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A highly dispersed core­shell silver nanoparticle­ceria
nanocomposite catalyst (AgNP@CeO2-D) was prepared. The
addition of bases was found to enhance the catalytic efficiency
of AgNP@CeO2-D significantly in the chemoselective reduction
of diverse unsaturated aldehydes to the corresponding unsatu-
rated alcohols.

The selective reduction of a targeted functional group in a
molecule having several functional groups is of great utility in
organic synthesis.1 In this context, the chemoselective reduction
of unsaturated carbonyl compounds while maintaining the
reducible C=C bonds is an important and challenging objective,
because the corresponding unsaturated alcohols often serve as
valuable intermediates for fragrances, pharmaceuticals, agri-
chemicals, and resins.2 Chemoselective reduction has been
performed by using stoichiometric reagents such as metal
borohydrides,3 diisobutylaluminum hydride,4 and zinc metal,5

which produce large amounts of waste. For the replacement of
such traditional stoichiometric reactions, much effort has been
devoted to the development of catalytic systems.6 Among these
catalytic methods, heterogeneous catalyst systems using mo-
lecular hydrogen (H2) as a highly atom-efficient reductant
represent ideal green protocols. However, the heterogeneous
catalysts reported previously still suffer from insufficient
selectivity at high conversions, limited substrate scope, and
low reusability.7,8

Recently, we reported the synthesis of a core­shell silver
nanoparticle­ceria nanocomposite (AgNP@CeO2) consisting of
AgNPs with diameters of 10 nm in the core and assembled CeO2

NPs with diameters of 3­5 nm in the shell. AgNP@CeO2 acted
as a highly efficient reusable catalyst for the completely
chemoselective reductions of nitrostyrenes to aminostyrenes
and epoxides to alkenes using H2, where over 99% selectivity
for the targeted products was attained.9 AgNP@CeO2 highly
dispersed on CeO2 (AgNP@CeO2-D) was also developed and
was found to be applicable to the selective reduction of
unsaturated aldehydes to the corresponding unsaturated alcohols
(Scheme 1).10 The obtained selectivity for unsaturated alcohols
was much greater than those of previously reported heteroge-
neous catalyst systems. In these reactions, the combination of
AgNPs and a base of CeO2 is the key. Wrapping AgNPs with
CeO2 can maximize the interfacial interaction between the active
AgNP species and the basic sites of CeO2. The core­shell
interface induces the heterolytic cleavage of H2 to produce an
ionic Ag­hydride species and a proton associated with the basic
site of CeO2, which enables the selective reduction of polar
functional groups. In a continuing attempt to achieve higher
chemoselectivity using AgNP@CeO2-D, we discovered that the
addition of bases such as alkali metal salts and amines to the

AgNP@CeO2-D catalyst system enhanced significantly both the
catalytic activity and selectivity for the reduction of unsaturated
aldehydes to the unsaturated alcohols.

Inspired by our previous finding that bases exhibited
cooperative catalysis with AgNPs in chemoselective reduc-
tions,9­13 we initially focused on various bases as additives for
the AgNP@CeO2-D-catalyzed reduction of cinnamaldehyde (1)
to cinnamyl alcohol (2) under 6 atm of H2 at 110 °C for 6 h.14

The results are summarized in Table 1. Interestingly, among the
bases tested, the addition of Cs2CO3 significantly enhanced the
catalytic efficiency to afford over 99% selectivity for 2 with full
conversion (Entry 1 vs. 11). Rb2CO3 and triethylamine also had
a positive effect on the reduction (Entries 6 and 7), and the
weaker bases of Na2CO3, K2CO3, pyridine, and imidazole
improved the selectivity slightly (Entries 4, 5, 9, and 10).
Notably, when the reaction time of Entry 1 was prolonged,
hydrogenation of the olefin moiety of 2 was not observed at all
(Entry 2). Furthermore, even at 60 °C, AgNP@CeO2-D worked
well in the presence of Cs2CO3, giving 2 in 96% yield with
excellent selectivity, while AgNP@CeO2-D without Cs2CO3

hardly promoted the reduction (Entry 3 vs. 12). Next, non-
encapsulated AgNPs on CeO2 (AgNP/CeO2), which had a
similar AgNP size to that of AgNP@CeO2-D, were synthe-
sized,15 and the effect of Cs2CO3 was investigated. The addition
of Cs2CO3 also improved the AgNP/CeO2 catalysis (Entry 13
vs. 14); however, the catalytic performance of AgNP/CeO2 was
inferior to that of AgNP@CeO2-D (Entry 1 vs. 13). These
results revealed that the combination of AgNP@CeO2-D and
Cs2CO3 provided an extremely high efficiency for the chemo-
selective reduction of 1 to 2 with H2.

The substrate scope of the catalytic system consisting of
AgNP@CeO2-D and Cs2CO3 in the chemoselective reduction
of aldehydes was investigated next (Table 2). For all the
aldehydes tested, Cs2CO3 enhanced the activity and selectivity
of AgNP@CeO2-D significantly, affording excellent selectivity
for unsaturated alcohols with high conversions. Cinnamalde-
hydes, which have electron-withdrawing and -donating groups,
were converted efficiently to cinnamyl alcohols (Entries 3
and 4). p-Chlorocinnamyl alcohol was obtained with over 99%
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Scheme 1. Chemoselective reductions with AgNP@CeO2 or
AgNP@CeO2-D.
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selectivity, and the chloro moiety as well as the C=C bond
remained intact during the reduction (Entry 4). Aliphatic
conjugated aldehydes including terpenes could also be used in
this catalyst system (Entries 6­14). For example, citral gave the
corresponding allylic alcohols in quantitative yield (Entry 13).
Moreover, unconjugated aldehydes were also found to be good
substrates (Entries 15­18). Vinylbenzaldehyde was reduced
chemoselectively to vinylbenzyl alcohol with complete retention
of the olefinic bond (Entry 15).16

After the reduction of 1, AgNP@CeO2-D was readily
separated from the reaction mixture by filtration, and then, the
used AgNP@CeO2-D catalyst and Cs2CO3 were applied to the
next run. AgNP@CeO2 could be reused without loss of activity
or chemoselectivity in the reuse experiments (Entry 2).

The dramatic effect of the base additives on both the activity
and selectivity of AgNP@CeO2-D may be due to an increase in
the exclusive formation of the ionic hydrogen species. That is,
base additives promote the heterolytic cleavage of H2 to [Ag­
H]¹ and [H­base]+ and also assist in the cooperative action
between AgNP and CeO2 to generate [Ag­H]¹ and [CeO2­H­
base]+. These polar hydrogen species prefer polar aldehyde
groups over C=C bonds, enhancing the activity and chemo-
selectivity in the reduction of unsaturated aldehydes to unsat-
urated alcohols.

In conclusion, we discovered that the addition of bases
greatly enhanced the catalytic efficiency in AgNP-catalyzed
chemoselective reduction reactions. The catalyst system con-
sisting of AgNP@CeO2-D and Cs2CO3 provided highly chemo-
selective reduction of diverse unsaturated aldehydes to the
corresponding unsaturated alcohols with excellent selectivity.

Table 1. Chemoselective reduction of 1 using AgNP@CeO2-D
with basesa
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321

+
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AgNP@CeO2-D

Entry Base t/h Conv./%b Sel./%b

2 3 4

1 Cs2CO3 6 >99 >99 trace trace
2 Cs2CO3 12 >99 >99 trace trace
3c Cs2CO3 24 96 >99 trace trace
4 Na2CO3 6 58 94 5 1
5 K2CO3 6 56 95 2 3
6 Rb2CO3 6 78 99 1 trace
7 triethylamine 6 67 >99 trace trace
8 triethylamine 12 >99 >99 trace trace
9 pyridine 6 38 93 2 5
10 imidazole 6 25 95 2 3
11 ® 6 43 92 2 6
12c ® 24 1 trace trace trace
13d Cs2CO3 6 96 94 2 4
14d ® 6 38 73 16 11
aReaction conditions: 1 (0.25mmol), AgNP@CeO2-D (Ag:
6mol%), THF (5mL), base (1mmol), H2 (6 atm), 110 °C.
bDetermined by GC using an internal standard. cH2 (30 atm),
60 °C. dAgNP/CeO2 (Ag: 6mol%) was used in place of
AgNP@CeO2-D.

Table 2. Chemoselective hydrogenations of unsaturated alde-
hydes using AgNP@CeO2-D with Cs2CO3

a

Entry Product t /h Conv./%b Sel./%b

1 >99 >99 (92)

2c >99 >99

3 >99 93

4 >99 >99

5 >99 >99 (96)

6d >99 98

7d 98 96 (91)

8d 97 95

9d 98 97

10d >99 97

11d >99 95

12 >99 97

13e >99 >99 (94)

14 >99 98

15 >99 >99 (93)

16d >99 96

17e >99 >99
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aReaction conditions: Substrate (0.25mmol), AgNP@CeO2-D
(Ag: 6mol%), THF (5mL), Cs2CO3 (1mmol), H2 (6 atm),
110 °C. bDetermined by GC using an internal standard. Values
in parentheses are isolated yields. For the isolation experiments,
the reactions were carried out under the following conditions.
Substrate (10mmol), AgNP@CeO2-D (Ag: 6mol%), THF
(25mL), Cs2CO3 (5mmol). c2nd reuse. dH2 (15 atm), 60 °C.
eAgNPs@CeO2-D (Ag: 3mol%), H2 (15 atm), 150 °C.
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Furthermore, the AgNP@CeO2-D catalyst was separable and
reusable without loss of efficiency.
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