Accepted Manuscript

Copper-Catalyzed Pummerer Type Reaction of α -Thio Aryl/Heteroarylacetates: Synthesis of Aryl/Heteroaryl α -Keto Esters

Pipas Saha, Sumit Kumar Ray, Vinod K. Singh

 PII:
 S0040-4039(17)30390-8

 DOI:
 http://dx.doi.org/10.1016/j.tetlet.2017.03.069

 Reference:
 TETL 48770

To appear in: Tetrahedron Letters

Received Date:1 March 2017Revised Date:20 March 2017Accepted Date:22 March 2017

Please cite this article as: Saha, P., Ray, S.K., Singh, V.K., Copper-Catalyzed Pummerer Type Reaction of α -Thio Aryl/Heteroarylacetates: Synthesis of Aryl/Heteroaryl α -Keto Esters, *Tetrahedron Letters* (2017), doi: http://dx.doi.org/10.1016/j.tetlet.2017.03.069

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Tetrahedron Letters journal homepage: www.elsevier.com

Copper-Catalyzed Pummerer Type Reaction of α -Thio Aryl/Heteroarylacetates: Synthesis of Aryl/Heteroaryl α -Keto Esters

Pipas Saha,^a Sumit Kumar Ray,^a and Vinod K. Singh^{a,b,} *

^aDepartment of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP-462 066, India ^bDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208 016, India

ARTICLE INFO

Received in revised form

Pummerer type reaction Thionium ion α -Keto esters Disulfides

Article history: Received

Available online

Accepted

Keywords: Copper catalysts

ABSTRACT

A copper catalyzed Pummerer type reaction of a-thio aryl/heteroarylacetates is described for the first time. This transformation represents a new route to synthesize α -keto esters, which are important intermediates for pharmaceuticals and organic synthesis. The reaction proceeds via in situ generation of a thionium ion that undergoes hydrolysis to furnish α -keto esters in synthetically viable yields (up to 82%).

2009 Elsevier Ltd. All rights reserved.

Introduction

The Pummerer reaction is a process where an alkyl sulfoxide is activated using acetic anhydride, trifluoroacetic anhydride (TFAA), trifluoromethanesulfonic anhydride (Tf₂O), or silvl chloride, which then undergoes elimination to give a thionium ion.¹ A wide range of nucleophiles such as acetates, arenes, alkenes, amides, and phenols then undergo nucleophilic addition to the *in situ* generated thionium ion.^{1,2} The trapping of this ionic intermediate by different nucleophiles has greatly expanded the synthetic utility of the reaction.³ For example, the Pummerer reaction has been used extensively for the synthesis of thionucleosides,⁴ heterocycles,⁵ spirocyclic compounds⁶ and natural products.⁷ In contrast, metal catalyzed Pummerer type reactions of sulfides and sulfoxides are less explored.⁸ Moreover, in some cases, stoichiometric amounts of metal catalysts have been used for the reaction.^{8a,b}

In continuation of our research interest for the synthesis of organosulfur compounds,⁹ it was envisioned that upon treatment with metal catalysts, α -thio aryl/heteroarylacetates would generate a thionium ion *in situ* which could be trapped by a nucleophile (Scheme 1). However, upon treatment with copper catalysts, α -thio aryl/heteroarylacetates were converted into α -keto esters (Scheme 1) which are important intermediates for pharmaceuticals and organic synthesis.¹⁰ Prominent literature reports reveal that α -keto esters are usually prepared by the reaction of Grignard reagents with oxalyl chloride,¹¹ ethyl α -oxo-1H-imidazole-1-acetate¹² or diethyl oxalate.¹³ They are also prepared by the oxidation of α -diazoesters¹⁴ and aryl ketones.¹⁵ In contrast, numerous literature

H₂O (Het)Ar COOR Sн Copper catalys (Het)Ar COOR solvent, air COOR 80 °C

keto esters in synthetically viable yields.

(Het)A Scheme 1. Working hypothesis

COOF

reports are known for the conversion of α -thio carbonyl compounds into α -keto carbonyls.¹⁶ However, to the best of our

knowledge, there are no reports regarding the synthesis of α -keto

esters via C-S bond cleavage of α -thio aryl/heteroarylacetates.

Herein, we report a copper-catalyzed Pummerer type reaction of α -

thio aryl/heteroarylacetates for the synthesis of aryl/heteroaryl α -

Results and discussion

At the outset, we started our investigation with the reaction of methyl 2-((4-bromophenyl)thio)-2-phenylacetate 1a (1 equiv) with Cu(OAc)₂ (10 mol%) in DMF at 80 °C under air. To our delight, methyl 2-oxo-2-phenylacetate 2a was isolated in 46% yield along with 28% of 1,2-bis(4-bromophenyl)disulfane 3a as a by-product (Table 1, entry 1). Afterwards, a systematic optimization was carried out using various solvents such as glacial AcOH, DMSO, toluene and H₂O, where glacial AcOH was found to be superior in terms of yield (Entries 2-5). It was observed that 5 mol% catalyst loading afforded the product 2a in 40% yield (Entry 7).

* Corresponding author. Tel.: +91-512-2597291; fax: +91-512-2597436; e-mail: vinodks@iitk.ac.in

Tetrahedron Letters

starting material 1a was fully recovered (Entry 8). Next, we turned withdrawing group (4-NO₂) on the phenyl ring. This could be due our attention towards the screening of various copper salts for this to stabilization of the *in situ* generated thionium ion by electron transformation. Notably, $Cu(OAc)_2$ was the most efficient catalyst, donating groups on the phenyl ring. Additionally, α -thio affording product 2a in 73% yield (Entry 2). It is worth noting that arylacetates 1h-j with halogen functional groups (-F, -Cl, -Br), CuOAc could also catalyze the reaction, but furnished 2a in lower afforded α -keto esters 2h-j in synthetically viable yields (up to yield (Entry 9) and with unreacted starting material recovered. A trace amount of 2a was obtained when methyl 2-((4bromophenyl)thio)-2-phenylacetate 1a (1 equiv.) was treated with Cu(OAc)₂ (10 mol%) in dry toluene under an Ar atmosphere (Entry 15). However, the presence of 4 Å molecular sieves precluded the formation of 2a (Entry 16). Therefore, based on extensive optimization studies, it was decided to carry out further studies in the presence of Cu(OAc)₂ (10 mol%) in glacial AcOH solvent at 80 °C under air.

Table 1. Optimization of Reaction Conditions.^a

Entry	Catalyst	Solvent	Time (h)	Yield 2a $(\%)^b$	Yield 3a $(\%)^b$
1	Cu(OAc) ₂	DMF	50	46	28
2	$Cu(OAc)_2$	AcOH	50	73	20 27
3	$Cu(OAc)_2$	DMSO	50	48	25
4	$Cu(OAc)_2$	Toluene	55	34	15
5	$Cu(OAc)_2$	H	48	0	0
6	Cu(OAc) H.O	AcOH	50	60	25
7°	$Cu(OAc)_2, \Pi_2O$		50	40	16
od od	$Cu(OAc)_2$	AcOII	19	40	0
8	$Cu(OAc)_2$	ACOH	48	0	0
9	CuOAc	AcOH	55	42	20
10	CuCl ₂	AcOH	55	28	17
11	CuCl ₂	DMF	48	0	0
12	Cu(OTf) ₂	AcOH	55	52	29
13	Cu(OTf) ₂	DMF	55	35	22
14	Pd(OAc) ₂	AcOH	48	0	0
15 ^e	Cu(OAc) ₂	Toluene	48	trace	trace
$16^{\rm f}$	Cu(OAc) ₂	Toluene	48	0	0

^aReaction conditions: 1a (0.3 mmol), catalyst (0.03 mmol), solvent (3 mL), 80 °C. under air

^bIsolated yield. Products (2a and 3a) were characterized by ¹H, ¹³C NMR and Mass spectroscopy.

^cReaction performed with Cu(OAc)₂ (5 mol%).

^dReaction performed at rt.

^eReaction performed in dry toluene under an Ar atmosphere.

^fReaction performed in dry toluene under an Ar atmosphere in the presence of 4 Å molecular sieves.

With the optimized reaction conditions in hand, the substrate scope of the reaction was explored using various α -thio aryl/heteroarylacetates (Fig. 1). It was noted that α -thio aryl/heteroarylacetates 1 underwent the reaction, leading to aryl/heteroaryl α -keto esters 2 in reasonable yields along with disulfides as by-products (Table 2). Interestingly, the different aryl substituents at the C-2 position of α -thio arylacetates 1 have a promising effect on this reaction. It was observed that α -thio arylacetates 1a-b (Fig. 1) with a phenyl ring at the C-2 position afforded products 2a-b in 73% and 66% yields, respectively (Table 2). On the other hand, α -thio arylacetates **1c-g** (Fig. 1) with electron donating functional groups (4-Me, 4-OMe) furnished 2c-g

Surprisingly, there was no reaction at room temperature and in higher yields than α -thio arylacetate 11 with an electron 74%).

Figure 1. Different α -thio aryl/heteroarylacetates used for the synthesis of aryl/heteroaryl α -keto esters.

The α -thio arylacetate **1f** (Fig. 1) with an alkyl group attached to sulfur afforded α -keto ester **2f** in 75% yield (Table 2). No significant effect was observed when different aryl/alkyl substituents attached to the sulfur in α -thio arylacetates were used.

Table 2. Synthesis of Aryl/Heteroaryl α-Keto Esters.^{a,b}

^aReaction conditions: 1 (0.3 mmol), Cu(OAc)₂ (0.03 mmol), AcOH (3 mL), 80 °C, under air.

^bIsolated yield. Compounds were characterized by ¹H, ¹³C NMR and Mass spectroscopy.

However, lower yields were observed for compound 2k (44%) and **2m** (48%), clearly suggesting that steric hindrance at the *ortho* position to the phenyl ring has a crucial role in this transformation. Rewardingly, α -thio heteroarylacetates **1n-q** with a heteroaromatic moiety at the C-2 position afforded the corresponding α -keto esters 2n-q in moderate yields (up to 50% yields). Recrystallization of 2i from chloroform produced a single crystal whose structure was confirmed by X-ray analysis (Fig. S1, ESI).¹⁷

In order to increase the versatility of this methodology, we then directed our efforts to synthesize alkyl α -keto esters using the optimized reaction conditions. Towards this, ethyl 2-((4chlorophenyl)thio)-3-phenylpropanoate 4 was treated with Cu(OAc)₂ (10 mol%) in glacial AcOH at 80 °C (Scheme 2, eq 1). Unfortunately, the reaction did not proceed which clearly indicates that only α -thio aryl/heteroarylacetates are favorable for this copper catalyzed reaction to afford aryl/heteroaryl α -keto esters. Next, to understand the role of the thiol moiety in this reaction, methyl 2-(acetylthio)-2-phenylacetate 5 with an electron withdrawing acetyl group directly attached to the sulfur was subjected to the optimized reaction conditions (Scheme 2, eq 2). However, no reaction was observed, which might be due to the unavailability of the lone pair of electrons on sulfur to participate in the reaction with Cu(OAc)₂. To confirm that the copper catalyzed Pummerer type reaction of α -thio aryl/heteroarylacetates proceed through in situ formation of a thionium ion, methyl 2-(4bromophenyl)-2-(p-tolylthio)acetate 1j was treated with Cu(OAc)₂ (0.1 equiv) in glacial AcOH with the addition of AcONa (1.2 our methyl delight, tolylthio)acetate 6 was isolated in 25% yield along with methyl 2- Cu(OAc)₂,^{19g} thereby completing the catalytic cycle (Scheme 4). (4-bromophenyl)-2-oxoacetate 2j in 52% yield. The formation of product $\mathbf{6}$ in this reaction confirms that the reaction proceeds through the in situ generated thionium ion.

To gain insight into the reaction mechanism, an isotopic-labelling experiment was performed using $H_2^{18}O$. Methyl 2-((4bromophenyl)thio)-2-(4-methoxyphenyl)acetate 1e was treated with $Cu(OAc)_2$ (10 mol%) in glacial AcOH at 80 °C in the presence of $H_2^{18}O$ (5.0 equiv). Upon reaction completion, the ¹⁸O incorporated product was detected by HRMS analysis (see ESI for more details).

Scheme 3. Isotope Labelling Experiment.

The ESI-MS study of the crude reaction mixture of 1a after 7 h revealed the presence of thionium ion 7 in situ (Fig. 2) (see ESI for more details).¹⁸ However, we were unable to isolate species 7 as a single crystal.

Figure 2. Major species identified using ESI-MS analysis of the reaction mixture of 1a.

Based on the results shown in Schemes 2 and 3, ESI-MS analysis of the crude reaction mixture of 1a and previous reports on copper(II)-catalyzed oxidative reactions,¹⁹ we postulate the following catalytic cycle for the copper(II)-catalyzed Pummerer type reaction of α -thio aryl/heteroarylacetates (Scheme 4). Initially, the α -thio aryl/heteroarylacetate reacts with Cu(OAc)₂ to furnish α -sulfonium aryl/heteroarylacetate copper(II) species A, from which the acetate anion abstracts a proton to generate thionium ion **B** followed by the reduction of Cu(II) to Cu(I)species. Subsequently, nucleophilic addition of H₂O to thionium ion B generates species C. Next, in situ generated CuOAc promotes the removal of sulfur from species **D** to afford α -keto ester along with species E. Species E then undergoes a disproportionation reaction followed by an aerobic oxygenmediated reductive elimination to generate Cu(I) species along equiv) as an external nucleophile at 80 °C (Scheme 2, eq 3). To with disulfide as a by-product.^{19h} Eventually, the Cu(I) species in 2-acetoxy-2-(4-bromophenyl)-2-(p- the presence of aerobic oxygen and AcOH is converted to

Scheme 4. Proposed Catalytic Cycle.

Finally, in order to rationalize the practical applicability of this copper catalyzed Pummerer type reaction of α -thio aryl/heteroarylacetates, a gram scale reaction of methyl 2-((4bromophenyl)thio)-2-pheylacetate 1a was performed under the optimized reaction conditions (Scheme 5). To our delight, product 2a was furnished in 70% yield.

Tetrahedron Letters

Conclusions

In summary, we have developed a copper catalyzed Pummerer type reaction of α -thio aryl/heteroarylacetates for the synthesis of aryl/heteroaryl α -keto esters in moderate to good yields. This process tolerates a broad range of functionalized substrates to afford aryl/heteroaryl α -keto esters using catalytic Cu(OAc)₂. A gram scale reaction was also performed. The scope and synthetic application of this reaction are currently under study in our laboratory.

Acknowledgements

Financial support through the J.C. Bose fellowship (DST, India) and SERB, DST (EMR/2014/001165), India for research grant are gratefully acknowledged. P.S. and S.K.R. thanks IISER Bhopal for research facilities. We thank Mr. Ajay Verma, IISER Bhopal, for assistance with single crystal X-ray analysis.

References

- (a) Pummerer R. Chem Ber. 1909;42:2282; 1. (b) Pummerer R. Chem Ber. 1910;43:1401. (a) Russell GA, Mikol GJ. Acid-Catalyzed Rearrangements 2 of Sulfoxides and Amine Oxides. The Pummerer and Polonovski Reactions, ed. B. S. Thyagaragan, Wiley Interscience, New York, 1968: (b) Oae S, Numata T, Yoshimura T. The Chemistry of the Sulfonium Group, ed. C. J. M. Stirling and S. Patai, John Wiley, New York, 1981; (c) DeLucchi O, Miotti U, Modena G. The Pummerer Reaction of Sulfinyl Compounds, ed. L. A. Paquette, John Wiley, New York, 1991; (d) Bur SK, Padwa A. Chem Rev. 2004;104:2401; (e) Feldman KS. Tetrahedron 2006;62:5003; (f) Smith LHS, Coote SC, Sneddon HF, Procter DJ. Angew Chem Int Ed. 2010;49:5832. (a) Harmata M, Fletcher VR, ClaassenII RJ. J Am Chem Soc. 3. 1991:113:9861: (b) Abe H, Itani J, Masunari C, Kashino S, Harayama T. J Chem Soc Chem Commun. 1995; 1197; (c) Padwa A, Heidelbaugh TM, Kuethe JT. J Org Chem. 2000:65:2368: (d) Montaño RG, Zhu J. Chem Commun. 2002;2448; (e) Magnus P, Rainey T, Lynch V. Tetrahedron Lett. 2003:44:2459: (f) Akai S, Kawashita N, Satoh H, Wada Y, Kakiguchi K, Kuriwaki I, Kita Y. Org Lett. 2004;6:3793; (g) Akai S, Tsujino T, Fukuda N, Iio K, Takeda Y, Kawaguchi K-i, Naka T, Higuchi K, Akiyama E, Fujioka H, Kita Y. Chem Eur J. 2005;11:6286; (h) Akai S, Kawashita N, Wada Y, Satoh H, Alinejad AH, Kakiguchi K, Kuriwaki I, Kita Y. Tetrahedron Lett. 2006;47:1881; (i) Padwa A, Nara S, Wang Q. Tetrahedron Lett. 2006;47:595; (j) Yoshida S, Yorimitsu H, Oshima K. Org Lett. 2009;11:2185; (k) Kobatake T, Fujino D, Yoshida S, Yorimitsu H, Oshima K. J Am Chem Soc. 2010;132: 11838; (1) Kobatake T, Yoshida S, Yorimitsu H, Oshima K. Angew Chem Int Ed. 2010;49:2340; (m) Eberhart AJ, Cicoira C, Procter DJ. Org Lett. 2013-15-3994-(a) O'Neil IA, Hamilton KM. Synlett. 1992;791; (b) Yoshimura Y, Kitano K, Satoh H, Watanabe M, Miura S, Sakata S, Sasaki T, Matsuda A. J Org Chem. 1996;61:822; (c) Yoshimura Y, Yamazaki Y, Kawahata M, Yamaguchi K, Takahata H. Tetrahedron Lett. 2007;48:4519; (d) Denancé M, Legay R, Gaumont A-C, Gulea M. Tetrahedron Lett. 2008;49:4329; (e) Haraguchi K, Matsui H, Takami S, Tanaka H. J Org Chem. 2009;74:2616; (f) Yoshimura Y, Yamazaki Y, Saito Y, Takahata H. Tetrahedron 2009;65:9091. (a) Miyagawa T, Satoh T. Tetrahedron Lett. 2007;48:4849;
- (a) Miyagawa 1, Saton 1. Tetrahearon Lett. 2007;48:4849
 (b) Eggers ME, Jog PV, Bates DK. Tetrahedron. 2007;63:12185;

- (c) Xu G, Chen K, Zhou H. Synthesis. 2009;3565.
- 6. (a) Feldman KS, Vidulova DB, Karatjas AG. *J Org Chem.* 2005;70:6429;
 (b) Ovens C, Martin NG, Procter, DJ. *Org Lett.* 2008;10:1441;

(c) Feldman KS, Nuriye AY. *Tetrahedron Lett.* 2009;50:1914.

- (a) Akai S, Kakiguchi K, Nakamura Y, Kuriwaki I, Dohi T, 7. Harada S, Kubo O, Morita N, Kita Y. Angew Chem. 2007;119:7602; Angew Chem Int Ed. 2007;46:7458; (b) Feldman KS, Skoumbourdis AP, Fodor MD. J Org Chem. 2007:72:8076: (c) Kuhakarn C, Seehasombat P, Jaipetch T, Pohmakotr M, Reutrakul V. Tetrahedron. 2008;64:1663; (d) Kobayashi S, Ishii A, Toyota M. Synlett. 2008;1086; (e) Feldman KS, Fodor MD. J Am Chem Soc. 2008;130:14964; (f) Feldman KS, Fodor MD. J Org Chem. 2009;74:3449; (g) Feldman KS, Fodor MD, Skoumbourdis AP. Synthesis. 2009:3162. (a) Ishibashi H, Matsuoka K, Ikeda M. Chem Pharm Bull. 8. 1991;39:1854; (b) Liao Y-J, Wu YL, Chuang CP. Tetrahedron. 2003;59:3511; (c) Murakami K, Imoto J, Matsubara H, Yoshida S, Yorimitsu H, Oshima K. Chem Eur J. 2013;19:5625. 9
- (a) Rana NK, Singh VK. Org Lett. 2011;13:6520;
 (b) Rana NK, Unhale R, Singh VK. Tetrahedron Lett. 2012;53:2121;
 (c) Unhale RA, Rana NK, Singh VK. Tetrahedron Lett.

2013;54:1911. 10. (a) Li H, Wang B, Deng L. J Am Chem Soc. 2006;128:732;

(b) Kong J-R, Ngai, M-Y, Krische MJ. J Am Chem Soc. 2006;128:718;
(c) Steward KM, Gentry EC, Johnson JS. J Am Chem Soc.

(c) Steward KM, Gentry EC, Johnson JS. J Am Chem Soc. 2012;134:7329;
(d) Zhu T-S, Jin S-S, Xu M-H. Angew Chem Int Ed.

2012;51:780; (e) Thai K, Langdon SM, Bilodeau F, Gravel M. *Org Lett.* 2013;15:2214;

(f) Hu Y, Xu K, Zhang S, Guo F, Zha Z, Wang Z. Org Lett. 2014;16:3564.

- 11. Babudri F, Fiandanese V, Marchese G, Punzi A. *Tetrahedron.* 1996;52:13513.
- 12. Nimitz JS, Mosher HS. J Org Chem. 1981;46:211.
- 13. (a) Creary X. J Org Chem. 1987;52:5026; (b) Singh I. Kissick TP. Mueller PH. Org Prepr Proce
- (b) Singh J, Kissick TP, Mueller RH. Org Prepr Proced Int. 1989;21:501.
- (a) Ma M, Li C, Peng L, Xie F, Zhang X, Wang J. *Tetrahedron Lett.* 2005;46:3927;
 (b) O'Connor NR, Bolgar P, Stoltz BM. *Tetrahedron Lett.* 2016;57:849.
- 15. Zhang Z, Su J, Zha Z, Wang Z. Chem Eur J. 2013;19:17711.

 (a) McAllister LA, McCormick RA, James KM, Brand S, Willetts N, Procter DJ. *Chem Eur J.* 2007;13:1032;
 (b) Munive L, Bernes S, Sansinenea E, Ortiz A. *Tetrahedron Lett.* 2010;51:6041;
 (c) He Y, Guo C, Sun B, Quinn J, Li Y. *Chem Commun.* 2015;51:8093;
 (d) Liao K, Zhou F, Yu J-S, Gao W-M, Zhou J. *Chem Commun.* 2015;51:16255;

(e) Khanal HD, Kim SH, Lee YR. *RSC Adv.* 2016;6:58501.
17. The crystallographic data for compound **2i** has been deposited with the Cambridge Crystallographic Data Centre

- deposited with the Cambridge Crystallographic Data Centre and it has CCDC number 1476214.(a) Wang L, Priebbenow DL, Dong W, Bolm C. Org Lett.
- (a) Wang L, Prebbenow DL, Dong W, Bolm C. Org Lett. 2014;16:2661;
 (b) Sadhu P, Alla SK, Punniyamurthy T. J Org Chem. 2015:80:8245.
- (a) Sherman ES, Chemler SR, Tan TB, Gerlits O. Org Lett. 2004;6:1573;

(b) King AE, Brunold TC, Stahl SS. J Am Chem Soc. 2009;131:5044;
(c) Guru MM, Ali MA, Punniyamurthy T. J Org Chem.

(c) Guru MM, All MA, Punniyamurtny 1. *J Org Chem.* 2011;76:5295;

(d) Turnpenny BW, Chemler SR. *Chem Sci.* 2014;5:1786;
(e) Liu J-Q, Hao B-Y, Zou H, Zhang W-H, Chen, X-Z. *ARKIVOC*. 2014;5:72;

(f) Casavant BJ, Khoder ZM, Berhane IA, Chemler SR. Org Lett. 2015;17:5958;

(g) McCann SD, Stahl SS. Acc Chem Res. 2015;48:1756;

(h) Zhu H, Yu J-T, Cheng J. Chem Commun. 2016;52:11908;

(i) Yu J, Zhang-Negrerie D, Du Y. Org Lett. 2016;18:3322.

Supplementary Material

Experimental procedures and full spectroscopic data for all compounds, isotope labelling experiment, single crystal X-ray data of **2i**, NMR spectra (1 H and 13 C) of the starting materials **1a-q**, **4**, Accerbatic 5 and products 2a-q, 6, ESI-MS spectra of 7 have been provided in a separate electronic file as a supplementary data.

CRIPT CCFPI

Tetrahedron Letters

Highlights

- Pummerer type reaction for the synthesis of the α -keto ester is described.
- Acctinition • The reaction proceeds through the generation of a thionium ion *in situ*.

Acceleration