.3042. 2-Amino-3-nitro-5,10,15,20-tetrakis(3methoxyphenyl)porphyrin (**6e**): mp >300 °C. ¹H NMR (400 MHz, CDCl₃): 9.01 $(d, J = 5.0 \text{ Hz}, 1\text{H}, \text{H}^{\beta}$ -pyrrole), 8.83–8.77 (m, 2H, H^{\beta}-pyrrole), 8.66 and 8.64 (AB, J = 4.6 Hz, 2H, H^{β}-pyrrole), 8.63 (d, J = 5.0 Hz, 1H, H^{β}-pyrrole), 7.97–7.60 (m, 16H, H-Ar(OCH₃), 5.92 (br s, 2H, NH₂), 4.02 (s, 3H, OCH₃), 4.01 (s, 6H, 2×OCH₃), 3.99 (s, 3H, OCH₃), -2.36 and -2 60 (2×s, 2H, 2×NH). UV-vis $(CHCl_3)$, λ_{max} (log ε): 673.5 (3.67), 650.5 (3.69), 605 (3.80), 575 (3.94), 532.5 (4.19), 436 nm (5.21, Soret band). MS (FD) m/z (% rel int.): 797 (3), 796 (15), 795(54), 794 (100) [isotope M⁺]. HR-MS (FD) calculated for C₄₈H₃₈N₆O₆ [M⁺]: 794.2853: Found: 794.2828.
- 18. Wyrębek, P.; Ostrowski, S. J. Porphyrins Phthalocyanines **2007**, *11*, 822–828; and references cited therein.
- 19. Ostrowski, S. Polish J. Chem. 2005, 79, 1169–1172.
- Semeikin, A. S.; Koifman, O. I.; Berezin, B. D. Khim. Geterotsikl. Soedin. 1986, 6, 798-801.
- Fuhrhop, J. H.; Smith, K. M. In 'Porphyrins and Metalloporphyrins'. In Section H: Laboratory methods; Smith, K. M., Ed.; Elsevier: Amsterdam, 1975; pp 757–861.
- Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. J. Org. Chem. 1987, 52, 827–836.