BEITRÄGE ZUR CHEMIE DER ELEMENTE NIOB UND TANTAL¹

XLV. Ta₆J₁₄ DARSTELLUNG, EIGENSCHAFTEN, STRUKTUR

DIETRICH BAUER, HANS GEORG SCHNERING UND HARALD SCHÄFER Anorganisch-chemisches Institut der Universität Münster/Westf. (Deutschland) (Eingegangen am 17. Februar, 1965)

SUMMARY

Ta₆I₁₄, previously unknown, was obtained as pure crystals by reaction of gaseous TaI₅ with Ta in a temperature gradient. The compound is characterized by its chemical and magnetic behaviour (temperature-independent paramagnetism); the *d*-values are given. The orthorhombic unit cell of Ta₆I₁₄ (D_{2h}^{18} -Bbam; a = 14.445, b = 12.505, c = 15.000 Å) contains 4 formula units. The crystal structure has been determined by means of Patterson- and Fourier-synthesis along [100], [010] and [001]. Characteristic of the structure is the [Ta₆I₁₂]-group. Ta₆I₁₄ is isotypic with Nb₆Cl₁₄.

ZUSAMMENFASSUNG

Die bislang unbekannte Verbindung Ta₆ J₁₄ wurde durch Umsetzung von Ta mit gasförmigem TaJ₅ im Temperaturgefälle rein und in Kristallen gewonnen. Die Verbindung wird durch ihr chemisches und magnetisches Verhalten (temperaturunabhängiger Paramagnetismus) und durch Angabe der Netzebenenabstände gekennzeichnet. Ta₆ J₁₄ kristallisiert orthorhombisch mit a = 14.445, b = 12.505, c = 15.000Å, Raumgruppe D_{2h}^{18} -Bbam; die Elementarzelle enthält 4 Formeleinheiten. Die Kristallstruktur wurde unter Verwendung von Patterson- und Fourier-Synthesen nach [100], [010] und [001] bestimmt. Kennzeichnend für den Aufbau ist die [Ta₆ J₁₂]-Baugruppe. Ta₆ J₁₄ ist mit Nb₆Cl₁₄¹ isotyp.

EINLEITUNG

Während die Verbindungen Ta J_{5}^{2} und Ta $J_{4}^{3,4}$ länger bekannt sind, waren bis 1963 nur sehr unsichere Angaben über niedrigere Tantaljodide vorhanden³⁻⁷. Im Jahre 1963 berichteten McCarley und Boatman⁸ über die Darstellung von Ta J_{4} und Ta J_{3} .

Eigene Untersuchungen, mit denen sich die vorliegende Abhandlung befasst, lieferten die neue Verbindung TaJ_{2.33}, die sich bei der Strukturuntersuchung als Ta₆J₁₄ erwies. Die Arbeit gehört zu einer umfangreicheren Untersuchung über Verbindungen mit Metall-Metall-Bindungen¹⁰. darstellung von $Ta_6 J_{14}$

(a) Ausgangssubstanzen

Tantalpulver, Reinheitsgrad < 0.1% Nb; 0.02% Fe; < 0.01% Ti; 0.01% C; 0.01% H; 0.01% N; 0.02% O; H.C. Starck, Goslar.

Tantalfolie, Dicke 0.008–0.010 mm, hergestellt aus Tantalpulver etwa des oben genannten Reinheitsgrades.

Jod, p.a., doppelt sublimiert, < 0.005% Cl bzw. Br.

Tantal(V)-jodid. Tantalpulver wird mit Jodüberschuss im evakuierten Bombenrohr bei etwa 400°C umgesetzt⁴. Nach Beendigung der Reaktion (*ca.* 1 Tag) wird das Pentajodid zusammen mit dem Jodüberschuss bei etwa 300°C in eine an das Bombenrohr anschliessende Ampulle sublimiert und diese nach dem Absublimieren des Jodüberschusses (*ca.* 50°C) abgeschmolzen.

(b) Das Dreitemperaturen-Verfahren

Bei der Darstellung der niederen Chloride¹¹ und Bromide¹² des Tantals hat sich eine spezielle Arbeitstechnik, das sog. Dreitemperaturen-Verfahren (3-*T*-Verfahren) bewährt. Es ist bereits eingehend beschrieben worden^{11,13} und beruht im Prinzip darauf, dass ein abgeschlossenes, besonders geformtes Reaktionsgefäss aus Quarzglas im Temperaturgefälle $T_2 > T_1 > T_0$ liegt. Im Gefäss befindet sich am Ort der höchsten Temperatur T_2 (z.B. 660°C) Ta-Folie und bei der niedrigsten Temperatur T_0 (z.B. 510°C) TaJ₅-Bodenkörper. Dieser bestimmt den TaJ₅-Sättigungsdruck¹⁴ im Rohr. Bei T_2 entsteht gasförmiges TaJ₄ nach

$$Ta + 4 Ta J_5, g = 5 Ta J_4, g.$$
 (1)

Dieses disproportioniert bei der mittleren Temperatur T_1 unter Abscheidung von Ta $_6 J_{14}$ nach

$$16 \text{ Ta} J_4, g = \text{Ta}_6 J_{14}, f + 10 \text{ Ta} J_5, g$$
 (2)

Auf diese Weise wird Ta₆ J₁₄ in kompakten grauschwarzen metallisch-glänzenden Kristallkrusten gewonnen. Die Erhitzung wird abgebrochen, wenn noch Ta und TaJ₅ in reichlicher Menge als Bodenkörper vorhanden sind.

Mit den jeweils zusammengehörigen Temperaturen (°C)

T_2	659	649	658	652
T_1	528	525	442	383
T_0	510	414	347	347

wurde bei Erhitzungszeiten zwischen 1 und 12 Tagen Ta $_6$ J $_{14}$ in Mengen von 1–5 g erhalten. Mehr als 5 g Ausbeute lieferten die zuerst genannten Temperaturen mit einer Erhitzungsdauer von 5 Tagen.

(c) Reduktion von TaJ₅ mit Ta im einfachen Einschlussrohr

In einem schrägliegenden, abgeschmolzenen Quarzrohr (20 cm lang, Innendurchmesser 2 cm) befand sich bei 630°C Ta-Folie und bei 575°C überschüssiges flüssiges TaJ₅. Nach 2-tägiger Erhitzung wurde das Rohr geöffnet und der TaJ₅-Überschuss im Hochvakuum absublimiert. Als Rückstand verblieb (neben wenig restlicher Tantalfolie) reines Ta₆J₁₄ in bis 1 mm grossen, schwarzsilbrig glänzenden, locker zusammengebackenen und relativ spröden Kristallen (Ausbeute 1.2 g).

ANALYSEN

Metallhalogenide lassen sich oft mit der sog. "H-Rohr"-Technik¹⁵ analysieren. Dies war auch hier der Fall:

In einem Zweischenkelrohr befindet sich auf der einen Seite die Ta₆ J₁₄-Einwaage (z.B. 100 mg) in einem Quarztiegelchen und auf der anderen Seite Ag NO₃ (100% Überschuss)* + 1 ml H₂O + 3 ml konz. HNO₃. Das abgeschmolzene Rohr wird ein bis zwei Tage auf etwa 150°C erhitzt und langsam abgekühlt. Danach liegen Ta₂O₅ · x H₂O und AgJ getrennt in den Schenkeln vor. Ta₂O₅ wird bei 1000°C geglüht und AgJ abfiltriert und bei 130°C getrocknet. Diese Arbeitsweise hat sich besonders bewährt. Ausserdem lässt sich Ta₆ J₁₄ auch durch Abrauchen mit H₂SO₄ in Ta₂O₅ überführen. J kann nach Lösen von Ta₆ J₁₄ in 40% iger NaOH und Ansäuern mit H₂SO₄ potentiometrisch mit AgNO₃ titriert werden.

ERGEBNISSE

Präparat 2 (mit 3-T-Verfahren hergestellt): 38.29; 38.05% Ta; und 62.02; 62.22% J.

Präparat 10 (im einfachen Einschlussrohr hergestellt): 37.99; 38.05% Ta; und 61.93; 62.05% J.

Für Ta₆J₁₄ berechnet: 37.93% Ta; und 62.07% J.

Die zuletzt ausgeführten zehn Analysen lieferten das Atomverhältnis J:Ta = $2.334 (\pm 0.008)$.

CHEMISCHE, MAGNETISCHE UND RÖNTGENOGRAPHISCHE KENNZEICHNUNG

 Ta_6J_{14} sieht grauschwarz, metallisch glänzend aus. Im feingepulverten Zustand gibt Ta_6J_{14} an feuchter Luft bald Jod ab, wobei das Aussehen jedoch nicht verändert wird. Wasser, 2n HCl und konz. HCl verursachen keine deutliche Reaktion. 2n H₂SO₄ liefert eine grüne Lösung neben viel Ungelöstem. Beim Erhitzen mit konz. H₂SO₄ löst sich Ta₆J₁₄ unter Freisetzung von Jod vollständig auf. Mit 2n, 5n, 10n NaOH findet eine lebhafte Gasentwicklung (H₂) statt, ohne dass die Substanz dabei vollständig in Lösung geht. Beim Erwärmen mit 2n NH₃ beobachtet man neben einer starken Gasentwicklung die Abscheidung brauner Flocken.

Die magnetische Messung nach der Gouy-Methode lieferte zwischen 90° und 473°K praktisch konstant den Wert $\chi_g = -0.10 \times 10^{-6}$. Bei Berücksichtigung der diamagnetischen Ioneninkremente ergibt sich ein schwacher, temperaturunabhängiger Paramagnetismus, wie er auch bei Nb₆Cl₁₄ beobachtet wird¹.

Eine Guinieraufnahme mit Cu $K\alpha_1$ -Strahlung lieferte im Winkelbereich bis 20° die folgenden Netzebenenabstände d, geschätzte Intensitäten in ():

7.92(10);	7.50(6);	7.24(8);	6.24(6);	5.44(2);	4.81(2);	4.73(4);
4.00(6);	3.87(4);	3.77(8);	3.75(4);	3.61(4);	3.47(2);	3.25(6);
3.22(8);	3.13(10);	3.09(6);	3.03(6);	2.94(10);	2.89(8);	2.86(8);
2.77(2);	2.73(8);	2.68(6);	2.66(6);	2.60(10);	2.59(6);	2.55(2);
2.50(6);	2.46(2);	2.43(8);	2.41(6);	2.40(6);	2.36(8);	2.33(6);
2.29(2);	2.28(8);	2.25(2).				

^{*} Wird der AgNO₃-Überschuss zu gering gewählt, so kann elementares Jod in der Gasphase bleiben und verloren gehen.

KRISTALLSTRUKTUR DES Ta6 J14

(a) Elementarzelle und Raumgruppe

Das sehr linienreiche Debyeogramm des Ta $_6J_{14}$ liess sich nicht indizieren. Auch die Indizierung der sehr gut aufgelösten Guinier-Aufnahme war erst nach der Bestimmung von Elementarzelle und Kristallstruktur an Einkristallen durchführbar.

Drehkristall-, Weissenberg- und Präzessions-Aufnahmen von allen 3 orthorhombischen Hauptachsen lieferten die zur Bestimmung von Elementarzelle und Raumgruppe notwendigen Daten (MoK α). Die genauen Gitterkonstanten ergaben sich aus einer Ausgleichsrechnung über 25 Reflexe der Guinier-Aufnahme (Quarzstandard; pro Reflex nur eine Beugungsordnung (*hkl*)).

Die systematischen Auslöschungen ((*hkl*) nur mit h + l = 2n; (*okl*) nur mit k, l = 2n; (*hol*) nur mit h, l = 2n; (*hko*) nur mit h = 2n vorhanden) führten zu den Raumgruppen D_{2n}^{18} -Bbam bzw. C_{2v}^{17} -Bba2. Die Strukturbestimmung (vgl. unten) ergab eine Atomanordnung mit der Symmetrie Bbam:

Ta₆J₁₄; orthorhombisch mit a = 14.455, b = 12.505, c = 15.000 Å (± 0.005 Å); Raumgruppe D_{2h}^{18} -Bbam; Z = 4; d (Rö) = 7.02 gcm⁻³, d (Pykn., 25°C) = 6.85 gcm⁻³.

(b) Parameterbestimmung

Die Parameterbestimmung erfolgte mit Hilfe 2-dimensionaler Rechnungen für die drei Projektionen (*hko*), (*hol*) und (*okl*). Alle Berechnungen wurden auf dem Digitalrechner Z23 der Universität Münster mit eigenen Programmen¹⁶ ausgeführt. Es wurden die Intensitäten integrierter Weissenberg- und Präzessions-Aufnahmen verwendet (MoK α). Die Intensitäten wurden photometriert (multipleexposure-method). Für die Strukturfaktorberechnungen wurden die Streuwerte für Ta²⁺ und J⁻ (= Xe) nach THOMAS UND UMEDA¹⁷ eingesetzt.

Alle 3 Patterson-Synthesen zeigten eine befriedigende Auflösung und gestatteten erste Parameterwerte für alle Atome anzunehmen. Hierbei waren die Erfahrungen aus der Strukturbestimmung am Nb₆Cl₁₄¹ von grossem Wert. Sowohl die Intensitätsfolgen der Reflexe (*hkl*) wie auch die Anordnung der Patterson-Vektoren unterschieden sich bei beiden Verbindungen nur unwesentlich.

Durch mehrere Differentialsynthese-Zyklen¹⁸ und abschliessende Fourier- und (F_0-F_c) -Synthesen wurde das Strukturmodell des Ta₆J₁₄ verfeinert.

Im Verlaufe dieser Verfeinerung ergaben sich besonders Schwierigkeiten durch quasispezielle Parameter bei mehreren Teilchen. Tabelle I enthält die endgültigen

TABELLE I

m ·	T					T 18 1 1
120	1.1.1	PARAMETER	FUR	DIF	RAUMGRUPPE	D _a Bham
ŋ.	1	1	1010		mic manor i D	19 26 2000000

	X	У	Z
16 Ta ₁ in 16 (g)	0.055	0.107	0,102
8 Ta ₁₁ in 8 (f)	0.896	0.074	0
8 J ₁ in 8 (d)	0	0	0.250
8 J _{II} in 8 (f)	0.131	0.261	0
16 Jui in 16 (g)	0.405	0.261	0.121
16 J _{IV} in 16 (g)	0.229	0.014	0.125
$8 J_v in 8 (e)$	0,141	1	1

Parameter für die Atome des Ta $_{6}J_{14}$. Abbildung 1 zeigt die abschliessenden Fourierund Differenz-Synthesen.

In der Tabelle II sind die mit diesen Parametern berechneten Strukturfaktoren F_c den beobachteten Werten $|F_0|$ gegenüber gestellt. Für die einzelnen Projektionen ergaben sich folgende Zuverlässigkeitswerte:

Abb. 1. Abschliessende Fourier- und Differenzfourier-Synthesen. (a) Projektion (okl), Fourier-S., Höhenlinien von 25 zu 25 eÅ⁻² dünn, von 100 zu 100 eÅ⁻² dick, Nullinie strichliert, negative Bereiche schraffiert. (b) Projektion (okl), Diff.-S., Höhenlinien von 3 zu 3 eÅ⁻², Nullinie strichliert, negative Bereiche schraffiert. (c) Projektion (hol), Fourier-S., Höhenlinien von 25 zu 25 eÅ⁻². (d) Projektion (hol), Diff.-S., Höhenlinien von 3 zu 3 eÅ⁻².

(okl): R = 0.072; R' = 0.118 (55 von 81 Reflexen beobachtet); isotrope Temperaturfaktoren in der Reihenfolge der Tabelle I: $-B(Å^2) = 0.70$; 0.41; 1.16; 1.85; 0.71; 1.34; 1.04.

(hol): R = 0.108; R' = 0.139 (77 von 93 Reflexen beobachtet); $-B(Å^2) = 0.20$; 0.79; 1.85; 0.60; 1.15; 1.08; 1.18.

(hko): R = 0.192; R' = 0.312 (98 von 156 Reflexen beobachtet); auf die Anwendung spezifischer Temperaturfaktoren wurde hier ebenso verzichtet wie auf eine Absorptionskorrektur. Die Intensitäten dieser Projektion waren ausgesprochen schlecht zu vermessen und durch starke richtungsabhängige Absorption verfälscht. Die hierdurch hervorgerufenen Fehler, die auf die Positionen der Teilchen keinen wesentlichen Einfluss haben sollten, lassen sich auch deutlich in den zugehörigen Fourier- und Differenz-Synthesen erkennen (vgl. Abb. 1).

TABELLE II

vergleich der beobachteten strukturfaktoren $|F_0|$ mit den berechneten werten F_c für die reflexe (hko), (hol) und (okl)

h	k	ı	F _c	$ F_0 $	h	k	l	F_{c}	F_0	h	k	l	F_c	$ F_0 $
0	I	0	0	0	6	I	0	-214	185	12	3	0	167	237
0	2	0	98	0	6	2	0	-42	0	I 2	4	0	223	354
0	3	0	0	0	6	3	0	- 739	637	12	5	0	597	467
0	4	0	715	726	6	4	0	93	0	I 2	6	0	174	303
0	5	0	0	0	6	5	0	- 55	0	12	7	0	-532	506
0	6	0	-656	636	6	6	0	419	401	12	8	0	-7	0
0	7	0	0	0	6	7	0	137	348	I 2	9	0	248	264
0	8	0	910	914	6	8	0	-80	0	I 2	10	0	-100	158
0	9	0	0	0	6	9	0	89	195	12	11	0	71	0
0	10	0	290	24 I	6	10	0	-40	0	12	12	0	173	0
0	ΤI	0	0	0	6	II	0	- 376	306	12	13	Ō	563	381
0	I2	0	578	605	6	12	0	- 54	0					
0	13	0	0	0	6	13	0	-351	0	٢4	0	0	241	0
0	14	0	-182	260	6	14	0	185	0	14	I	0	577	686
0	15	0	0	0	6	15	0	-88	0	14	2	0	132	O
0	16	0	214	338	6	10	0	98	0	14	3	0	4	0
0	17	0	0	0	6	17	0	-39	0	14	4	0	281	200
										14	5	0	165	0
2	0	0	391	475	8	0	0	258	374	14	- 6	0	308	290
2	I	0	— I 37	0	8	T	õ	-614	850	14	7	0	-742	583
2	2	0	-115	0	8	2	0	-67	0,0	14	8	0	459	343
2	3	0	-82	0	8	2	0	240	72					
2	4	0	-431	449	8	3	ő	860	748	16	0	0	-32	0
2	5	0	189	232	8	4	0	412	140	16	I	0	- 201	150
2	- 6	0	-451	460	8	6	0	415	440	16	2	0	97	151
2	7	0	211	269	8	7	0	- 1/1 68 t	140 525	16	3	0	367	411
2	8	0	137	107	8	8	0	87	335	16	4	0	-445	422
2	9	0	-140	114	8	0	0	50	0	16	5	0	-333	432
2	IO	0	228	195	8	10	0	201	- 316	16	6	0	23	0
Z	11	0	- 504	408	8	10	0	- 301	210					
2	I 2	0	52	0	8	11	0	547 566	350	18	0	0	587	580
2	13	0	- 275	143	8	12	0	300	350	18	I	0	- 380	348
2	14	0	- 168	211	0 Q	13	0	506	160	18	2	0	720	580
2	15	0	119	227	8	14	0	300	303	18	3	0	102	200
2	16	0	66	Ó	0	13	0	349	120	81	4	0	- 224	359
2	17	0	319	348						18	5	0	- 393	332
	,			• •	10	0	0	53	53	18	6	0	170	200
4	0	0	-292	237	10	I	0	- 190	0					
4	I	0	122	0	10	2	0	77	0	20	0	0	477	680
4	2	0	1003	976	IO	3	0	368	362	20	I	0	-13	0
4	3	0	- 599	606	10	4	0	519	897	20	2	о	· 155	179
4	4	0	-133	105	10	5	0	- 362	374	20	3	0	- 239	179
4	5	0	570	538	10	6	0	I 1 2	0	20	4	0	- 162	179
4	6	0	992	991	10	7	0	— I 34	0	20	.5	0	197	0
4	7	0	293	200	10	8	0	- 176	290	20	6	0	-568	502
4	8	0	145	111	10	9	0	- 424	438					U U
4	9	0	361	323	10	10	0	-279	290	22	0	0	704	595
4	10	0	651	686	10	11	0	-38	0	22	I	0	22	0
4	II	о	-458	606	10	I 2	0	331	316	22	2	0	-27	o
4	12	0	-117	169	10	13	0	-217	0	22	3	0	- 270	232
4	13	о	-15	0	10	14	0	592	533	22	4	0	640	543
4	14	о	100	0	10	15	0	- 265	0	22	5	0	340	332
4	1.5	о	292	о	10	16	0	302	369	22	6	0	6	0
4	16	0	- 55	0										
4	17	0	602	390	12	0	0	-124	105	24	0	0	- 570	631
•	,				12	I	0	779	875	24	I	0	-143	137
6	о	0	-633	834	I 2	2	0	44	õ	24	2	о	-97	137
										•			- 1	

TABELLE II (Fortsetzung)

h	k	l	F_{c}	$ F_0 $	h	k	l	F_{c}	$ F_0 $	h	k	l	Fe	$ F_0 $
0	0	2	232	288	10) O	2	16	0	0	2	6	- 32	0
0	0	4	- 370	386	10	0	4	299	296	0	2	8	26	0
о	0	6	301	321	10) O	6	376	370	0	2	10	7	0
0	0	8	1422	1281	10) O	8	110	0	0	2	12	26	0
0	0	10	491	435	10) O	10	- 205	246	0	2	14	45	0
0	0	12	105	132	10) 0	12	54	0	0	2	16	31	0
0	0	14	-243	222	10) 0	14	332	321	0	2	18	- 29	0
0	0	16	501	507	10) 0	16	327	301	0	2	20	85	о
0	0	18	241	230				0 /	0				•	
о	0	20	287	234	12	2 0	0	-125	143	0	4	0	703	766
			,		12	2 0	2	- 220	222	0	4	2	- 366	433
2	0	0	410	394	12	: 0	4	16	0	0	4	4	132	200
2	0	2	10	0	12	2 0	6	11	0	0	4	6	4	0
2	0	4	80	0	12	2 0	8	7	0	0	4	8	705	650
2	0	6	- 364	321	12	2 0	10	- 307	272	0	4	10	440	475
2	0	8	120	01	12	2 0	12	-182	115	0	4	12	- 190	205
2	0	τo	261	287	T	2 0	I.A.	50	5	0	4	14	-4	5
2	0	12	286	287	12	2 0	16	7.1 1.1	т 38	0	4	16	641	501
2	0	T.A	274	288			10	-4-	1 90	ő	-1	18	- 164	175
2	0	-4 16	180	140	T /		0	22	0	Ő		20	275	284
2	õ	18	100	140	1		2		206	0	-1		-75	204
2	õ	20	210	246	т. Т.		4	J/ TT=	107	0	6	0	-657	641
4	v	20	319	4 40	т. Т.		4		206	0	6	ñ	- 121	466
	~	0		256	12		8	- 230	290	0	6	4		400
4	0	2	- 223	230	12		10	43 	214	0	6	4	56	0
4	0	-	- 302	419	12		10	209	414	0	6	8	- 102	275
4	0	4	514	4/0	12		12	/4	113	0	6	10	-402	575
4	0	0	-422	415	12	+ 0	14	154	666	0	6	10	- 534	530
4	0	0		251	- 4		~	- 8	•	0	6	12	230	250
4	0	10	200	210	10	0	0	30	0	0	6	14	42	7.0
4	0	12	-201	275	10	0	2	2		0	6	10	99	100
4	0	14	-274	287) ()	4	142	104	0	0	10	- 321	233
4	0	10	220	190	10		0	-171	203	0	0	20	-201	275
4	0	10	-145	107	10	. 0	0	- 50	02	-	0		00-	o
4	0	20	-133	140	10	0	10	122	0	0	0	0	005	074
	_		6.40	6	10	0	12	242	272	0	0	2	205	300
0	0	0	028	050		× -	_			0	0	4		475
0	0	2	-437	444	10	5 0	0	332	314	0	0	0	-523	541
0	0	4	774	723	12	S 0	2	118	87	0	0	0	002	010
6	0	0	-177	128	18	, o	4	- 253	215	0	0	10	34	
0	0	0	-407	370	10	5 0	0	151	07	0	0	12	-171	103
0	0	10	-430	444	16	, 0	ð	158	190	0	0	14	-450	433
6	0	12	359	364						0	8	10	207	250
6	0	14	- 58	0	20	> 0	0	305	314	-				
0	0	10	- 130	107	20	0	2	33	0	0	10	0	199	200
6	0	18	-218	287						0	10	2	8	0
6	0	20	91	118	() O	2	249	275	0	10	4	-285	270
0			~		C	0	4	-367	391	0	10	0	- 250	269
8	0	0	201	329	C	0	0	-355	341	0	10	ð	10	0
8	0	2	100	102	(0	8	1432	1313	0	10	10	159	173
8	0	4	617	625	C	0	10	524	533	0	10	12	18	0
ð	0	0	285	290	C	, o	12	110	83	0	10	14	184	187
8	0	8	383	403	(0	14	- 320	275	0	10	10	200	193
8	0	10	-288	301	C	0 0	10	547	525				-6	- 6 6
8	0	12	164	140	C	0	18	275	252	0	12	0	501	500
8	0	14	279	321	(0	20	274	275	0	12	2	-41	0
8	0	16	487	411				0		0	12	4	138	142
8	0	18	88	99	C	2	0	87	0	0	12	6	- 20	0
			0		C	2	2	-22	0	0	12	8	512	450
10	0	0	-78	77	(0 2	4		100	0	12	10	-27	0

TABELLE II (Fortsetzung)

h 	k	l	Fc	$ F_0 $	h	k	1	Fc	$ F_0 $	h	k	l	Fc	$ F_0 $
о	12	12	77	82	0	14	4	394	357	0	16	о	247	242
0	12	14	-25	0	о	14	6	335	315	0	16	2	-94	137
					0	14	8	-36	ō	0	16	4	129	137
0	14	0	-199	196	0	14	10	- 140	153	0	16	6	-43	Ó
0	14	2	47	о	0	14	I 2	119	161	0	16	8	253	250

Abb. 1. Abschliessende Fourier- und Differenzfourier-Synthesen. (c) Projektion (hko), Fourier-S., Höhenlinien von 50 zu 50 eÅ⁻² dünn, von 250 zu 250 eÅ⁻² dick. (f) Projektion (hko), Diff.-S., Höhenlinien von 6 zu 6 eÅ⁻².

Zur Berechnung der *R*-Werte wurden nur die beobachteten Reflexe eingesetzt, bei den *R'*-Werten alle (mit $F_0 = 0$ bei nicht beobachteten Reflexen).

Trotz der schlechten Qualität der (*hko*)-Intensitäten weichen die aus allen 3 Projektionen je zweimal bestimmbaren Parameter *x*, *y*, *z* auch im ungünstigen Fall nur um 0.002 voneinander ab. Auf Grund der Abschätzung nach LIPSON-COCHRAN¹⁹ ergibt sich als Standardabweichung für alle Atome $\sigma = \pm$ 0.01 Å. Bei den interatomaren Abständen ist also mit maximalen Fehlern von \pm (0.02–0.03) Å zu rechnen.

(c) Beschreibung der Kristallstruktur

Abbildung 2 zeigt die Projektion der Atomschwerpunkte längs [001]. In Tabelle III sind die interatomaren Abstände aufgeführt.

Abb. 2. Projektion der Atomschwerpunkte längs [001].

Die Kristallstruktur des Ta₆J₁₄ enthält $[Ta_6J_{12}]^{2+}$ -Baugruppen, die zueinander nach Art einer dichtesten Kugelpackung angeordnet sind. Die 6 Ta-Atome jeder Baugruppe bilden ein verzerrtes Ta₆-Oktaeder, welches von 12 J^t-Teilchen einer "inneren" Koordinationssphäre umhüllt ist. Diese 12 J^t-Teilchen liegen über den zwölf Kanten des Ta₆-Oktaeders (vgl. Abb. 3, 4). Die zur inneren Sphäre eines Ta₆-Oktaeders gehörigen J-Atome J^t werden von den zur äusseren Sphäre gehörenden J^a unterschieden¹⁰. J^{t-t}, J^{a-a} und J^{a-t} kennzeichnen sinngemäss J-Atome, die zwei Baugruppen verknüpfen.

Schon früher hatten VAUGHAN, STURDIVANT UND PAULING²⁰ für das [Ta₆Cl₁₂]²⁺⁻

TABELLE I	111
INTERATOMAR	re abstände in Å (\pm 0.02–0.03 Å) (vgl. Abb. 4)*
Ta-Ta	2.79; 2.82; 3.07; 3.09 (je 1 ×) für 4 Ta ₁
	2.79; 2.82 (je 2 \times) für 2 Ta _{II}
Ta ₁ -J	2.70; 2.74; 2.75; 2.80; 3.11 (je $1 \times$)
Tan-J	2.75; 2.83 ; (je 2 ×), ferner 4.32
IT-Ta	2.70 (2 \times) zu Ta _I
J _{II} -Ta	2.75 (2 \times) zu Ta ₁ ; 4.32 (1 \times) zu Ta ₁₁
Im-Ta	2.74 (I \times) zu Ta _I ; 2.75 (2 \times) zu Ta _{II}
J _{1V} -Ta	2.80 (1 \times) zu Ta ₁ ; 2.83 (1 \times) zu Ta ₁₁
Jv-Ta	3.11 $(2 \times)$ zu Ta ₁ ;
J–J	Die kürzesten Abstände betragen 3.62; 3.71; 3.72; 3.73; 3.76; 3.80 im

* Die in Tabelle III angegebenen Werte sind gegenüber (10) durch weitere Rechnungen verfeinert worden.

Abb. 3. Projektion längs [001], Lage und Verknüpfung der polynuklearen Gruppen.

Ion auf Grund von Beugungsuntersuchungen an Lösungen den analogen Aufbau vorgeschlagen. Im einzelnen weicht jedoch der Bau dieser polynuklearen Gruppe sowohl im kristallisierten Ta_6J_{14} als auch im kristallisierten $Nb_6Cl_{14}^{11}$ in bemerkenswerter Weise von dem *regulären* Aufbau ab, der für das gelöste Ion angegeben wird²⁰. In beiden Kristallstrukturen ist das Me₀-Oktaeder nicht regulär gebaut, sondern längs einer der 4-zähligen Achsen gestaucht. Diese Deformation ist beim Ta_6J_{14} besonders stark ausgeprägt:

Die Ta-Ta-Abstände betragen im Mittel 3.08 Å innerhalb der Basis des Oktaeders, während die 2 Ta_{II}-Atome, die Spitze und Fuss des Oktaeders bilden, von ihren 4 Ta-Partnern einen mittleren Abstand von 2.80 Å besitzen (vgl. Abb. 4). Statt eines

Abb. 4. Abstände im Ta₆-Oktaeder und in der $[Ta_6 J_{12}^{i}]$ -Gruppe.

Bindungswinkels von 60° (regulärer Oktaeder) findet man solche von 67° an Ta_{II} bzw. 57° am Ta_I. Jedes Ta-Teilchen ist wegen des characteristischen Aufbaus der $[Ta_6 J_{12}^i]$ -Gruppen nicht nur von 4 Ta, sondern auch von 4 Jⁱ-Teilchen koordiniert. Die Abstände Ta-Jⁱ (2.71-2.87 Å) entsprechen den Werten, die man auf Grund anderer Bestimmungen erwarten sollte*. Sie sind kleiner als die Summe der Ionenradien (etwa

^{*} So betragen die Abstände Me–J z.B. im TiJ3: 2.76 Å¹⁶, im NbOJ2: 2.74–2.90 Å²¹ oder im α -NbJ4: 2.67–2.91 Å²².

3.10 Å), entsprechen aber gut der Summe der Atomradien (etwa 2.75 Å). Die Bindungswinkel Ta- J^i -Ta liegen bei 69° bzw. 61°. Die Ta- J^i -Koordination ist nicht planar quadratisch, sondern pyramidal. Entsprechend der Verzerrung des Ta₆-Oktaeders sind auch die Bindungswinkel J^i -Ta- J^i der verschiedenen Pyramiden unterschiedlich, nämlich 145° bei Ta₁₁ und 163° bei Ta₁ (vgl. Abb. 5).

Abb. 5. Koordination am Ta $_{I}$ und am Ta $_{II}$; die fünf restlichen Tantalteilchen sind nicht mit eingezeichnet.

Die oben beschriebenen $[Ta_6J_{12}^{i}]$ -Gruppen werden durch zusätzliche (äussere) J^{a-a} -Teilchen (sehe Tab. I: J_V) 2-dimensional unendlich miteinander verknüpft. Auf Grund der Stöchiometric können aber nur 4 Ta-Atome des Ta₆-Oktaeders ihre Koordination mit Hilfe dieser verknüpfenden J^{a-a} -Teilchen vervollständigen, und zwar sind dies gerade diejenigen Ta-Atome, welche die Basis der verzerrten Ta₆-Oktaeder bilden. Hierdurch treten die unterschiedlichen Bindungsverhältnisse der das Ta₆-Oktaeder aufbauenden Ta-Atome in besonderem Masse hervor.

Die zugehörigen Abstände Ta_I-J_V^{*a*-*a*} betragen 3.11 Å. Jedes dieser J^{*a*-*a*}-Teilchen gehört zu je 2 Ta_I-Teilchen verschiedener [Ta₆J₁₂^{*i*}]-Gruppen. Der Bindungswinkel Ta_I-J_V^{*a*-*a*}-Ta_I beträgt 138°. Der Abstand von 3.11 Å entspricht der Summe der Ionenradien, was jedoch keineswegs ionogene Bindung bedeuten muss. Wie eine einfache räumliche Betrachtung zeigt, ist nämlich die Vergrösserung des Ta_I-J^{*a*-*a*}-Abstandes (von *ca.* 2.8 Å) auf 3.11 Å dadurch erklärbar, dass bei unveränderten J-J-Abständen der umhüllenden Anionensphäre (Jⁱ und J^{a-a}) die Tantalatome aufeinanderzu geschoben werden (vgl. Abb. 3).

Es fällt auf, dass die vierzähligen Achsen der $[Ta_6 J_{12}^i]$ -Gruppen nicht senkrecht zur Ebene der zweidimensionalen Schicht $^{2}_{\infty}$ [Ta₆J^{*i*}₁₂] J^{*a*-*a*}_{4/2} stehen, wie es z.B. beim $Mo_6Cl_{12}^{23}$ der Fall ist, sondern dass diese Achsen gegen die Ebene (100) um einen Winkel von etwa 60° geneigt sind (vgl. Abb. 3). Die miteinander verknüpften Baugruppen sind also stark gegeneinander gekippt. Als treibende Kraft hierfür kommen die Verringerung des Molvolumens und die Einstellung eines Bindungswinkels $Ta_{I} - I^{a-a}$ - $Ta_I < 180^\circ$ in Frage. Ausserdem erhalten die beiden Ta_{II} -Teilchen jedes Ta_6 -Oktaeders auf Grund dieser Deformation nun auch ihrerseits einen fünften I-Partner J^{a-i} . Dieser stammt jeweils aus der inneren Koordinationssphäre von $[Ta_6, J_{12}^i]^{-1}$ Gruppen benachbarter Schichten. Dieser Partner ist zwar erheblich weiter (4.31 Å) entfernt als die anderen, man hat jedoch den Eindruck, als würden so die elektrostatistischen Felder dieser unvollständig koordinierten Ta_{II}-Teilchen im gesamten Gitter besser abgeschirmt werden. Berücksichtigt man auch diese schwächeren Wechselwirkungen zwischen den 2-dimensionalen Schichten, so könnte die räumliche Anordnung des Ta₆J₁₄ auch mit der Formel ${}^{3}_{\infty}$ [Ta₆J₁₀J_{2/2}] J_{2/2}^{*i*-*a*}] J_{2/2}^{*a*-*i*}J_{4/2}^{*a*-*a*} beschrieben werden. Dass die weiter oben beschriebene 2-dimensionale Struktureinheit ein bestimmendes Element der Kristallstruktur ist, äussert sich in der guten Spaltbarkeit der Ta₆J₁₄-Kristalle nach (100). Andererseits verhalten sich diese spröden Kristalle beim Zerkleinern nicht wie typische Schichtengitter, was man auf die Wechselwirkungen von Schicht zu Schicht einerseits und die gegenseitige Verzahnung der gewellten 2-dimensionalen Strukturelemente andererseits zurückführen könnte.

Eine etwas weitergehende Diskussion der Bindungsverhältnisse findet man im Zusammenhang mit der Untersuchung der isotypen Verbindung Nb₆Cl₁₄.¹

Zusatz bei der Korrektur (den 22. April, 1965)

Neue Untersuchungen mit A. SIMON (Münster) haben ergeben, dass eine stabile Verbindung mit der analytischen Zusammensetzung Nb J1.82 existiert. Sie besitzt die niederigste bisher bei solchen Halogeniden gefundene Oxydationsstufe. Voraussichtlich ist der Verbindung die Strukturformel $[Nb_6J_8]J_{6_{/2}}$ zuzuordnen.

DANK

Der Verband der Chemischen Industrie-Fonds der Chemie-und die Deutsche Forschungsgemeinschaft haben diese Untersuchungen wesentlich gefördert, was wir dankbar feststellen möchten.

LITERATUR

- 1 Mitteilung XLIV vgl. A. SIMON, H. G. SCHNERING, H. WÖHRLE UND H. SCHÄFER, Z. Anorg. Allg. Chem., im Druck.
- K. W. VAN HAAGEN, J. Am. Chem. Soc., 32 (1910) 729.
 F. Körösy, J. Am. Chem. Soc., 61 (1939) 838.
- 4 R. F. ROLSTEN, J. Am. Chem. Soc., 80 (1958) 2952.
- 5 R. F. ROLSTEN, Trans. AIME, 215 (1959) 472, 478.
- 6 F. Körösy, Technikai Kurir, 9 (1938) 81 durch Chem. Abstr., 33 (1939) 16159.

- 7 D. M. CHIZHIKOV UND B. N. RABINOVICH, Zhur. Neorg. Khim., 2 (1957) 2513; bzw. Chem. Abstr., 52 (1958) 13500°.
- 8 R. E. McCarley und J. C. BOATMAN, Inorg. Chem., 2 (1903) 547.
- 9 D. BAUER, Diplom Arbeit, Univ. Münster, 1963.
- 10 H. SCHÄFER UND H. G. SCHNERING, Angew. Chem., 70 (1964) 833.
- 11 H. SCHÄFER, H. SCHOLZ UND R. GERKEN, Z. Anorg. Allg. Chem., 331 (1964) 154.
 12 H. SCHÄFER, R. GERKEN UND H. SCHOLZ, Z. Anorg. Allg. Chem., 335 (1965) 96.
- 13 H. SCHÄFER, Chemische Transportreaktionen, Verlag Chemie, 1962; Chemical Transport Reactions, Academic Press, 1964.
- 14 K. M. ALEXANDER UND F. FAIRBROTHER, J. Chem. Soc., (1949) 2472.
- 15 H. SCHÄFER UND K. D. DOHMANN, Z. Anorg. Allg. Chem., 300 (1950) 1.
- 16 H. G. SCHNERING, Habilationsschrift, Univ. Münster, 1964.
- 17 L. H. THOMAS UND K. UMEDA, J. Chem. Phys., 26 (1957) 293.
- 18 R. SHIONO UND D. W. J. CRUICKSHANK, Acta Cryst., 11 (1958) 389; sowie H. G. Schnering, Z. Anorg. Allg. Chem., 330 (1964) 170.
- 19 H. LIPSON UND W. COCHRAN, The Determination of Crystal Structures, Bell and Sons, London, 1957.
- 20 P. A. VAUGHAN, J. H. STURDIVANT UND L. PAULING, J. Am. Chem. Soc., 72 (1950) 5477.
- 21 H. G. SCHNERING UND H. WÖHRLE, unveröffentlichte Arbeiten, 1962/63.
- 22 L. F. DAHL UND D. L. WAMPLER, Acta Cryst., 15 (1962) 903.
- 23 H. SCHÄFER, H. G. SCHNERING UND F. KUHNEN, in F. KUHNEN, Dissertation, Univ. Münster, 1964.