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5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
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Abstract—When conducted in DMSO, the Hünig’s base-promoted condensation of 3-quinuclidinone with quinoline-4-carboxalde-
hyde gave an equimolar mixture of epimeric aldols 8 with an excellent yield. © 2003 Elsevier Science Ltd. All rights reserved.

Quinine (1), the most celebrated member of the Cin-
chona alkaloids, has played a dominant role in human
therapeutics for the treatment of malaria (Fig. 1). In
organic chemistry, quinine and related alkaloids have
been widely used as chiral substrates for achieving
chiral discrimination/recognition, e.g. as resolving
agents for acids, as ligands for asymmetric synthesis,1

as chiral solvating agents in NMR spectroscopy and as
selectors in the elaboration of chiral stationary/mobile
phases for chromatographic resolution. After a long
period of exploratory studies, there has been a resur-
gence of interest in developing synthetic routes to the
Cinchona alkaloids, culminating in several successful
approaches to quinine. A consistent theme among these
syntheses was the creation of the quinuclidine system at
the late stages by heterocyclization between N-1 and
C-8 (Woodward–Doering,2 Uskoković–Gutzwiller,3

Gates–Schreiber,4 Taylor–Martin,5 Brown,6 Wilson7) or
N-1 and C-6 (Stork8). In comparison, the C-8/C-9
disconnection strategy, involving the condensation of a
pre-existing quinuclidine unit with a quinoline moiety,
has been much less studied.

The first investigation in the area was reported by
Coffen who established that the sodium ethoxide-pro-
moted condensation of a mixture of 3-quinuclidinone
(2) and 6-methoxyquinoline-4-carboxaldehyde (3) fur-
nishes in 90% yield (Z)-6�-methoxy-7-oxo-8-rubene (4).9

Thus, in such operating conditions, the (desired) initial
aldol adduct suffered an irreversible dehydration reac-
tion, affording �,�-ethylenic carbonyl compound 4. The

Scheme 1.

Figure 1. Structure of quinine (1).
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Scheme 2.

and of the solvent of the reaction. In THF, all experi-
ments that employed tertiary amines as a base returned
only unchanged starting materials (Table 1, entries
1–4), while the utilization of the strongly basic quater-
nary ammonium hydroxide Triton® B yielded almost
quantitatively (Z)-7-oxo-8-rubene (Z-9) (entry 5), an
outcome that parallels completely conversion [2+3�4].
However, when DMSO was employed as solvent a
dramatic increase in reactivity was gained,14 the utiliza-
tion of tertiary amines furnishing now the desired
aldols 8 (obtained as a nearly equimolar mixture of
diastereomers) (entries 7–10); the best catalyst was
found to be the moderately basic Hünig’s base, produc-
ing 8 in 90% yield (entry 7). Somewhat surprisingly,
when the condensation [2+7] was conducted in DMSO,
in the absence of any external base, a substantial
amount of aldols 8 was formed (30%, entry 6). Pre-
sumably, the driving force for this autocatalytic aldol
condensation was the intrinsic basicity of 2 (MeCNpKB

of quinuclidine: 19.5). Although aldols 8 were obtained
as an equimolar mixture of diastereomers, reflecting a
thermodynamic control (while the formation of the
single aldol (erythro)-610 implicates a kinetically-con-
trolled addition process),15 it is noteworthy that addi-
tion [2+7�8] realizes the first aldol-type condensation
between a quinuclidinone and a quinoline–carboxalde-
hyde, thus opening future prospects for a synthetic
approach to Cinchona alkaloids based on the C-8/C-9
disconnection strategy. The identity of aldols 816 was
corroborated by dehydration which led to an equimolar
mixture of enones (Z)-9 and (E)-9 (Burgess’ inner salt:
Et3N+SO2N−COOMe,17 benzene, 80°C, quantitative
yield). Configurational assignment of enone (Z)-918 was
definitively secured by single-crystal X-ray diffraction
analysis (Fig. 2). Incidentally, we have observed that
the irradiation, using visible light, of (Z)-9 in CCl4 in
the presence of a trace of I2 gave a photostationary
mixture of (Z)-9 and (E)-9 containing ca. 40% of
(Z)-9.19,20

critical problem of the interception of the intermediary
aldol was partly solved by Stotter some years later, who
preformed the lithium enolate of 3-quinuclidinone (5)
by treating ketone 2 with LDA. Subsequent condensa-
tion of this enolate with benzaldehyde at −78°C pro-
duced stereoselectively aldol (erythro)-6 with a 83%
yield. However, probably because of its reduced elec-
trophilicity, aldehyde 3 proved unsuitable in the con-
densation with enolate 5 (Scheme 1).10 In connection
with our sustained research efforts in the Cinchona
alkaloids series, directed towards their synthesis11 and
their use as chiral ligands in asymmetric catalysis,12 we
recently reinvestigated the above ‘aldol route’, taking
advantage of the recent developments in the field.
Results from this endeavor are reported hereafter.

Condensation between both commercially available 3-
quinuclidinone (2) and quinoline-4-carboxaldehyde
(7)13 was attempted first; selected results are depicted in
Scheme 2 and are listed in Table 1. These results are
strongly dependent upon the nature of the base added

Table 1. Compounds produced via condensation between 2 and 7

SolventEntry (Z)-9 (%)d8 (%)cSM (%)bBase addeda

0100 0Hünig’s baseeTHF1
2,6-Di-tert-butylpyridine 100 02 0–
DMAPf– 100 0 03

4 00100Proton-Sponge®g–
00Triton® Bh 95–5

DMSO No base added 70 30 06
– Hünig’s base 10 90 07

050508 2,6-Di-tert-butylpyridine–
– DMAP 50 50 09

Proton-Sponge®– 010 5050

a All reactions were performed at 30°C during 2 weeks, employing a stoichiometric ratio of 2 and 7 and 1.5 equiv. of base.
b Recovered starting materials.
c Yield determined by 1H NMR (equimolar mixture of diastereomers).
d Yield determined by 1H NMR (single Z isomer).
e Hünig’s base: N,N-diisopropylethylamine.
f DMAP: 4(dimethylamino)pyridine.
g Proton-Sponge®: 1,8-bis(dimethylamino)naphthalene.
h Triton® B: benzyltrimethylammonium hydroxide (40 wt.% solution in MeOH); in that case the reaction was completed after 2 h at 20°C.
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Figure 2. ORTEP view of (Z)-9 with labeled heteroatoms.
Thermal ellipsoids are scaled to 50% probability level. Hydro-
gen atom shown is drawn to an arbitrary scale.

Scheme 4.

Scheme 3.

pared with the unsubstituted parent ketone 2. However,
exposure of a stoichiometric mixture of 7 and 12 to
Triton® B in THF led to enone (Z)-1322 in 70% yield.
Upon irradiation of (Z)-13 with visible light, a photo-
stationary state was reached in which the (Z)-13/(E)-13
ratio is about 1:3 (Scheme 4).

In conclusion, our original objective was to develop a
new synthetic approach to Cinchona alkaloids based on
the C-8/C-9 disconnection strategy. The results thus far
obtained show that the addition of 3-quinuclidinone (2)
with aldehyde 7 proceeded smoothly when conducted in
DMSO in the presence of Hünig’s base, producing the
desired aldols 8 with an excellent yield. Although our
initial purpose was found to be thwarted by the failure
of the aldol condensation between functionalized quin-
uclidinone 12 and aldehyde 7, the experience gained
during this study may have paved the way for an
eventual, hopefully highly successful, solution.
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Dr. O. Laprévote (ICSN, CNRS, Gif sur Yvette) is
gratefully acknowleged for his invaluable advice in
mass spectroscopy.

References

1. For a recent review, see: Kacprzak, K.; Gawroński, J.
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11. Da Silva Goes, A. J.; Cavé, C.; d’Angelo, J. Tetrahedron
Lett. 1998, 39, 1339–1340.

12. Alvarez, R.; Houdin, M.-A.; Cavé, C.; d’Angelo, J.;
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