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Abstract. Nanomagnetic Fe3O4@SiO2-SO3H (SO3H-MNPs) was prepared via grafting sulfonic acid on the
silica-coated Fe3O4 magnetite nanoparticles (MNPs). The catalytic activity of the prepared SO3H-MNPs was
probed through the one-pot synthesis of N-hydroxy-α-amino phosphonates and α-amino phosphonates via
three-component couplings of phenylhydroxylamine or amines with aldehydes and trialkyl phosphites at room
temperature. The synthesized SO3H-MNPs were characterized by XRD, FT-IR, and SEM. The recoverability
of the catalyst was achieved by a simple magnetic decantation and reused at least five times without significant
degradation in catalytic activity.

Keywords. Magnetic nanoparticle; N-hydroxy-α-amino phosphonate; catalysis; one-pot synthesis;
multicomponent reaction.

1. Introduction

The amino phosphonates compounds and their
derivatives are known as biologically active com-
pounds with broad range applications in different
fields. These compounds are structural analogues of
natural amino acids and their biologically effects as
anti-cancer agents,1 enzyme inhibitors,2 antibiotics,3

anti-thrombotic agents,4 peptidases, proteases,5 HIV
protease,6 fungicides,7 herbicides, insecticides and
plant growth regulators,8 indicate the importance of
scientific research to develop their synthetic proce-
dures.9–11

Although a number of synthetic methods have been
developed for the synthesis of α-amino phosphonates,
there are only a few methodologies for the synthesis of
N-hydroxy-α-amino phosphonates. The basic method
for the preparation of α-amino phosphonates, involves
the condensation of a primary or secondary amine, a
carbonyl compound (aldehyde or ketone) and dialkyl or
trialkyl phosphite,12–17 which have been promoted by
Lewis or Brønsted acids such as Yb(OTf)3,18 ytterbium
perfluorooctanoate [Yb(PFO)3],19 Cu(OTf)2,20 InCl3,21
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SmI2,22 ZnCl2,23 SnCl4,24 TaCl5–SiO2,25 SiO2-ZnBr2,26

alumina supported reagents,27 MgClO4,28 LiClO4,29

Sn(OTf)2,30 CF3CO2H,31 Scandium tris(dodecyl sul-
phate) Sc(DS)3,32 BF3-Et2O,33 aq. HCOOH,34 (CO
OH)2,35 Cd(ClO4)2 ·xH2O,36 PEG-SO3H,37 KH2PO4,38

Magnetic nanoparticle,39 Aluminium pillared interlay-
ered clay (Al-PILC),40 Pentafluorophenylammonium
triflate (PFPAT),41 and Cellulose-SO3H.42

On the other hand, N-hydroxy-amino phosphonic
acids which are fascinating biologically active com-
pounds, are phosphorus analogue of N-hydroxy-α-
amino acid, which have an important role in many
metabolic and biological processes.43 N-hydroxy-α-
amino phosphonates were also announced as suitable
synthons for pseudo peptides and illustrate herbicidal
and growth-regulating activity.44 They are also used for
the preparation of α-amino phosphonates and phospho-
rylated nitrones.45

The efficient oriented synthesis of N-hydroxy-α-
amino phosphonates has been reported using different
reagents and catalysts. However, these methods have
various drawbacks like their difficulties in the prepa-
ration of catalysts such as LPDE (lithium perchlorate-
diethyl ether) and reagents such as dimethyl (trimethylsi-
lyl) phosphate.45,46 Palladium hydrogenation of
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Scheme 1. Synthesis of α-amino phosphonate derivatives catalyzed by Fe3O4@SiO2-SO3H.

N-hydroxy-α-imino phosphonates using Brønsted acid
as activator also reported to produce the N-hydroxy-α-
amino phosphonates.43 As an alternative, the use of ionic
liquid [bmim][BF4] as a catalyst has been reported to
catalyze the combination of hydroxylamine derivatives
with carbonyl groups.47

Among various catalyst separations in organic
reaction, a simple magnetic isolation process eliminates
the requirement of catalyst filtration and centrifugation.
Magnetic nanoparticles (MNPs) have gained consider-
able attention as a solid support for immobilization of
homogeneous catalysts.48,49 Nanoparticles can be well
dispersed in the reaction medium providing a large
surface for ready access of catalytic sites. After com-
pleting the reactions, the MNPs supported catalysts
can be isolated efficiently from the solution through
a simple magnetic separation.50,51 Furthermore; there
are no reports on the use of the nanomagnetic catalysts
as promoters for three-component coupling reaction of
aldehydes, hydroxylamines and trialkyl phosphites to
produce N-hydroxy-α-amino phosphonates.

As part of an ongoing development of efficient
protocols for the preparation of phosphonate com-
pounds and in continuation of our recently reported
work on MCR,39 herein, we report SO3H-functionalized
silica-coated magnetic nanoparticles [Fe3O4@SiO2-
SO3H] as an efficient and recoverable catalyst for
the synthesis of N-hydroxy-α-amino phosphonates and
α-amino phosphonates at room temperature (25 ◦C),
through three-component reaction of aromatic alde-
hydes, trialkyl phosphite and phenylhydroxylamine or
amines (Scheme 1). The reaction occurred via in situ
formations of nitrone, a highly reactive intermediate, or

imine. All the products are well known and compared
with the reported literature.

2. Experimental

2.1 General

Iron (II) chloride tetrahydrate (99%), iron (III) chloride
hexahydrate (98%), aromatic aldehydes and other chemi-
cals were purchased from Fluka and Merck companies and
used without further purification. Products were characterized
by comparison of their physical data, IR and 1H NMR and
13C NMR spectra with known samples. NMR spectra were
recorded on a Bruker Advance DPX 400 MHz instrument
spectrometer using TMS as an internal standard. The infrared
spectra were recorded on a Perkin Elmer spectrum two FT-IR
spectrometers. The purity determination of the products and
reaction monitoring was accomplished by TLC on TLC-Cards
Silica gel-G/UV 254 nm. X-ray diffraction (XRD) patterns
of samples were taken on a Philips X-ray diffractometer
(Model PW 1840) in the range 2θ range 50–70. SEM images
were also recorded using Philips XL30 scanning electron
microscope.

2.2 Preparation of the Fe3O4@SiO2

Fe3O4 MNPs and Silica-coated Fe3O4 nanoparticles
(Si-MNPs) were prepared according to the procedure reported
by Kiasat and Ghasemzadeh.52–54 Briefly, a solution of
FeCl3 · 6H2O (55.98 mmol, 15.13 g) and FeCl2 · 4H2O
(31.9 mmol, 6.34 g) in 640 mL of deionized water was stirred
at 80 ◦C and then 80 mL of concentrated ammonia (25%)
was added until the pH reached 11–12. The mixture was
stirred vigorously at 80 ◦C until precipitation. Afterwards, the
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Figure 1. FT-IR spectra of Fe3O4@SiO2-SO3H.

Figure 2. X-ray diffraction for Fe3O4@SiO2-SO3H.

prepared magnetic NPs were separated magnetically, washed
with deionized water and then dried at 70 ◦C for 8 h.

In order to prepare the Silica-coating Fe3O4 nanoparticles,
2 g of the prepared Fe3O4 NPs were sonicated in a mixture of
ethanol (450 mL), deionized water (120 mL) and concentrated
ammonia aqueous solution (10 mL, 25 wt%), followed by the
addition of TEOS (2 mL). After stirring at room temperature
for 15 h, the Fe3O4@SiO2 was separated using an external
magnet and washed several times with deionized water and
dried under vacuum at 60 ◦C overnight.

2.3 Preparation of the Fe3 O4@SiO2-SO3H

According to the literature56 the as-synthesized Fe3O4@SiO2
(2.5 g) was added to dry CH2Cl2 (75 mL) in a 500 mL
suction flask bearing constant pressure dropping funnel Figure 3. SEM image of Fe3O4@SiO2-SO3H.
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Table 1. Optimization of the reaction conditionsa.

Entry Catalyst (g) Solvent Temp. (◦C) Time (h) Yield (%)

1 No catalyst Neat 25 4 Trace
2 No catalyst Neat 100 4 Trace
3 0.05 CH2Cl2 25 3 66
4 0.05 CH3CN 25 4 45
5 0.05 EtOH 25 4 20
6 0.05 CHCl3 25 3 62
7 0.07 CH2Cl2 25 3 78
8 0.1 CH2Cl2 25 2 88
9 0.1 CH2Cl2 40 2 89
10 0.15 CH2Cl2 25 2 88

aBenzaldehyde (1.0 mmol), phenylhydroxylamine (1.2 mmol),
triethyl phosphite (1.2 mmol), Fe3O4@SiO2-SO3H.
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Scheme 2. Synthesis of N-hydroxy-α-amino phosphonates 4.

linked to the gas outlet. The mixture was homogenized by
ultrasonic for 10 min. Then chlorosulfonic acid (1.75 g,
ca. 1 mL, 15 mmol) in dry CH2Cl2 (20 mL) was added
dropwise over a period of 30 min at room temperature.
After completion of the addition, the mixture was shaken for
90 min, while the residual HCl was eliminated by suction.
Then, the Fe3O4@SiO2-SO3H was separated by an external
magnet from the mixture and washed several times with dried
CH2Cl2. Finally, Fe3O4@SiO2-SO3H was dried under vac-
uum at 60 ◦C. The identities of the catalyst were confirmed
according to the reference by XRD, SEM and FT-IR.

2.4 General procedure

0.1 g the catalyst (Fe3O4@SiO2-SO3H) was added to the
solution of Aldehyde (2 mmol), phenylhydroxylamine
(2 mmol, 22 mg), and diethyl phosphite (2 mmol, 28 mg) in
2 mL CH2Cl2 and stirred at room temperature (25 ◦C) for the
appropriate time (Table 2). The progress of the reaction was
monitored by TLC. In the end, CH3Cl was added to dilute the
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Figure 4. Recyclability of the catalyst.

reaction mixture and the organic layer was simply decanted
by means of an external magnet. The isolated solution was
purified on a silica-gel plate to obtain the pure product. The
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Scheme 3. The proposed mechanism for the synthesis of N-hydroxy-α-amino phosphonates.

identities of the products were confirmed by FT-IR and 1H
NMR spectral data related to reference.47–49,51,55,56

2.5 Representative spectroscopic data

4a: Viscous liquid; 1H NMR (400 MHz, CDCl3): δ 1 (t, J =
6.8 Hz, CH3), 1.26 (t, J = 6.8 Hz, CH3), 3.51–3.56 (m, 1H),
3.79–3.85 (m, 1H), 4.11–4.18 (m, 2H), 4.98 (brs, OH), 5.24–
5.31 (d, 1H, JP−H = 22 Hz), 6.51–6.59 (d, J = 8.1 Hz, 2H),
6.61–6.63 (t, J = 7.6 Hz, 1H), 7.01–7.06 (m, 3H), 7.17–7.21
(m, 1H), 7.48–7.50 (m, 2H) ppm. IR (KBr, υmax cm−1): 3375,
2970, 1602, 1499, 1227, 1022, 967, 748, 670.

6g: Yellow solid, M.p.: 123–125 ◦C; 1H NMR (400 MHz,
CDCl3): 1.18–1.22 (t, J = 7.1 Hz, CH3), 1.26–1.34 (t, J =
7.1 Hz, CH3), 3.88–3.90 (m, 1H), 4.03–4.09 (m, 1H), 4.13–
4.19 (m, 2H), 4.85–4.91 (d, JP−H = 24.8 Hz, 1H), 6.55-6.57
(d, J = 8 Hz, 2H), 6.74–6.78 (t, J = 6.8 Hz, 1H), 7.12–
7.15 (t, J = 7.6 Hz, 2H), 7.67–7.70 (m, 2H), 8.20–8.23 (d,
J = 8.8 Hz, 2H) ppm.

6i: Viscous liquid; 1H NMR (400.13 MHz, CDCl3): 1.05–
1.10 (t, J = 7.2 Hz, CH3), 1.32–1.36 (t, J = 7.2 Hz, CH3),
3.61–3.64 (m, 1H), 3.89–3.93 (m, 1H), 4.21–4.28 (m, 2H),
4.08–4.19 (m, 2H), 5.35–5.41 (d, JP−H = 24.4 Hz, 1H),
6.62–6.64 (d, J = 8.4 Hz, 2H), 6.70–6.73 (t, J = 7.2, 1H),
7.11–7.15 (t, J = 8.4 Hz, 3H), 7.27–7.30 (t, J = 7.6, 1H),
7.57–7.62 (t, J = 8.4, 2H) ppm.

6j: Yellow solid, M.p.: 62–65 ◦C; 1H NMR (400.13 MHz,
CDCl3): δ 1.02–1.05 (t, J = 7.2 Hz, CH3), 1.19–1.23 (t,
J = 7.2 Hz, CH3), 3.54–3.65 (m, 1H), 3.84–3.87 (m, 1H),
4.01–4.07 (m, 2H), 4.66–4.72 (d, JP−H = 24.4 Hz, 1H),

6.51–6.53 (d, J = 7.6 Hz, 2H), 6.6–6.64 (t, J = 7.6 Hz, 1H),
7.01–7.05 (m, 2H), 7.18–7.21 (m, 1H), 7.24–7.27 (m, 2H),
7.39–7.40 (m, 1H) ppm. IR (KBr, υmax cm−1): 3298, 2988,
1607, 1494, 1241, 1047, 986, 799, 747.

6n: Viscous colorless liquid; 1H NMR (400.13 MHz, CDCl3):
1.10–1.14 (t, J = 7.2 Hz, CH3), 1.23–1.26 (t, J = 7.2 Hz,
CH3 Hz), 3.73–3.77 (m, 1H), 3.96–3.99 (m, 1H), 4.06–4.14
(m, 2H), 5.48–4.56 (dd, 1H), 5.8 (brs, NH), 6.45–6.47 (d,
J = 8.4 Hz, 1H), 6.56–6.60 (t, J = 1.2 Hz, 1H), 7.25–7.36
(m, 4H), 7.52–7.54 (t, J = 1.2 Hz, 2H), 8.05–8.07 (t, 1H)
ppm.

3. Results and Discussion

The catalyst was synthesized according to the report52

and characterized by X-ray powder diffraction (XRD),
Scanning electron microscope (SEM) and Fourier trans-
form infrared (FT-IR). The Fe3O4 magnetic nanopar-
ticles as the catalyst core were prepared by a simple
method using the co-precipitation of FeCl2 and FeCl3

in ammonia solution. The synthesis of sulphuric acid
immobilized on Si-MNPs was achieved by using the
reported method.52

The FT-IR spectrum of Fe3O4@SiO2-SO3H shows
the peaks at 1090, 806 and 462 cm−1 assigned to the
Si-O-Si. The presence of sulphonyl group is confirmed
by 1217 and 1124 cm−1 bands that were covered by a
stronger absorption of the Si-O bond at 1092 cm−1. In
addition, the characteristic peaks of Fe-O at 580 cm−1

and Si-OH at 956 cm−1 were also observed (Figure 1).
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Table 2. Synthesis of α-amino phosphonates (6) in the presence of Fe3O4@SiO2-SO3H via Scheme 1a.

Entry Aldehyde Amine P(OR)3

Time 
(min)

Yield 
(%)b

a C6H5CHO C6H5NH2 3P(OEt)

N
H

PO
OEt

OEt
45 92

b C6H5CHO C6H5NH2 P(OMe)3

N
H

PO
OMe
OMe

50 96

c C6H5CHO 4-CNC6H4NH2 3P(OEt)

N
H

PO
OEt
OEt CN 60 92

d 4-MeC6H4CHO 4-CNC6H5NH2 3P(OEt)

N
H

PO
OEt

OEt

H3C

CN 40 90

e 4-PhC6H4CHO C6H5NH2 3P(OMe)

N
H

PO
OMe

OMe

Ph

55 92

f 4-PhC6H4CHO C6H5NH2 3P(OEt)

N
H

PO
OEt

OEt

Ph

55 85

g 4-NO2C6H4CHO 3-BrC6H5NH2 3P(OEt)

N
H

PO
OEt

OEt

O2N

Br 60 88

h 4-HOC6H4CHO C6H5NH2 3P(OEt)

N
H

PO
OEt
OEt

HO

60 82

i 2-ClC6H4CHO C6H5NH2 3P(OEt)

N
H

PO
OEt

OEt

Cl

70 88
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Table 2. continued

Entry Aldehyde Amine P(OR)3

Time 
(min)

Yield 
(%)b

j 2-BrC6H4CHO C6H5NH2 3P(OEt)

N
H

PO
OEt

OEt

Br

70 85

k 4-NO2C6H4CHO 4-CNC6H5NH2 3P(OEt)

N
H

PO
OEt

OEt

O2N

CN 65 82

l 4-NO2C6H4CHO C6H5NH2 3P(OEt)

N
H

PO
OEt

OEt

O2N

55 84

m

H

O C6H5NH2 3P(OEt)

N
H

PO
OEt
OEt

70 84

n C6H5CHO

N
NH2

3P(OEt)

N
H

N

PO
OEt

OEt
90 65

aAll reactions were carried out at room temperature, 1 mmol aldehyde, 1 mmol amine, 1 mmol trialkyl
phosphite and 0.15 g catalyst.
bIsolated yields.

The X-ray diffraction patterns of Fe3O4@SiO2-SO3H
are shown in Figure 2. XRD diagram of the bare MNPs
displayed patterns consistent with the patterns of spinel
ferrites described in the previous report.52 The average
MNPs core diameter Fe3O4@SiO2-SO3H was calcu-
lated to be 8.2 and 9.6 nm, respectively from the XRD
results by Scherrer’s equation. The average size of the
crystallites can be calculated using the Scherrer equation
(D = Kλ/β cos θ), wherein this equation D is the mean
crystalline size, K is a grain shape dependent constant
(0.9), λ is the incident beam wavelength (0.154), θ is
the Bragg reflection angle and β is the full width at half
maximum (FWHM) of the main diffraction peak.57–59

The SEM image of Fe3O4@SiO2-SO3H is presented
in Figure 3, shows a spherical shape with nano dimen-
sion ranging from 117 to 220 nm.

The loading capacity of the Fe3O4@SiO2-SO3H was
determined by titration and found to be 2.58 mmol/g.

A test reaction using phenylhydroxylamine,
benzaldehyde, and triethyl phosphite at room

temperature and 100 ◦C in the absence of Fe3O4@
SiO2-SO3H was performed in order to establish the real
effectiveness of the catalyst (Table 1, entry 1, 2). It
was found that no conversion to product was obtained
even after 4 hours of heating (Monitoring by TLC). To
optimize the catalyst loading, a model reaction using
phenylhydroxylamine, benzaldehyde, and triethyl phos-
phite was carried out under different amount of catalyst
in different solvents (Table 1). It was observed that
0.1 g loading of the catalyst in CH2Cl2 provides the max-
imum yield in minimum time (Table 1, entry 8). Higher
percentage loading of the catalyst neither increased the
yield nor lowered the reaction time.

By using the optimized reaction conditions, the
efficiency of this protocol was studied for the syn-
thesis of various N-hydroxy-α-amino phosphonates,
and the results are summarized in Scheme 2. In most
cases, the reaction proceeded with high efficiency and
broad functional-group tolerance on aldehyde which
displayed high reactivity under the optimized reaction
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Table 3. Comparison of various catalysts in Synthesis of N-hydroxy-α-amino phosphonates and α-amino phos-
phonates.

Reaction Catalyst Solvent Temp. (◦C) Time Yield (%) Ref.

Synthesis of N-hydroxy-α-
aminophosphonates

[Bmim]BF4 – r.t 2.5 h 92 [47]

[Bmim]PF6 – r.t 3.5 h 89 [47]
LPDE – r.t 15 min 90 [45,46]
Fe3O4@SiO2-SO3H CH2Cl2 r.t 2 h 88 This work

Synthesis of
α-aminophosphonates

SbCl3/Al2O3 CH3CN r.t 3 h 91 [27]

PEG-SO3H – 50 3.5h 98 [37]
Nano Fe3O4 – 50 48 min 94 [39]
Cd(ClO4)2 ·xH2O – r.t 40 min 92 [36]
In/HCl H2O r.t 1.5 h 88 [21]
Fe3O4@SiO2-SO3H CH2Cl2 r.t 45 min 92 This work

conditions and generated the desired products in high
yields. However, unfortunately, when some aliphatic
aldehydes such as isobutyraldehyde and cyclohexane
carboxaldehyde were used in this protocol under the
above-optimized conditions, the desired products could
not be obtained.

Since the catalyst was separated by simple magnetic
decantation, it was washed with ether and reused in the
subsequent reaction. Yields of the product decreased
only slightly after four time’s reuse of catalyst. For
example, the reaction of benzaldehyde, phenylhydrox-
ylamine and triethyl phosphite afforded the corre-
sponding N-hydroxy-α-amino phosphonates in 88%,
86%, 85%, 85% and 84% yields over five cycles
(Figure 4).

A possible mechanism for the synthesis of
N-hydroxy-α-amino phosphonates catalyzed by
Fe3O4@SiO2-SO3H has been proposed (Scheme 3). The
reaction proceeds via the nitrone intermediate, which
was formed by the nucleophilic addition of phenyl-
hydroxylamine to an aldehyde. Fe3O4@SiO2-SO3H as
Brønsted acid plays a role in increasing the electrophilic
character of the starting aldehyde. Subsequent nucle-
ophilic addition of the triethyl phosphite provides the
adduct intermediate that on subsequent reaction fol-
lowed by elimination of MeOH afforded the product.

According to the mechanism of these reactions, the
planar nitrone and iminium intermediate are formed fol-
lowed by nucleophilic attack of the trialkyl phosphite.
It can be concluded that racemic mixture of the product
is obtained.

Bearing in mind the important properties of α-amino
phosphonates, we decided to explore this magnetically
effective catalyst for the preparation of α-amino phos-
phonates using the optimized condition (Scheme 1). The
results are summarized in Table 2.

We investigated various aromatic and heteroaromatic
aldehyde containing electron withdrawing or electron
donating functional groups as well as an amine with
trialkyl phosphonate P(OR)3 (R: Me, Et) at r.t. (25 ◦C)
(Table 2). The given results in Table 2 show that this
one pot, three component condensations completed
within 45–95 min, with good isolated yields. The 2-
aminopyridine gave less yield and required more time,
probably due to the low reactivity of amino group. The
reaction was compatible with various functional groups
such as Cl, Br, CN, OMe, NO2, and OH not interfer-
ing with the competitive complex formation with the
catalyst.

The activity of Fe3O4@SiO2-SO3H by considering
the yield for the model reaction is compared with various
heterogeneous catalysts in Table 3. In addition to easily
magnetic decantation of Fe3O4@SiO2-SO3H, it showed
efficient catalytic activity in relatively short reaction
time, with excellent yields.

4. Conclusion

In summary, this paper describes the three-component
reaction of aromatic aldehydes, trialkyl phosphite and
phenylhydroxylamine or amines to produce N-hydroxy-
α-amino phosphonates andα-amino phosphonates using
SO3H-functionalized silica-coated magnetic nanopar-
ticles [Fe3O4@SiO2-SO3H] as a novel promoter. The
simple operation combined with easy recovery and re-
use of this novel catalyst, make this a more convenient,
economical and user-friendly process for the synthe-
sis of N-hydroxy-α-amino phosphonates and α-amino
phosphonates of biological and medicinal importance.
Our results here did not detect leaching of acidic
site spices and the Fe3O4@SiO2-SO3H can be easily
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removed by an external magnet and used 5 cycles in the
reaction without significant loss in activity.

Supplementary Information (SI)

Supplementary Information is available at www.iac.ac.in/
chemsci.
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