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Figure 1. Design of 11e.
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A series of benzimidazole based HDAC inhibitors have been rationally designed, synthesized and
screened. The SAR of this new chemotype is described. The lead compound, 11e, showed strong activity
in several cellular assays and demonstrated in vivo efficacy in mouse xenograft pancreatic cancer models.
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In eukaryotic cells, DNA is wrapped by histones to form a com-
plex called chromatin. Histone deacetylases (HDACs) regulate his-
tone deacetylation, and play important roles in chromatin folding.
By altering the structure of the chromatin, HDACs affect the inter-
action of transcription factors with the DNA.1,2 Thus, inhibiting
HDACs may halt cell cycle progression, inducing differentiation
and proliferation arrest. Several proof-of-concept HDAC inhibitors
have advanced to clinical stage.3,4 One of these agents, suberoylan-
ilide hydroxamic acid (SAHA, Fig. 1), has been approved to treat
cutaneous T-cell lymphoma since 2006. Despite the recent pro-
gress, more structurally diversified and potent HDAC inhibitors
are still highly desirable for treating cancer. Herein, we would like
to report a new family of suberic acid derived HDAC inhibitors with
strong anti-tumor activity.

SAHA inhibits HDAC enzyme activity and has moderate anti-
proliferation activities in cellular assays. Metabolic studies have
unveiled that the benzamide bond of SAHA may be cleaved
in vivo, generating hydroxyaniline and other toxic secondary
metabolites.5 We envisioned that eliminating the benzamide
bond may block this metabolic pathway, and minimize the poten-
tial toxicity and side effects. The hypothesis inspired us to design
and prepare benzimidazole derived inhibitor 11e and its analogs.

The synthesis of the benzimidazole analogs 11 started with
making aniline diamines through the synthetic routes outlined in
Scheme 1. For N-substituted diamine 3, amine addition to 1-flu-
oro-2-nitrobenzene 1 afforded aniline 2 and the reduction of nitro
group generated diamine 3. For 4-substituted diamine 6, Suzuki
coupling between boronic acids and 5-bromo-2-nitroaniline 4 fol-
lowed by the hydrogenation yielded6.

The assembly of the hydroxymic acid 11 started with amide
formation (Scheme 2).6 Treatment of 3, 6 or commercially avail-
able aniline diamine with methyl 8-chloro-8-oxooctanoate 7 gen-
erated a mixture of isomeric amides 8 and 9, which subsequently
underwent cyclization mediated by acetic acid in toluene at
100 �C to provide benzimidazole 10. Conversion of the methyl es-
ter to hydroxymic acid 11 was accomplished by treating 10 with
hydroxylamine in the presence of NaOH solution in THF and
methanol.
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Scheme 1. Reagents and conditions: (a) RNH2, EtOH; (b) Pd/C, ammonium formate, reflux; (c) Pd(PPh3)4, K2CO3, R’B(OH)2.
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Scheme 2. Reagents and conditions: (a) DCM, DIEA; (b) AcOH, toluene, heat; (c) NH2OH (50% in water), NaOH (1 M), THF/MeOH.
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All of the compounds were first screened in the human ovarian
cancer SKOV3cell assay (Table 1). Compound 11a inhibited the cell
proliferation with an IC50 of 2.7 lM, equally potent as SAHA
(IC50 = 2.3 lM) in the same assay. Shortening the floppy carbon
chain appeared detrimental and compound 11b with a five carbon
linker was about four fold less potent than 11a. Substitutions on the
benzimidazole ring were explored next. Halogen substitution at the
6 position of the benzimidazole ring had beneficial effect and im-
proved the cell activity with 6-F (11c, IC50 = 1.9 lM) and more
remarkably, with 6-Cl (11d, IC50 = 0.32 lM) and 6-Br(11e,
IC50 = 0.27 lM). Further enhancement of the cell activity was
observed when a benzene ring (11f, IC50 = 0.1 lM) was installed
at 6-position. Attempts to improve the activity by manipulating
the terminal ring were not successful, and compounds 11g–l were
much less active than 11f. Shifting the substitutions from the
6- to the 5-position appeared unfavorable, and compound 11m
was about 30-fold less active than 11d. Electronic donating groups
such as 6-methoxy 11n and 6-dimethylamino 11o did not enhance
the activity and the imidazole[4,5-c]pyridine system 11p killed the
activity completely. Additional groups on the N-1 exemplified by
11q,11r, 11s and 11t proved mostly disadvantageous. While
compound 11q had similar activity as 11a, the other compounds,
11r–t, with bigger groups were all less active.

Compound 11e (a.k.a T009) and 11f emerged as the leads after
the cell based screening. Because compound 11e had better solu-
bility than 11f, it was chosen for further testing.
HDAC biochemical assays demonstrated that compound 11e
was a pan-HDAC inhibitor with single digit nano-molar IC50

against HDAC3, 5, 6, 9 and 10 (Table 2). In contrast to SAHA, 11e
potently inhibited HDAC4, 7 and 9.7 Additional cell based screening
revealed that compound 11e was a potent agent with broad anti-
proliferative activities and outperformed SAHA in most of the cell
lines we examined (Table 3).8,9 Notably, compound 11e potently
inhibited the pancreatic cancer MiaPaca line with an IC50 = 89
nM, and had an IC50 of 173 nM in the resistant lung cancer H69-
Gli1 line, a 25-fold improvement over standard cisplatin/etopside
(1:2) treatment (IC50 = 4.5 lM).

Finally, compound 11e was tested in the human pancreatic can-
cer MiaPaca xenograft mousemodel.10,11 Daily oral administration
of 11e at 100 mg/kg for 22 days resulted in 74% tumor growth inhi-
bition when compared to the vehicle control as measured on Day
22 (Fig. 2). It also showed comparable efficacy with Gemcitabine
(80 mg/kg) on Day 25 when the study ended. No gross toxicity of
11e was observed following daily oral dosing.

In conclusion, we have identified a series of benzimidazole
based HDAC inhibitors through cell screening and most of
these inhibitors exhibit potent cell activity. The lead compound
11e demonstrates broad anti-proliferative activity in a variety
of cell lines and is active in MiaPaca xenograft mouse model.
The potential of this novel class of HDAC inhibitors for treating
cancer and other HDAC related disorders in clinical is being
explored.
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Table 2

HDAC isoform 1 2 3 4 5 6 7 8 9 10 11

11e (IC50 nM) 20.2 34.1 6.4 279 2.5 1.9 313 282 1.1 3.0 33.4
SAHA (IC50 nM) 4 11 3 >104 8750 2 >104 1020 >104 N/A N/A
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Table 3

Cell lines Skov-3 A2780 A2780C/P MiaPaca H295R Mdamb231 VCAP

Primary site Ovarian Ovarian Ovarian Pancreas Adrenal Breast Prostate
11e (IC50 lM) 0.26 1.9 2.0 0.089 0.18 0.82 2.4
SAHA(IC50 lM) 2.3 1.9 2.5 2.3 1.3

Cell lines H69 H69 Gil1 H23 MV522 MIHA Hep3B SNU880

Primary site Lung Lung Lung Lung Liver Liver Liver
11e (IC50 lM) 0.15 0.17 0.56 2.2 0.23 0.61 0.98
SAHA(IC50 lM) 0.6 — — — — 2.19 —

Figure 2. 11e in MiaPaCa-2 tumor models.
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