EFFECTS OF METHANOL SOLVATION ON THE NUCLEOPHILIC REACTIONS OF THIOLATES WITH 2-SUBSTITUTED-2-NITROPROPANES

Suleiman I. Al-Khalil and W. Russell Bowman* Department of Chemistry, University of Technology, Loughborough, Leics. LEll 3TU

Summary : Methanol solvation prevents S_{RN} 1 substitution in the reaction of $Me_2C(X)NO_2$ with thiolates and favours an alternative redox reaction to yield disulphide and nitronate.

Thiolates have been shown^{1,2} to react with 2-substituted-2-nitropropanes in dipolar aprotic solvents to yield α -nitrosulphides by an S_{RN}l mechanism (El) and/or disulphide by an X-philic³ mechanism involving attack by thiolate on the α -substituent to yield a sulphenyl intermediate which subsequently gives disulphide (E2). The X-philic³ reaction is favoured over S_{RN}l by more strongly nucleophilic thiolates and by more easily abstracted α -substituents (i.e. I>Br>Cl)^{1,2}.

In our studies on the mode of action of the antimicrobial agent, 2-bromo-2-nitropropan-1,3diol, which owes its activity to the oxidation of protein thiol to disulphide⁴, we studied reactions in MeOH and water. We were surprised to find that 2-bromo-2-nitropropan-1,3-diol gave only disulphides when reacted with thiolates; even with weakly nucleophilic thiolates such as *p*-nitrophenylthiolate which gives only S_{RN} 1 substitution² with $Me_2C(Br)NO_2$ in DMF.

We now report (see table) that all the reactions of $Me_2C(X)NO_2$ with thiolates which we studied, which yielded $S_{RN}I$ or mixed $S_{RN}I$ /redox products in dipolar aprotic solvents, yielded exclusively redox products (disulphide and nitronate) in MeOH solution. The most pronounced change was the reaction of $Me_2C(Br)NO_2$ with *p*-nitrophenylthiolate which gave 89% of the $S_{RN}I$ product (α -nitrosulphide) in DMF² and 51% of disulphide in a faster reaction in MeOH.

Although most of the earlier work⁵ in the S_{RN}1 mechanism of $R_2C(X)NO_2$ reactions was carried out in EtOH, dipolar aprotic solvents have since been used, and no comment, so far as we are aware, has been made on the effect of protic solvents. S_{RN}1 reactions of $R_2C(X)NO_2$ with nitronates proceed faster⁵ in DMF or DMSO than in EtOH, but the differences in rate are relatively small. Russell⁶ has reported striking differences in reactivity in the S_{RN}1 reactions of $Me_2C(X)NO_2$ due to solvation of the nucleophile (protic solvents were not used).

$$[Me_2C(X)NO_2]^{\dagger} \text{ solv.} \equiv \underbrace{\bigvee_{Me}^{X_{eq}} O^{-\dots} HOMe}_{Me} \xrightarrow{Me_2\dot{C}NO_2 + X^{-}} (E3)$$

We propose that our results can be explained by strong methanol solvation of the intermediate radical-anion in the S_{RN} 1 mechanism, which retards the dissociation of $[Me_2C(X)NO_2]^{-1}$ to Me_2CNO_2 and anion (E3), and hence retards the S_{RN} 1 chain reaction. The alternative X-philic reaction (E2), however, is not greatly retarded because of the small difference in solvation of thiolates between protic and dipolar aprotic solvents⁷,⁸,⁹, and therefore predominates and only disulphide is obtained.

Table	:	Me ₂ C(X)NO ₂	+	RS		RSSR	+	Me ₂ C(SR)NO ₂
-------	---	-------------------------------------	---	----	--	------	---	--------------------------------------

Х	R	Conditions ^a	% Yield ^b		
·	· · · · · · · · · · · · · · · · · · ·		RSSR	Me ₂ C(SR)NO ₂	
$(HOCH_2)_2C(Br)NO_2$	p-nitrophenyl	MeOH ^c , $48h^d$, H_2O^c , $24h^d$	98;96	0:0	
Br	<i>p</i> -nitrophenyl	DMF ^c , 4h; MeOH:H ₂ O (85:15), 1h ^d	0;51	89;0	
	2-pyridyl	DMFC, 2h; HMPAC, 1h; MeOHC, 21h	5;28;66	10(25) ^f ;12;0	
	p-chlorophenyl	DMF, 2h; MeOH:H ₂ O (85:15), 5min	70;94	0;0	
	p-chloropheny1	MeOH, 20min	71	0	
		+20mo1 % pDNB ^c ; +20mo1 % DTBN ^e	70;68	0;0	
$(HOCH_2)_2C(Cl)NO_2$	p-chloropheny1	H_20^{c} , 24h	64	0	
C1	p-chlorophenyl	DMF, 4h	32	35	
	p-chlorophenyl	MeOH, 4h	45	0	
		{+dark, +02	32;33	0;0	
		(+5mo1 % pDN2e; +5mo1 % DTBNe	26,28	0;0	
	<i>p</i> -chlorophenyl	MeOH, 20min	36(6) ^b	0	
		{+0 ₂ ; +20mol % pDNB ^e	21(12) ^f ;18(22) ^f	0;0	
		+20mo1 % DTBNe	30	Ó	
SCN	<i>p</i> -nitropheny1	(DMSO, 15min	18(18) ^f	17	
		{+dark; +02	$28(38)^{f};44(62)^{f}$	21; trace	
		(+15mol % pDNB ^e ; 15mol % DTBN ^e	$40(36)^{f};30(36)^{f}$	5; trace	
	<i>p</i> -nitrophenyl	MeOH:H ₂ O (80:20), 20min ^d	39	0	
	<i>p</i> -chlorophenyl	DMSO, 20min	35(7) ^f	54	
	<i>p</i> -chlorophenyl	MeOH, 20min	60	0	
		{+dark; +02	55;53	0;0	
		(+20mo1 % pDNB ^e ; +20mo1 % DTBN ^e	55;56	0;0	
2-thiopyrimidine	p-chloropheny1	DMF ^c , 5h; MeOH ^c , 5h	20;47	32;0	
2-thio-(N-methyl)- imidazole	p-chlorophenyl	DMF ^c , 5h; MeOH ^c , 5h	23;55	46;0	

(a) Reactions were carried out under an atmostphere of nitrogen, with light catalysis (2 x 150W Tungsten 'white light' lamps) with a molar ratio of RS⁻: $Me_2C(X)NO_2$ of 2:1. (b) % yields are based on RS⁻, calculated by ¹H n.m.r. spectroscopy with an internal standard or by isolation. (c) Equi-molar ratio of RS⁻: $Me_2C(X)NO_2$. (d) The red colour of *p*-nitrophenylthiolate disappeared within 2min indicating complete reaction. (e) mol % of $Me_2C(X)NO_2$, *pDNB* = *p*-dinitrobenzene, DTBN = di-*t*-butyl nitroxide. (f) Unreacted $Me_2C(X)NO_2$.

The nucleophilic tendency for *p*-nitrophenylthiolate⁹ is nearly the same in MeOH as in DMF. Neta¹⁰ has reported that the protonated radical-anion of *p*-nitrobenzylbromide dissociates 60 times slower than the non-protonated radical-anion. Strong H-bonding (protic solvation), of the radical-anion would be expected to exert a similar, albeit smaller, effect on the dissociation of halo-nitro radical-anions. The structures for $[Me_2C(X)NO_2]^{-1}$ and Me_2CNO_2 have been elucidated by e.s.r. spectroscopy¹¹.

The X-philic mechanism (E2) for the formation of the RSX intermediate (i.e. S_N^2 attack by thiolate on the α -substituent), and hence the disulphide, is supported by the lack of inhibition by radical traps (O_2 and DTBN), strong electron acceptors (O_2 and pDNB), and the absence of light. This lack of inhibition of disulphide formation in DMF and DMSO has been previously reported¹, and the lack of significant inhibition in MeOH for the reactions of $Me_2C(Br)NO_2$ and $Me_2C(SCN)NO_2$ with p-chlorophenythiolate excludes a radical radical-anion chain mechanism.

The MeOH reactions appeared to proceed faster than those in dipolar aprotic solvent, especially those with p-nitrophenythiolate in which the red colour of the anion faded within minutes. The reactions of $Mc_2C(SCN)NO_2$ with *p*-chloro- and *p*-nitrophenylthiolate in MeOH were complete in 20 min, but in DMSO, still had unreacted starting material after 20 min. Even when the $S_{RN}I$ reaction of $Me_2C(SCN)NO_2$ and *p*-nitrophenylthiolate in DMSO was inhibited, the X-philic reaction was not fast enough to consume all the starting material. These results suggest that the redox reaction to disulphide is faster in MeOH than in DMF or DMSO. We suggest that the most likely explanation is that the nitro group of $Me_2C(X)NO_2$ is solvated by MeOH but not by DMF and DMSO, and that this solvation becomes very strong in the S_N2 transition state thereby lowering the energy of the transition state and increasing the rate of reaction (E4).

If our explanation is correct, this reaction shows a novel increase in rate for an S_N^2 substitution in MeOH over DMF and DMSO. Several factors however militate against this explanation. Firstly, although thiolates are reported to be similarly solvated⁷ in protic and dipolar aprotic solvents, the solvation must be taken into account. Using pk_a 's as a guide⁷ [e.g. *p*-nitrophenylthiol, pk_a 8.4 (MeOH), 6.3 (DMF), 5.6 (DMSO)], higher solvation and therefore lower nucleophilicity would be expected in MeOH relative to DMF and DMSO.

Secondly, several reports^{8,12} clearly show that in the deprotonation of 2-nitropropane the nitro-group is not strongly solvated by protic solvents (H₂O) in the transition state. The rate of deprotonation is therefore faster in DMSO than in water which is in sharp contrast to the opposite large difference in pk_a of 2-nitropropane between water (7.6) and DMSO (16.9)⁸. This difference is called the 'nitro anomaly'^{8,12}. Even when the solvation of the base is taken into account¹³ the rate of deprotonation is faster in DMSO than in water, suggesting by comparison, that abstraction of the α -substituent should be slower in protic solvents than in dipolar aprotic solvents. The differences in reactivity between water and MeOH, and between abstraction of H⁺ and α -substituents, may however be counter to the above observations.

Thirdly, Me_2CNO_2 is reported¹⁴ to be a poor leaving group. Lastly, the more strongly basic the anion the greater the likelihood it will react by a S.E.T. (single electron transfer) mechanism¹⁵ rather than by a S_N^2 pathway. Our explanation suggests the opposite, i.e. S_{RN}^1 (initial S.E.T.) by weakly nucleophilic thiolates, and S_N^2 by strongly nucleophilic thiolates.

We therefore suggest that a non-chain mechanism proceeding by initial S.E.T. (E5), closely similar to the $S_{\rm ET}^2$ mechanism (E6) proposed by Russell¹⁶ and Ashby¹⁷, must be considered.

Protic solvation of the intermediate radical-anion would be strong, retarding dissociation to Me_2CNO_2 and X^- in the S_{RN} 1 mechanism, but favouring reaction with the thiyl radical to give the sulphenyl intermediate. The observed lack of inhibition or trapping of thiyl radical¹ can be explained by the radical-anion and thiyl being tightly held in a solvent cage. Similarly the initial S.E.T. is rapid, not requiring light catalysis.

$$Me_2C(X)\dot{NO}_2 \text{ solv.} \longrightarrow Me_2CNO_2 \text{ solv.} + X^{\circ}$$
 (E7)

$$[RS \cdot XCMe_2NO_2^{-}] \longrightarrow [\overset{\circ}{RS} \cdot \cdot \cdot X \cdot \cdot \cdot \overset{\circ}{C}Me_2NO_2^{-}]^{\ddagger} \longrightarrow RSX + Me_2CNO_2^{-}$$
(E8)

463

$$PhS + (RONs)^{-} \longrightarrow PhSR + ONs$$
 (E9)

There is no evidence to suggest that protic solvated halo-nitro radical-anions undergo dissociation to nitronate and $X \cdot 10, 11$ (E7). We therefore suggest the reaction in the case is a $S_{\rm H}2^{18}$ type reaction with a transition state as shown (E8), i.e. this alternative breakdown only takes place in the presence of a reactive free radical (RS·) in the solvent cage. This mechanism can apply to reactions in DMF/DMSO and in MeOH, but would be more favoured in MeOH. This reaction of a thiyl radical with a radical-anion (E9) has been reported¹⁹.

The reaction of $Me_2C(C1)NO_2$ with p-chlorophenylthiolate is slow in MeOH and in DMF. The DMF reaction yields S_{RN}1 and redox products but the MeOH reaction yields only disulphide, which is slightly inhibited by O_2 , pDNB and DTBN. We suggest that this inhibition is explained either by slight inhibition of the non-chain S_{ET}2 mechanism expounded above or by a chain oxidative dimerisation mechanism²⁰ (E11-12) as proposed for the reaction of enolates with $Me_2C(X)NO_2$. Lower reactivity would allow diffusion from the solvent cage (E10) and MeOH solvation would favour a second S.E.T. (Ell) rather than dissociation of the radical-anion ($S_{\rm RN}$ l in DMF).

$$[Me_2C(X)\dot{NO}_2 RS \cdot] \xrightarrow{\text{diffusion}} RS \cdot + Me_2C(X)\dot{NO}_2$$
(E10)

$$Me_{2}C(X)\dot{N}O_{2}^{-} + RS^{-} \xrightarrow{S.E.T} [Me_{2}CNO_{2}^{-}X^{-}RS^{-}] \longrightarrow Me_{2}CNO_{2}^{-} + X^{-} + RS^{-} (E11)$$

$$RS^{-} + RS^{-} \longrightarrow [RSSR]^{-} \xrightarrow{Me_{2}C(X)NO_{2}} RSSR + [Me_{2}C(X)NO_{2}]^{-} (E12)$$

We conclude that solvation by MeOH has a major effect on the reactions of $Me_2C(X)NO_2$ with thiolates, i.e. retards S_{RN} l substitution, but favours redox by an X-philic or S_{ET}^2 type mechanism. Further studies to prove the intermediacy or absence of thiyl radicals in these reactions are underway.

References

- W.R. Bowman and G.D. Richardson, Tetrahedron Lett., 1981, 22, 155; S.I. Al-Khalil and W.R. 1. Bowman, Tetrahedron Lett., 1983, 24, 2517.
- W.R. Bowman and G.D. Richardson, J.Chem. Soc., Perkin Trans. 1, 1980, 1407. 2.
- N.S. Zefirov and D.I. Makhon'kov, Chem. Rev., 1982, 82, 615 and references therein.
 R.J. Stretton and T.W. Manson, J. Appl. Bact., 1973, 36, 61.
 G.A. Russell and W.C. Danen, J.Am. Chem. Soc., 1968, 90, 347 and references therein.

- G.A. Russell, F. Ros and B. Mudryk, J. Am. Chem. Soc., 1980, 102, 7603.
 B.W. Clare, D. Cook, E.C.F. Ko, J.C. Mac and A.J. Parker, J.Am. Chem. Soc., 1966, <u>88</u>, 1911.
- H.F. Gilbert, J. Am. Chem. Soc., 1980, 102, 7059.
 A.J. Parker, Chem. Rev., 1969, <u>69</u>, 1.

- P. Neta and D. Behar, J.Am. Chem. Soc., 1980, 102, 4798.
 W.R. Bowman and M.C.R. Symons, J.Chem. Soc., Perkin Trans. 2, 1983, 25.
- 12. F.G. Bordwell, J.E. Bartness and J.A. Hautala, J. Org. Chem., 1978, 43, 3107; J.R. Keefe, J. Morey, C.A. Palmer and J.C. Lee, J.Am. Chem. Soc., 1979, 101, 1297; C.F. Bernasconi, Pure Appl. Chem., 1982, 54, 2335.
- 13. B.G. Cox and A. Gibson, J. Chem. Soc., Chem. Commun., 1974, 638.
- 14. P.P. Piras, P.J. Thomas and C.J.M. Stirling, J. Chem. Soc., Chem. Commun., 1982, 658.
- 15. F.G. Bordwell and A.H. Clemens, J. Org. Chem., 1981, <u>46</u>, 1037.
- 16. G.A. Russell, M. Jawdosiuk and M. Makosza, J.Am. Chem. Soc., 1979, 101, 2355.
- 17. E.C. Ashby and R. DePriest, J.Am. Chem. Soc., 1982, 104, 6144.
- 18. K.U. Ingold and B.P. Roberts, "Free Radical Substitution Reactions", Wiley Interscience, New York, 1971.
- 19. S. Bank and D.A. Noyd, J.Am. Chem. Soc., 1973, 95, 8203.
- 20. G.A. Russell, B. Mudryk, F. Ros and M. Jawdosiuk, Tetrahedron, 1982, 1059.

(Received in UK 22 November 1983)