

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 937-941

Design and synthesis of oxime ethers of α-acyl-β-phenylpropanoic acids as PPAR dual agonists

Hee Oon Han, Seung Hae Kim, Kyoung-Hee Kim, Gwong-Cheung Hur, Hyeon Joo Yim, Hee-Kyung Chung, Sung Ho Woo, Ki Dong Koo, Chang-Seok Lee, Jong Sung Koh* and Geun Tae Kim*

Research and Development, LG Life Sciences, 104-1 Munji-dong, Yuseong-gu, Daejon 305-380, Republic of Korea

Received 21 September 2006; revised 9 November 2006; accepted 15 November 2006 Available online 18 November 2006

Abstract—Oxime ethers of α -acyl- β -phenylpropanoic acids were prepared to apply as PPAR α and γ dual agonists. Among them, compound **111** proved to exhibit potent in vitro activities with EC₅₀ of 19 and 13 nM in PPAR α and γ , respectively. It showed better glucose lowering effects than rosiglitazone **1** and ameliorated the lipid profile like plasma triglyceride in *db/db* mice model. © 2006 Elsevier Ltd. All rights reserved.

Type II diabetes has emerged as one of the biggest problems facing the world today. High glucose level in the blood caused hyperglycemia and insulin resistance, which resulted in the deterioration of the pancreatic β-cell function.¹ Hyperglycemia should be controlled in a careful manner, otherwise higher morbidity and mortality have been found in the related diseases like retinopathy, nephropathy, neuropathy, dyslipidemia, coronary heart disease, hypertension, and obesity.² Many targets have been investigated to cure type II diabetes like dipeptidyl peptidase IV,3 peroxisome proliferator-activated receptors⁴ (PPARs), GLP-1 analog,⁵ glucokinase,⁶ and so on. Among those targets, peroxisome proliferator-activated receptors (PPARs) are known as a good target to lower plasma glucose and to improve metabolic syndrome. PPARs are members of the nuclear receptor superfamily, which consists of three isoforms, PPAR α , PPAR γ , and PPAR6.7 Heterodimer of PPARs with retinoid X receptors binds to peroxisome proliferator response element (PPRE) in the promoter region with cofactors, which results in the regulation of many target genes. PPAR γ is largely expressed in adipocytes and macrophages.⁸ In adipocyte tissue, PPAR γ promotes the differentiation and the lipid storage. PPAR γ agonists like rosiglitazone 1 and pioglitazone 2 ameliorate insulin sensitivity. In con-

Keywords: PPAR; Dual agonist; Oxime; Propanoic acid.

* Corresponding authors. Tel.: +82 42 866 2247; fax: +82 42 861 2566; e-mail: gtakim@lgls.co.kr

trast with PPAR γ , PPAR α is expressed in liver and heart. Activation of PPAR α induces fatty acid oxidation in the liver, and reduces serum triglyceride (TG) and increases HDL cholesterol.

PPAR γ agonists, rosiglitazone 1 and pioglitazone 2, with thiazolidinediones (TZDs) have been marketed with a sale of 1.9 billion dollars and 2.0 billion dollars, respectively, in 2004.9 Recently, 3-year clinical study indicated that pioglitazone reduced the risk of myocardial infarction or stroke significantly.¹⁰ However, long clinical treatment (3-4 months) of TZDs is required to reach their full glucose reduction effect.¹¹ Although these agents have glucose lowering effect and improve the lipid profile like TG, LDL cholesterols and HDL cholesterol, the crucial side effects¹² like congestive heart failure, edema, fluid retention, and weight gain still remain unsolved. Until now, a large number of PPAR α , γ dual agonists have been investigated in many research groups but the successful PPAR α , γ dual agonists including tesaglitazar 3 (AstraZeneca) and muraglitazar¹³ 4 (BMS-Merck) have not been marketed. Nevertheless, PPAR α , γ dual agonist would be well suited for treatment of diabetes and cardiovascular disease as long as it could reduce side effects as mentioned above.

Many PPAR α , γ dual agonists contained α -alkoxy acids, α -carbamate acids or thiazolidinediones as shown in tesaglitazar 3, muraglitazar 4, rosiglitazone 1, and pioglitazone 2. Acid group in PPAR agonists is known

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.11.050

to play a key role in interacting with PPAR α and γ .^{4b} In an effort to search for the new PPAR agonist, this led us to investigate isostere of α -substituent in acid. At the beginning, introduction of oxime group at α -position in acid was expected to provide a working scaffold for the efficacious PPAR agonist. Therefore, we designed a series of new phenylpropanoic acids containing the oxime functionality as PPAR α , γ dual agonists. The synthesis of phenylpropanoic acids having the oxime group is described in Scheme 1. Most of the compounds were synthesized in the recemic forms. Knoevenagel reaction was employed for the synthesis of **6**. Condensation of β keto ester 5 and 4-hyroxy benzaldehyde was carried out with catalytic amounts of piperidine and acetic acid in benzene using Dean-Stark trap. The yield of condensation was excellent (90-95%) and this type of reaction allowed the modification of R^1 group in 11 by simply changing the commercially available β -keto esters 5. Hydrogenation of 6 and the following reaction with O-alkyl hydroxyl amine afforded phenols 8. The generated geometric (E)- and (Z)-isomers were not isolated in this step but separated in the final step using HPLC. Alkylation of phenols 8 with the commonly used oxazoles 9 was carried out by refluxing with Cs_2CO_3 in acetonitrile to furnish esters 10 in good yields.

Oxazoles 9 could be prepared by using the published procedures.¹⁴ Scheme 2 shows a simple synthetic route to one of oxazoles 9 with phenyl group as R^3 position. Butane-2,3-dione mono-oxime was reacted with benzaldehvde and hydrochloric acid in dioxane to afford oxazole N-oxide 14. Treatment of N-oxide 14 with phosphorus oxychloride in chloroform gave chloride 15. For the one-carbon elongation, chloride 15 was subjected to sodium cyanide in DMF at 80 °C and then alkaline hydrolysis with KOH in aqueous THF to furnish the corresponding acid. Reduction of the acid with borane dimethylsulfide complex and the following reaction with methanesulfonyl chloride afforded mesylate 18. Ester 10 was hydrolvzed with sodium hydroxide in aqueous THF and methanol, and then the (E)- and (Z)-isomers were separated with HPLC to give pure acid 11.15 Among them, spectral data for the representative 111 are given below. Spectra for 111: ¹H NMR (CDCl₃) δ 7.94–7.92 (1H, m), 7.38-7.33 (3H, m), 6.97 (1H, d, J = 8.6), 6.78(1H, d, J = 8.6), 4.81(2H, s), 3.84-3.78 (1H, m), 3.79-3.73 (1H, m), 3.38 (1H, dd, J = 12, 4.9 Hz), 3.15 (1H, dd, Jdd, J = 14, 4.9 Hz), 2.84 (1H, dd, J = 14, 12 Hz), 2.29 (3H, s), 1.75 (3H, s), 1.33–1.27 (2H, m), 0.66 (3H, t, J = 7.6 Hz) ¹³C NMR (CDCl₃) δ 178.68, 159.90, 159.35, 156.87, 157.06, 132.43, 132.12, 130.08, 129.97,

Scheme 1. Reagents and conditions: (a) 4-hydroxy benzaldehyde, AcOH (cat), piperidine (cat), benzene, Dean-Stark trap, 90–95%; (b) MeOH/ethyl acetate 10:1, H₂, Pd(OH)₂, 95%; (c) MeOH, NaOAc, HCl·H₂N–OR₂, 90%; (d) Cs₂CO₃, CH₃CN, reflux, n = 1, 80–90%, n = 2, 50–60%; (e) THF/ MeOH/1 N NaOH 1:1:1, 90%.

Scheme 2. Reagents and conditions: (a) 4 M HCl in dioxane, rt, 99%; (b) CHCl₃, POCl₃, reflux, 99%; (c) NaCN, DMF, 80 °C, 95%; (d) KOH, aq. THF, reflux; (e) BH₃·SMe₂, THF, rt, 68%; (f) MeSO₂Cl, Et₃N, CH₂Cl₂, 0 °C, 99%.

128.72, 127.48, 126.15, 114.56, 74.72, 62.23, 55.82, 34.84, 22.23, 12.68, 10.47, 10.32 mass (EI) m/z 437 (M⁺+1) (Fig. 1).

Compound 11 in our hand were screened for PPAR α and γ agonist activity on PPAR-GAL4 chimeric receptor in transfected HepG2 cells.¹⁶ Rosiglitazone 1, tesaglitazar 3, and GW9578¹⁷ were used as PPAR γ , PPAR α / γ , and PPAR α agonist controls. In Table 1, we summarized functional transactivation data of all the compounds. We initiated to synthesize **11a**, which was found to be a potent agonist in PPAR α and γ . It was so encouraging that we decided to scrutinize the influence of R² groups. As the size of the substituent increased, PPAR α and γ activities appeared to improve. Modification of the chain in R² group indicated that the optimal size of the substituent was *n*-butyl group in this study. As shown in Table 1, **11e** had sub-nanomolar activity on PPAR γ and 1.3 nM on PPAR α . When ethyl group was introduced to R¹ in **11g** and **11h**, they

Figure 1. Structures of PPAR agonists.

Table 1. In vitro activity of oxime ethers of α -acyl- β -phenylpropanoic acids 11^a

Compound	Geometric isomer	N	\mathbb{R}^1	R ²	R ³	$EC_{50}(nM)^b$ of hPPAR γ	$EC_{50}(nM)^b$ of hPPAR α
11a	Ε	2	Me	Me	Ph	2.1	19
11b	E	2	Me	Et	Ph	1.0	12
11c	Ε	2	Me	<i>n</i> -Pr	Ph	0.55	4.9
11d	Ε	2	Me	CH ₂ CHMe ₂	Ph	0.3	2.2
11e	Ε	2	Me	<i>n</i> -Bu	Ph	0.19	1.3
11f	Ε	2	Me	CH ₂ -cyclopropyl	Ph	0.36	3.1
11g	E/Z = 3/1	2	Et	Me	Ph	0.31	32
11h	E/Z = 4/1	2	Et	Et	Ph	0.1	26
11i	Ε	2	Me	4-F-PhenylCH ₂	Ph	0.54	10.6
11j	Ζ	2	Me	4-F-PhenylCH ₂	Ph	5	596
11k	E/Z = 5/1	1	Me	Et	Ph	4	91
111	Ε	1	Me	Pr	Ph	13	19
11m	Ε	1	Me	Et	4-F-Phenyl	6.8	12
11n	Ε	1	Me	<i>n</i> -Pr	4-F-Phenyl	28	11.7
110	Ε	1	Me	2-F-Ethyl	4-F-Phenyl	7.7	23
11p	Ε	2	Me	Et	4-F-Phenyl	3.0	11.5
11q	Ε	2	Me	Pr	4-F-Phenyl	2.1	4
11r	Ε	2	Me	2-F-Ethyl	4-F-Phenyl	2.9	3.5
11s	E/Z = 5/1	1	Me	Et	<i>i</i> -Propyl	48	1237
11t	E/Z = 5/1	1	Me	Pr	<i>i</i> -Propyl	5	105
11u	Ε	2	Me	Et	<i>i</i> -Propyl	20	139
11v	Ε	2	Me	Pr	<i>i</i> -Propyl	5.2	10
Rosiglitazone 1						82	
Tesaglitazar 3						3528	9798
GW9578							78

^a Agonist activities were measured in human PPAR-GAL4 chimeric HepG2 cells using the published procedure.¹⁶

^b Concentration of the test compounds which produced 50% of the maximal reporter activity.

retained good PPAR α and γ activities. Comparison of the activities of the geometric isomers 11i and 11j demonstrated that (E)-isomer had more potent activities in PPAR α and γ than (Z)-isomer. 11k and 11l, having shorter linkers, exhibited well-balanced activities as well. 4-Fluorophenyl methyl group was installed in 11m-11r because phenyl group is sometimes metabolically vulnerable. They were prepared for the pharmacokinetic studies and in vivo experiment. We also attached isopropyl group as R³. Compounds **11s** and **11t** with a short linker turned out to decrease PPAR α and γ activities as compared with compounds 11u and 11v. In general, a series of oxime ethers of α -acyl- β -phenylpropanoic acids 11 exhibited excellent PPAR α and γ activities, which provide a useful scaffold for PPAR α and γ dual agonist. Finally, X-ray crystallographic data of 111 were obtained to verify which enantiomer was potent one in PPAR α and γ , unequivocally. (R)-111 was found to be a potent enantiomer as shown in Figure 2. Therefore, we isolated a pure enantiomer (R)-111 by utilizing chiral HPLC with a Chiracel® OD-RH column, which revealed that it had EC₅₀ of 11 and 5 nM in PPAR α and γ .

To investigate the interactions of these compounds with the protein, the compound **111** was chosen to co-crystallize with PPAR α LBD (ligand binding domain) and the co-activator peptide fragment (SRC-1).

The U-shaped compound **111** binds to the PPAR α LBD using four hydrogen bonds and many van der Waals contacts. The carboxylate group of the compound **111** forms hydrogen bonds with Ser280 on helix 3, Tyr314 on helix 5, and Tyr464 on helix 12 as in the structure of tesaglitazar **3**.¹⁸ Its oxime group is located in the so-called 'benzophenone' pocket and makes contacts with Ile272, Phe273, Cys276, and Ile354. The oxime-binding pocket can accommodate various sizes of functional groups, which correlated well with SAR shown in Table 1. The phenyl oxazole group fits into a hydrophobic pocket formed by helix 2'; helix 3 and the β sheet,

Figure 2. Crystal structure of the PPAR α LBD in complex with compound **11**. Compound **11** is shown in purple and Tyr464 from helix 12 is highlighted in red. All of the residues within 4 Å from the compound are labeled.

Table 2. Pharmacokinetic data of 111 in SD rats^a

ро	iv
10	5
9708	6773
22.6	
30	
483	355.9
	0.8
	329
75.5	
	po 10 9708 22.6 30 483 75.5

 $n^{a} n = 2.$

	Table 3.	In	vivo	data	of	compound	111	in	db/db	mice ²⁰
--	----------	----	------	------	----	----------	-----	----	-------	--------------------

Compound	Dose (mg/kg)	Plasma glucose ^a (%)	Plasma TG ^a (%)
Rosiglitazone 1 ^b	10	65	65
Tesaglitazar 3°	1	68	38
111 [°]	0.1	8	43
	1	56	41
	10	73	58

^a Reduction of plasma glucose and plasma TG were calculated as the percent of reduction and increase with respect to control value.

^b Blood samples were collected after 12 days.

^c Blood samples were collected for glucose after 11days and for TG after 14 days.

and the nitrogen atom of the oxazole ring makes a water-mediated hydrogen bond with Thr279.¹⁹ The complex structure of the compound **111** with PPAR γ LBD revealed similar binding interactions.

Based on the cell-based activities and the pharmacokinetic studies in rats, 111 was selected to adjust the in vivo experiment in male db/db mice for further evaluation. Its pharmocokinetic behavior in Sprague–Dawley (SD) rats is described in Table 2. When dosed orally at 0.1, 1, 10 mg/kg in db/db mice²⁰ for 14 days, compound **11** exhibited a does-dependent decrease in plasma glucose and plasma triglyceride (TG) as depicted in Table 3. Treatment of 10 mg/kg of 111 showed a glucose reduction of 73% as compared with that of 65% and 68% at 10 mg/kg of rosiglitazone 1 and 1 mg/kg of tesaglitazar 3, respectively. At the same time, 111 reduced plasma TG by 58% at a dose of 10 mg/kg. Glucose lowering effect was also found at a dose of 1 mg/kg of 111. Consequently, compound 111 displayed better glucose lowering effect than rosiglitazone 1, whereas it showed diminished efficacy as compared with tesaglitazar 3. Compound 111 turned out to have glucose lowering effect and ameliorate lipid profile like TG in *db/db* mice model. In conclusion, we found that a series of oxime ethers of α -acyl- β -phenylpropanoic acids were potent agonists of PPAR α and γ , and exhibited good in vivo efficacy, which will be further developed.

Acknowledgments

We thank Dr. Sunwha Lee for providing the pharmacokinetic data and Ki-Sook Park for preparing the samples for in vivo experiment.

References and notes

- (a) Rhodes, C. J. Science 2005, 307, 380; (b) Berger, J.; Moller, D. E. Ann. Rev. Med. 2002, 53, 409; (c) Bell, G. I. Nature 2001, 414, 788.
- Zimmet, P.; Alberti, K. G. M. M.; Shaw, J. Nature 2001, 414, 782.
- (a) Kim, D.; Wang, L.; Beconi, M.; Eiermann, G. J.; Fisher, M. H.; He, H.; Hickey, G. J.; Kowalchick, J. E.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M. E.; Patel, R. A.; Petrov, A.; Scapin, G.; Patel, S. B.; Roy, R. S.; Wu, J. K.; Wyvratt, M. J.; Zhang, B. B.; Zhu, L.; Thornberry, N. A.; Weber, A. E. J. Med. Chem. 2005, 48, 141; (b) Villhauer, E. B.; Brinkman, J. A.; Naderi, G. B.; Burkey, B. F.; Dunning, B. E.; Prasad, K.; Mangold, B. L.; Russell, M. E.; Hughes, T. E. J. Med. Chem. 2003, 46, 2774; (c) Gill, I.; Patel, R. Bioorg. Med. Chem. Lett. 2006, 16, 705.
- (a) Savkur, R. S.; Miller, A. R. Expert Opin. Invest. Drugs 2006, 15, 763; (b) Henke, B. R. J. Med. Chem. 2004, 47, 4118; (c) Staels, B.; Fruchart, J. Diabetes 2005, 54, 2460.
- Joy, S. V.; Rodgers, P. T.; Scates, A. C. Ann. Pharmacother. 2005, 39, 110.
- 6. Matschinsky, F. M. Diabetes 2002, 51, S394.
- Willson, T. M.; Brown, P. J.; Sternbach, D. D.; Henke, B. R. J. Med. Chem. 2000, 43, 527.
- Semple, R. K.; Chatterjee, V. K. K.; O'Rahily, S. J. Clin. Invest. 2006, 116, 581.
- 9. Commercial insight: Antidiabetics; Dataminitor, June 2005.
- Dormandy, J. A.; Charbonnel, B.; Eckland, D. J. A.; Erdmann, E.; Massi-Benedetti, M.; Moules, I. K.; Skene, A. M.; Tan, M. H.; Lefèbvre, P. J.; Murray, G. D.; Standl, E.; Wilcox, R. G.; Wilhelmsen, L.; Betteridge, J.; Birkeland, K.; Golay, A.; Heine, R. J.; Korányi, L.; Laakso,

M.; Mokáň, M.; Norkus, A.; Pirags, V.; Podar, T.; Scheen, A.; Scherbaum, W.; Schernthaner, G.; Schmitz, O.; Škrha, J.; Smith, U.; Tatoň, J. *Lancet* **2005**, *366*, 1279.

- 11. Boden, G.; Zhang, M. Expert Opin. Invest. Drugs 2006, 15, 243.
- 12. Bloomgarden, Z. T. Diabetes Care 2005, 28, 2.
- 13. Nissen, S. E.; Wolski, K.; Topol, E. JAMA 2005, 294, 2581.
- 14. Goto, Y.; Yamazaki, M.; Hamana, M. Chem. Pharm. Bull. 1971, 19, 2050.
- 15. All compounds described in this paper gave consistent ¹H NMR and LC/MS data. Synthetic experimental procedures and spectral data can be found in the patent: Kim, G. T.; Koh, J. S.; Han, H. O.; Kim, S. H.; Kim, K; Chung H.; Kim, Y. C.; Kim, M.; Koo, K. D.; Yim, H. J.; Hur, G.; Lee, S. H.; Lee, C.; Woo, S. H. WO 2005040127.
- Bility, M.; Thompson, J.; McKee, R. H.; David, R. M.; Butala, J. H.; Heuvel, J. P. V.; Peters, J. M. *Toxicol. Sci.* 2004, 82, 170.
- Brown, P. J.; Winegar, D. A.; Plunket, K. D.; Moore, L. B.; Lewis, M. C.; Wilson, J. G.; Sundseth, S. S.; Kolbe, C. S.; Wu, Z.; Chapman, J. M.; Lehmann, J. M.; Kliewer, S. A.; Wilson, T. M. J. Med. Chem. 1999, 42, 3785.
- Cronet, P.; Petersen, J. F. W.; Folmer, R.; Blomberg, N.; Sjöblom, K.; Larlsson, U.; Lindstedt, E.-L.; Bamberg, K. *Structure* 2001, 9, 699.
- 19. The coordinates have been deposited in the Protein Data Bank: PDB ID 2NPA.
- Berger, J.; Leibowitz, M. D.; Doebber, T. W.; Elbrecht, A.; Zhang, B.; Zhou, G.; Biswas, C.; Cullinan, C. A.; Hayes, N. S.; Li, Y.; Tanen, M.; Ventre, J.; Wu, M. S.; Berger, G. D.; Mosley, R.; Marquis, R.; Santini, C.; Sahoo, S. P.; Tolman, R. L.; Smith, R. G.; Moller, D. E. *J. Biol. Chem.* 1999, 274, 6718.