

Bioorganic & Medicinal Chemistry Letters 12 (2002) 2821-2824

The First Synthesis and Antifungal Activities of 9-Methoxystrobilurin-type β-Substituted β-Methoxyacrylate

Hiromi Uchiro, Koh Nagasawa, Tomoya Kotake, Daiju Hasegawa, Aya Tomita and Susumu Kobayashi*

Faculty of Pharmaceutical Sciences, Tokyo University of Science, 12 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan

Received 3 June 2002; accepted 23 July 2002

Abstract—The first synthesis of 9-methoxystrobilurin-type β -substituted MOAs was successfully achieved. A chiral oudemansintype β -substituted MOA was also synthesized utilizing Mukaiyama's asymmetric addol reaction. Antifungal activities of the synthesized compounds against several representative fungi were examined by disk-diffusion assay. As a result, unique and superior antifungal properties of 9-methoxystrobilurin-type β -substituted MOAs compared with those of oudemansin-type analogue were clearly revealed.

© 2002 Elsevier Science Ltd. All rights reserved.

Introduction

 β -Methoxyacrylate antibiotics (MOAs) represented by strobilurins and oudemansins are highly potent antifungal compounds and have, therefore, been applied to agricultural disinfectants in many countries.¹ In addition, novel 9-methoxystrobilurin-type analogues were recently isolated as strong growth inhibitors toward human-derived tumor cell lines.^{2–4} Pharmaceutical application studies of these new types of MOAs in the antifungal, antitumor, and antimalarial fields based on their SAR studies are currently investigated.^{5–7} These known type MOAs have an α -substituted β -methoxyacrylate moiety as a common pharmacophoric substructure. On the other hand, several β -substituted-type β-methoxyacrylates such as cystothiazoles⁸ and melithiazoles⁹ were recently isolated from nature (Fig. 1). Both of these new β-substituted MOAs include oudemansintype syn-9-methoxy-10-methyl substructures at their 9-10position; however, this saturated linkage seems not ideal for their antifungal properties. Previous SAR studies apparently indicated that the potent antifungal activities were usually observed in the derivatives having strobilurintype or aromatic-type unsaturated linkage at the 9-10position.^{1,10} From this point of view, Anke and Steglich proposed the importance of orthogonal arrangement of the pharmacophoric MOA moiety and the molecular plane extending from the aromatic ring to 9-10 unsaturated linkage for the antifungal activity of α -substituted

Figure 1. Two types of naturally-occurred β -methoxyacrylates (MOAs).

MOAs.¹¹ In this paper, we would like to describe the first synthesis of 9-methoxystrobilurin-type β -substituted β -methoxy acrylates which have not yet been discovered from nature. In addition, we also would like to reveal the pharmacological superiority of the 9-methoxy strobilurin-type β -substituted MOAs in their antifungal activities over the oudemansin-type analogue.

Synthetic Strategy

Our synthetic strategy for 9-methoxystrobilurin-type β -substituted β -methoxyacrylates is shown in Scheme 1. An efficient synthetic route based on the aldol reaction of α , β -unsaturated aldehydes **2** with a dianion generated from 3-ketovaleric acid methyl ester **3** was designed. The central methyl enol ether moiety on the target

^{*}Corresponding author. Tel. +81-3-3260-8848; fax: +81-3-3260-8848; e-mail: kobayash@ps.kagu.sut.ac.jp

⁰⁹⁶⁰⁻⁸⁹⁴X/02/\$ - see front matter \odot 2002 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(02)00625-X

Scheme 1. Retrosynthesis of 9-methoxystrobilurin-type β -substituted β -methoxyacrylates.

molecule 7 could be easily constructed on enone-type intermediate 6. The intermediate 6 would be prepared by the direct methyl enol ether formation starting from the aldol adduct 4 and successive oxidation of the remaining secondary hydroxyl group of intermediate 5.

Synthesis

The aldol reaction of cinnamaldehyde **2a** with a dianion generated from methyl 3-ketovalerate **3** was first carried out. The desired γ -adduct **4a** was obtained in 86% yield, and no undesirable α -adduct was formed. The direct methyl enol ether formation on the adduct **4a** was performed by

use of 2 equivalents of potassium *tert*-butoxide and dimethyl sulfate in dimethylformamide, and the desired intermediate **5a** was successfully obtained. The remaining secondary hydroxyl group of **5a** was then oxidized by Dess–Martin periodinane to give the corresponding enone **6a** (55% yield for two steps). Finally, the desired 9-methoxystrobilurin-type β -substituted MOA **7a**¹⁴ was obtained in 59% yield by the addition of 2 equivalents of potassium hexamethyldisilazide (KHMDS) and methyl triflate in THF–HMPA (4:1) at –78 °C. Several analogues modified on the aromatic moiety **7b–e**¹⁴ were also synthesized from the corresponding α , β -unsaturated aldehydes **2b–e**. The stereochemistries of tri- and tetrasubstituted olefin moieties of **7a–e** were respectively determined by NOE measurements as shown in Scheme 2.

An optically active oudemansin-type β -substituted MOA (+)-**8** was synthesized from chiral aldol adduct **9** which was prepared by Mukaiyama's asymmetric aldol reaction¹² in 98% ee as shown in Scheme 3. The hydroxyl group of **9** was methylated by diazomethane-boron trifluoride etherate to give the intermediate ether **10**. The thiolester moiety of **10** was reduced by DIBAL to the corresponding aldehyde **11**. The second aldol reaction of the aldehyde **11** with the lithium enolate of methyl acetate was performed, and the resulting hydroxyl group of the aldol adduct **12** was oxidized to give the corresponding β -ketoester **13** (the structure is not shown). The desired optically active β -substituted MOA (+)-**8**¹⁴ was prepared by *O*-methylation of a sodium enolate generated from β -ketoester **13**. The optical purity of (+)-**8** was

Scheme 2. Synthesis of 9-methoxystrobilurin-type β-substituted MOAs. (i) NaH, "BuLi, THF, 0 °C, 30 min; (ii) 'BuOK, Me₂SO₄, DMF, 0 °C to rt, 1.5 h; (iii) Dess–Martin periodinane, CH₂Cl₂, rt, 30 min; (iv) KHMDS, MeOTf, THF–HMPA (4:1), -78 °C, 10 min.

Scheme 3. Synthesis of chiral oudemansin-type β -substituted MOAs. (i) Sn(OTf)₂, $\sum_{Me}^{n} \beta \sum_{Me}^{n} \beta \sum_{ME}^{n}$

Scheme 4. Synthesis of racemic oudemansin-type and *epi*-oudemansin-type-β-substituted MOAs. (i) 'BuOK, Me₂SO₄, DMF, 0°C, 3 h; (ii) CH₂N₂, BF₃·OEt₂, Et₂O, 0 °C to rt, 3 h.

		Diameter of inhibition zone (mm) ^{a,b}				
Compd	Conc (µg/disk)	Pc	Af	Fs	Ca	Sc
Nystatin (positive control)	10	10	16	—	16	18
1	10 1 0.1	33 23 19	38 28 16		42 <i>i</i> 32 <i>i</i> ±	44 <i>i</i> 39 <i>i</i> 13 <i>i</i>
7a	10 1 0.1	42 17	36 17	30 <i>i</i> 22 <i>i</i>	32 <i>i</i> 27 <i>i</i>	46 <i>i</i> 30 <i>i</i>
7b	10 1 0.1	33 18	12 8		± 	18 <i>i</i> 12 <i>i</i>
7c	10 1 0.1			 	 	±
7d	10 1 0.1	13	16 10	27 <i>i</i> 19 <i>i</i>	14 <i>i</i> 8 <i>i</i>	21 <i>i</i> 15i
7e	10 1 0.1	40 21 ±	29 20		32 <i>i</i> 16 <i>i</i>	49 <i>i</i> 31 <i>i</i>
(+)-8	10 1 0.1	28 ±	23	 	20 <i>i</i>	43 <i>i</i> 25 <i>i</i>
(±)- 8	10 1 0.1	26 ±	23	 	14 <i>i</i>	39 <i>i</i> ±
(±) -14	10 1 0.1					

Table 1. Antifungal activities of β -substituted β -methoxyacrylates

Pc, Penicilium ctrinum R-3703; Af, Aspergillus fumigatus R-1301; Fs, Fusarium solani R-2800; Ca, Candida albicans IFO 1594;

Sc, Saccharomyces cerevisae IAM 4861.

^aThe diameter of each inhibition zones (mean value of two samples) were measured after 48 hr incubation.

-, not effective, \pm , slightly effective, *i*, incomplete inhibition.

determined to be 97% ee by chiral HPLC analysis (column: Daicel Chiralcel OD; eluent: hexane/2-propanol = 50/1).

Racemic oudemansin-type and epi-oudemansin-type β -substituted MOAs (±)-8 and (±)-14 were also synthesized as shown in Scheme 4. The diastereomers of racemic aldol adduct syn-4a and anti-4a were separated by column chromatography, and each diastereomer was respectively transformed to the desired β -methoxyacrylates (\pm)-8 and (\pm) -14¹⁴ via methyl enol ether formation and sequential 9-O-methylation.

Antifungal Activity

Antifungal activities of the synthesized compounds toward several pathogenic or non-pathogenic fungi were examined by disk-diffusion assay (Table 1). 9-Methoxystrobilurin-type β-substituted MOAs bearing unsubstituted benzene ring 7a exhibited strong antifungal activity similar to that of 9-methoxystrobirulin A (1) which is the corresponding α -substituted MOA. In addition, 7a also showed fungicide activity against drug-resistant Fusarium solani although it was still in an incomplete manner.13 The optically active and racemic oudemansintype analogues (+)-8 and (\pm) -8 were apparently less effective than 7a, and no significant effect between molecular chirality and their antifungal property was observed. The racemic *epi*-oudemansin-type analogue was almost ineffective to all fungi tested. On the other hand, aromatic-modified compounds 7b-d were inferior to 7a except for a thiophene analogue 7e. These results are in sharp contrast to those of previously reported 9methoxystrobilurin-type α -substituted MOAs.⁶

Conclusion

In conclusion, the first synthesis of 9-methoxystrobilurintype β -substituted MOAs was successfully achieved and their unique and superior antifungal properties were also revealed. Further extensive SAR studies of 9-methoxystrobilurin-type β -substituted MOAs to develop a more effective antifungal compound, and synthetic studies of 9-methoxystrobilurin-type analogues of natural β-substituted MOAs are now in progress.

References and Notes

1. Sauter, H.; Steglich, W.; Anke, T. Angew. Chem., Int. Ed. Engl. 1999, 38, 1328 and references cited therein.

- 2. Zapf, S.; Werle, A.; Anke, T.; Klostermeyer, D.; Steffan,
- B.; Steglich, W. Angew. Chem., Int. Ed. Engl. 1995, 34, 196.
- 3. Wood, K. A.; Kau, D. A.; Wrigley, S. K.; Beneyto, R.;
- Renno, D. V.; Ainsworth, A. M.; Penn, J.; Hill, D.; Killacky, J.; Depledge, P. J. Nat. Prod. 1996, 59, 646.

4. Nicholas, G. M.; Blunt, J. W.; Cole, A. L. J.; Munro, M. H. G. Tetrahedron Lett. 1997, 38, 7465.

5. (a) Uchiro, H.; Nagasawa, K.; Aiba, Y.; Kobayashi, S. *Tetrahedron Lett.* **2000**, *41*, 4165. (b) Uchiro, H.; Nagasawa, K.; Aiba, Y.; Kotake, T.; Hasegawa, D.; Kobayashi, S. *Tetrahedron Lett.* **2001**, *42*, 4531. (c) Aiba, Y.; Hasegawa, D.; Marunouchi, T.; Nagasawa, K.; Uchiro, H.; Kobayashi, S. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 2783.

6. Uchiro, H.; Nagasawa, K.; Sawa, T.; Hasegawa, D.; Kotake, T.; Sugiura, Y.; Kobayashi, S.; Otoguro, K.; Ōmura, S. *Bioorg. Med. Chem. Lett.* In press.

7. Alzeer, J.; Chollet, J.; Heinze-Krauss, I.; Hubschwerlen, C.; Matile, H.; Ridley, R. G. J. Med. Chem. 2000, 43, 560.

8. Isolation: (a) Ojika, M.; Suzuki, Y.; Tsukamoto, A.; Sakagami, Y.; Fudou, R.; Yoshimura, T.; Yamanaka, S. J. Antibiot. 1998, 51, 275. (b) Suzuki, Y.; Ojika, M.; Sakagami, Y.; Fudou, R.; Yamanaka, S. Tetrahedron 1998, 54, 11399. Synthesis: (a) Kato, K.; Nishimura, A.; Yamamoto, Y.; Akita, H. Tetrahedron Lett. 2002, 43, 643. (b) Williams, D. R.; Patnaik, S.; Clark, M. P. J. Org. Chem. 2001, 66, 8463. (c) Bach, T.; Heuser, S. Angew. Chem., Int. Ed. Engl. 2001, 40, 3184.

 Isolation: (a) Sasse, F.; Bohlendorf, B.; Herrmann, M.; Kunze, B.; Forche, E.; Steinmetz, H.; Hofle, G.; Reichenbach, H. J. Antibiot. 1999, 52, 721. (b) Bohlendorf, B.; Herrmann, M.; Hecht, H.-J.; Sasse, F.; Forche, E.; Kunze, B.; Reichenbach, H.; Hofle, G. Eur. J. Org. Chem. 1999, 2601. Synthesis: (a) Soker, U.; Sasse, F.; Kunze, B.; Hofle, G. Eur. J. Org. Chem. 2000, 2021. (b) Soker, U.; Sasse, F.; Kunze, B.; Hofle, G. Eur. J. Org. Chem. 2000, 1497.
(a) Hellwig, V.; Dasenbrock, J.; Klostermeyer, D.; Kroiss, S.; Sindlinger, T.; Spiteller, P.; Steffan, B.; Steglich, W.; Engler-Lohr, M.; Semar, S.; Anke, T. Tetrahedron 1999, 55, 10101. (b) Clough, J. M.; Evans, D. A.; de Fraine, P. J.; Fraser, T. E. M.; Godfrey, C. R. A.; Youle, D. ACS Symp, Ser.
1994, 551, 37 and references cited therein.

11. Anke, T.; Steglich, W. In *Drug Discovery from Nature*, Grabley, S., Thiericke, R., Eds., Springer: Berlin, 1999; Chapter 18, p 320.

12. Kobayashi, S.; Uchiro, H.; Fujishita, Y.; Shiina, I.; Mukaiyama, T. J. Am. Chem. Soc. **1991**, 113, 4247. 13. The compound **7a** produced relatively large inhibition zones toward *Fusarium solani* during 12–48 h incubation; however, the zones became gradually obscure and were lost after 96 h. 14. Physical data of synthesized compounds: **7a**: ¹H NMR (CDCl₃, 500 MHz) δ 1.99 (s, 3H), 3.63 (s, 3H), 3.73 (s, 3H), 3.74 (s, 3H), 5.22 (s, 1H), 6.53 (d, 1H, *J*=15.9 Hz), 6.78 (d, 1H, *J*=15.9 Hz), 7.22 (t, 1H, *J*=7.3 Hz), 7.30 (dd, 2H, *J*=7.3, 7.9 Hz), 7.37(d, 1H, *J*=7.9 Hz); EI–MS 288 (M⁺); **7b**: ¹H NMR (CDCl₃, 300 MHz) δ 1.98 (s, 3H), 3.63 (s, 3H), 3.73 (s, 3H), 3.73 (s, 3H), 3.88 (s, 3H), 3.89 (s, 3H), 5.21 (s, 1H), 6.39 (d, 1H, *J*=15.8 Hz), 6.73 (d, 1H, *J*=15.8 Hz), 6.81 (d, 1H, *J*=8.3 Hz), 6.88 (dd, 1H, *J*=1.8, 8.3 Hz; EI–MS 348 (M⁺):

J=8.3 Hz), 6.88 (dd, 1H, J=1.8, 8.3 Hz; EI-MS 348 (M⁺); 7c: ¹H NMR (CDCl₃, 300 MHz) δ 2.03 (s, 3H), 3.65 (s, 3H), 3.72 (s, 3H), 3.84 (s, 3H), 5.22 (s, 1H), 6.59 (d, 1H, J=15.9Hz), 7.52 (d, 1H, J=15.9 Hz), 7.34-8.17 (m, 7H); EI-MS 338 (M⁺); 7d: ¹H NMR (CDCl₃, 300 MHz) δ 2.01 (s, 3H), 3.63 (s, 3H), 3.76 (s, 3H), 3.77 (s, 3H), 5.25 (s, 2H), 6.65 (d, 1H, J=15.8 Hz), 6.95 (d, 1H, J=15.9 Hz), 7.36–7.81 (m, 7H); EI– MS 338 (M⁺); 7e: ¹H NMR (CDCl₃, 500 MHz) δ 1.97 (s, 3H), 3.63 (s, 3H), 3.72 (s, 3H), 3.73 (s, 3H), 5.21 (s, 1H), 6.34 (d, 1H, J=15.3 Hz), 6.89 (d, 1H, J=15.3 Hz), 6.96 (dd, 1H, J=3.1, 4.9 Hz), 6.99 (d, 1H, J=3.1 Hz), 7.16 (d, 1H, J=4.9Hz); EI–MS 294 (M⁺); (+)-8: ¹H NMR (CDCl₃, 500 MHz) δ 1.21 (d, 3H, J=7.0 Hz), 3.31 (s, 3H), 3.57 (s, 3H), 3.66 (s, 3H), 3.74 (dd, 1H, J = 8.2, 8.2 Hz), 4.20 (dq, 1H, J = 7.0, 8.2 Hz),4.94 (s, 1H), 6.07 (dd, 1H, J = 8.2, 15.9 Hz), 6.47 (d, 1H, J = 15.9Hz), 7.23 (t, 1H, J=7.2 Hz), 7.30 (dd, 1H, J=7.2, 7.3 Hz), 7.34 (d, 1H, J=7.3 Hz); EI–MS 290 (M⁺); $[\alpha]_D^{26} = +239$ (c 1.0, CHCl₃); (±)-14: ¹H NMR (CDCl₃, 300 MHz) δ 1.04 (d, 3H, J = 7.0 Hz), 3.26 (s, 3H), 3.66 (s, 3H), 3.68 (s, 3H), 3.83 (dd, 1H, J = 8.5, 9.2 Hz, 4.21 (dq, 1H, J = 7.0, 9.2 Hz), 5.08 (s, 1H), 6.05 (dd, 1H, J=8.5, 15.9 Hz), 6.56 (d, 1H, J=15.9 Hz), 6.88 (d, 1H, J=15.8 Hz), 7.25 (t, 1H, J=7.3 Hz), 7.33 (dd, 1H, J=7.3, 7.3 Hz), 7.40 (d, 1H, J = 7.3 Hz); EI–MS 290 (M⁺).