Supporting Information

Nickel-Catalyzed Cross-Coupling Reaction of Grignard Reagents with Alkyl Halides and Tosylates: Remarkable Effect of 1,3-Butadienes

Jun Terao, Hideyuki Watanabe, Aki Ikumi, Hitoshi Kuniyasu, and Nobuaki Kambe*
Department of Molecular Chemistry \& Frontier Research Center, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871.

Typical Experimental Procedures and Analytical Data of Products.

1-Bromo-4-hexylbenzene

A 50 mL pyrex glass vessel containing a magnetic stirring bar, 1-bromo-4-(2-bromoethyl)benzene ($528 \mathrm{mg}, 2 \mathrm{~mol}$) and ${ }^{\mathrm{n}} \mathrm{BuMgCl}(0.9 \mathrm{M}$ in THF, $2.89 \mathrm{~mL}, 2.6$ mmol) was cooled at $-78^{\circ} \mathrm{C}$. Then 1,3-butadiene (4.48 ml at $20^{\circ} \mathrm{C}$ under 1 atm) was introduced by a syringe into the vessel. To the mixture was added a catalytic amount of $\mathrm{NiCl}_{2}(2.6 \mathrm{mg}, 0.02 \mathrm{mmol})$ and the solution was warmed to $0{ }^{\circ} \mathrm{C}$ by an ice-water bath and stirred for 30 min . A saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added, and the product was extracted with ether (10 mL), dried over MgSO_{4}, and evaporated to give a colorless product (100% GC yield). IR (neat): 2956, 2928, 2856, 1488, 1466, 1072, $1012 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38$ (d, $J=8.0,2 \mathrm{H}$), 7.04 (d, $J=8.0,2 \mathrm{H}), 2.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.28(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.8,3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta=141.7,131.1,130.0,119.1,35.5,31.8,31.4,29.0,22.7$, 14.2; Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{Br}$: C, 59.76; $\mathrm{H}, 7.11$. found: C, 60.02; H, 7.15.

n-Nonylcyclopropane

A mixture of cyclopropylmethyl bromide ($270 \mathrm{mg}, 2 \mathrm{mmol}$) and ${ }^{\mathrm{n}} \mathrm{OctMgCl}(1.0 \mathrm{M}$ in THF, 2.6 $\mathrm{mL}, 2.6 \mathrm{mmol}$) was cooled to $-78{ }^{\circ} \mathrm{C}$ and 1,3 -butadiene (4.48 mL at $20^{\circ} \mathrm{C}$ under 1 atm) was introduced. After adding $\mathrm{NiCl}_{2}(2.6 \mathrm{mg}, 0.02 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, the solution was stirring for 30 min at $0{ }^{\circ} \mathrm{C}$. Similar workup as mentioned above afforded a colorless crude product (87% GC yield). IR (neat): 2924, 2853, 1654, 1458, 1320, $1013 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.39-1.31$ (m, $2 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 12 \mathrm{H}), 1.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.70-0.59(\mathrm{~m}, 1 \mathrm{H})$, $0.40-0.32(\mathrm{~m}, 2 \mathrm{H}),-0.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=34.9,32.1,29.9,29.8,29.7,29.5$, 22.9, 14.3, 11.1, 4.6.

