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Abstract
Friedel–Crafts (FC) acylation reactions were exploited in the preparation of ketone-functionalized aromatics. Environmentally more

friendly, solvent-free mechanochemical reaction conditions of this industrially important reaction were developed. Reaction param-

eters such as FC catalyst, time, ratio of reagents and milling support were studied to establish the optimal reaction conditions. The

scope of the reaction was explored by employment of different aromatic hydrocarbons in conjunction with anhydrides and acyl-

ation reagents. It was shown that certain FC-reactive aromatics could be effectively functionalized by FC acylations carried out

under ball-milling conditions without the presence of a solvent. The reaction mechanism was studied by in situ Raman and ex situ

IR spectroscopy.
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Introduction
The Friedel–Crafts reaction (FCR) is a very powerful tool in

organic chemistry for the synthesis of aromatic ketones. It is of

great industrial importance and widely used in fine chemicals

production [1,2]. In recent years, public awareness of the nega-

tive impact of chemical processes on the environment insti-

gates chemists to improve processes by the reduction of waste

material, energy consumption and reagents (materials). In this

respect, carrying out FCR at room temperature without the use

of solvents, which are usually highly toxic (halogenated hydro-

carbons) will improve the eco-friendliness of the process. Until

now, FCRs have been rarely applied to organic functionaliza-

tions which are carried out in solid state by mortar and pestle

[3-5]. We are aware of only a few examples of FCRs employ-

ing manual grinding: reserpine acylation with AlCl3 [6] and

acylation reaction of aromatics [7]. One of the reasons for this

scarcity is the hygroscopic nature of the aluminum trichloride

catalyst [8-12] when exposed to air humidity. This problem

could be easily avoided by conducting the reaction in a closed

vessel, by the aid of automated ball milling, which became a

very effective synthetic method in recent time [13-18]. The first

account on mechanochemical FC alkylation by Borchardt [19]

demonstrates the utility of the mechanochemical method in the
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synthesis of covalent triazine frameworks. Herein, we report

related results on solvent-free FC acylation reactions conducted

in a ball mill, which is the continuation of our program in

organic mechanosynthesis [20-24].

Results and Discussion
Mechanochemical FCR of pyrene (1) and phthalic anhydride (2)

producing 1-(o-carboxybenzoyl)pyrene (3) was selected for the

optimization of reaction conditions since all reagents and cata-

lyst are solids (Scheme 1, Table 1) [25]. In solution, this reac-

tion is facile and the product could be obtained in quantitative

yield (Table 1, entry 15). The results on optimization of reac-

tion conditions in the ball mill indicate that FC acylation could

be effectively carried out mechanochemically. The best

mechanochemical reaction conditions (Table 1, entry 4): 2 h,

equimolar amount of phthalic anhydride and 2.5 equivalents of

AlCl3, afforded product 3 in high yield (79%). Identical yields

were obtained by the change of reaction time to 1 h and alterna-

tive work-up procedures (Table 1, entries 1 and 4). When the

catalyst amount was decreased to one equivalent, a significant

decrease of yield was attained (Table 1, entry 2). Addition of

various grinding additives to improve mass transfer and prevent

pasting of the reaction mixture [26-28] (Table 1, entries 5–8)

was detrimental to reaction yields. The addition of a small

amount of solvents which was reported to facilitate several ball

milling reactions (liquid assisted grinding, LAG) [29-32], also

decreased yields (Table 1, entries 9 and 10). The reaction

carried out in a planetary mill (Table 1, entry 11) afforded

yields comparable to the MM400 vibrational mill. We have also

performed screening of efficacy of various Lewis acid catalysts

[33-38] (Table 1, entries 18–23), which did not lead to forma-

tion of products.

Scheme 1: FCR of pyrene and phthalic anhydride.

Experiments collected in Table 1 demonstrate that a FC acyl-

ation reaction could be effectively carried out under ball-milling

conditions at room temperature without the use of solvent. This

reaction could be easily scaled up from 94 to 500 mg of pyrene

without the decrease in yield (Table 1, entry 24) [41,42]. To in-

vestigate the scope of the reaction, several acylation reagents

were employed in conjunction with pyrene (Scheme 2) and a

Table 1: Reaction of pyrene with phthalic anhydridea.

Entry Conditions Work-upb Yield (%)c

1 1 h B 78
2 1 h, ratio 1:1:1 A 44
3 1 h A 76
4 2 h A 79
5 1 h, silicagel 1 g A n.r.
6 1 h, dry silicagel 0.5 g A 42
7 1 h, dry NaCl 0.5 g A 37
8 1 h, dry Na2SO4 0.5 g A 43
9 1 h, LAG dry DCM A 51
10 1 h, LAG dry THF A 16
11 1 h, planetary milld A 79
12 1 h, teflon jar A 71
13 3 h, reflux, dry DCM B 94 [39]
14 1 h, reflux, dry DCM B 98
15 1 h, reflux, dry DCM A 83
16 1 h, rt, dry DCM A 99
17 10 min, melt, 180 °C,

dry NaCl
C [40] n.r.e

18 1 h, FeCl3 A n.r.
19 1 h, ZnCl2 A n.r.
20 1 h, ZnI2 A n.r.
21 1 h, ZnBr2 A n.r.
22 1 h, CuBr2 A n.r.
23 1 h, CuCl2 A n.r.
24 3 h, scale-up A 73f

aRetsch MM400 ball mill, 16 mL stainless steel vial, 1 × 12 mm stain-
less steel ball, 30 Hz, substrate/anhydride/AlCl3 ratio 1:1:2.5; bWork-up
A: mixture suspended in H2O, pH adjusted with conc. HCl, chromatog-
raphy; work-up B: identical to work-up A, but recrystallisation from
AcOH instead of chromatography; work-up C: suspended in aq oxalic
acid, extracted with DCM, chromatography; cisolated yields; dRetsch
planetary ball mill PM-200, 500 rpm, 25 mL stainless steel vial,
30 × 3 mm steel balls; emelted in open flask; fscaled up to 500 mg of
pyrene.

variety of aromatic substrates was subjected to FC acylation

(Scheme 3).

Acylation reagents shown in Scheme 2 were less reactive in

comparison to phthalic anhydride. Benzoic anhydride was used

as a substitute for benzoyl chloride and the reaction proceeded

in better yield. The observed disparity in reactivity might be as-

sociated with the difference in the physical state of the reagents.

Furthermore, succinic anhydride poorly reacted with pyrene,

but the reaction proceeds well with the more reactive biphenyl

(69%, see Supporting Information File 1). Di-tert-butyl dicar-

bonate and 4-nitrobenzoyl chloride were unreactive under ball-

milling conditions. Similary unreactive was 4-nitrophthalic an-

hydride, which only in forced conditions (by melting at 200 °C)

reacted sluggishly with pyrene affording mixture of regioiso-

meric products 6 and 7. The advantage of the employment of
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Scheme 2: Scope of acylation reagents in FCR under mechanochemical activation conditions and comparison with other reaction conditions (isolat-
ed yields); aconversion from NMR analysis; bsolution reaction in flask, substrate/acylation reagent/AlCl3 ratio is 1:1:2.5; ball-milling details are given in
Table 1.

Scheme 3: Scope of aromatic substrates in FCR under mechanochemical activation conditions. aIsolated yields.
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Scheme 4: Mechanochemical regiodirected FCR of anthracene dimer and succinic anhydride.

mechanochemical conditions is evidenced by solid state milling

of pyrene with succinic anhydride which showed remarkably

better performance than the reaction carried out in solution

(40% vs 6% yield).

The screening of substrates showed disparate reactivities,

ranging from quantitative to low (Scheme 3). Most rewarding

are reactions of toluene, o-xylene, naphthalene and tetralin.

Interestingly, ball milling of 4-ethylanisole provided phenol 12,

in which acylation was accompanied with the cleavage of the

methoxy group [43-45]. A striking advantage of the automated

ball milling over manual grinding [46] is evident in the reaction

of anthracene with phthalic anhydride which gave no product

by manual grinding and the yield of the toluene reaction is in-

creased from 68% to 92%.

When anthracene was subjected to a milling reaction with

succinic anhydride, 9-substituted product 22 was obtained in

low yield, and accompanied with a small amount of 2-acylated

product 23 (Scheme 4), with same regioselectivity to that re-

ported in the literature [47,48]. FC acylation at the 2-position of

anthracene was achieved by Levy by the employment of 9,10-

dihydroanthracene and subsequent oxidation to anthracene. To

direct the acylation towards the 2-position, we devised the use

of anthracene photodimer 19 [49] for the protection of 9,10-po-

sitions. The photodimer would act as 9,10-dihydroanthracene,

and 2-acylated product should be regioselectively formed,

which could be converted by thermal retrocyclization via flash

vacuum pyrolysis (FVP) [50,51] to 23. However, ball milling of

19 with 20 provided 95% conversion of 19 to anthracene, with a

small amount (<5%) of 22. This result indicates that rapid

[4π – 4π] cycloreversion of 19 takes place, even in solid state

ball-milling conditions at room temperature. Produced

anthracene then subsequently participates in FCR. In control

reaction of milling of photodimer 19 itself for 1 h was con-

verted to anthracene in 95% yield. This [4π + 4π] cyclorever-

sion in mechanochemical conditions is analogous to previously

described dissociation of labile anthracene/C60 cycloadduct

[52]. When the reaction of 19 with 20 was carried out in solu-

tion (DCM, overnight), 60% of dimer was converted to

anthracene, and traces of FC product 22 were observed. Further

attempts were made to lower the reaction temperature by

cryomilling [53] (reaction vessel was cooled down by dipping

into liquid nitrogen every 3–5 min, and ball milled for 30 min in

total). This procedure partially suppressed cycloreversion and

led to the mixture of 19 and 18 (3:2 ratio), accompanied with a

small amount of 22.

As a substitute for dianthracene 19, thermally more stable sub-

strate, anthracene-N-methyl maleimide adduct 25 [54] was pre-

pared by Diels–Alder reaction under high pressure conditions as

well as by microwave-assisted reaction and mechanochemi-

cally (Scheme 5). In this molecule, N-methylmaleimide could

be used as protection of the 9,10-positions of anthracene and

then removed by FVP. We thought that the maleimide moiety

will not be affected in the FC acylation, since the precedencies

exist in the literature on imide moiety withstanding the FC reac-

tion [55,56]. However, mechanochemical reaction of 25 with

succinic anhydride and 2.5 equiv of AlCl3 showed no reaction

and the increase of the excess of catalyst to 5 equiv gave a very

complex mixture.

Phthaloyl chloride was applied in mechanochemical FCR with

the goal of obtaining a double reaction leading to the anthra-

quinone core in a single reaction pot in solid state [57,58].

Indeed, milling of p-xylene, AlCl3 and phthaloyl chloride led to

the formation of a mixture of 10 and intramolecular FC product

29 [59] in a 1:3 ratio (Scheme 6). The ratio of 1,4-dimethylan-
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Scheme 5: Regioselectivity direction by protection of 9,10-anthracene ring positions.

Scheme 6: Double FCR of phthaloyl chloride and aromatics.

thraquinone (29) did not increase in the presence of 5 equiva-

lents of AlCl3. Formation and ratio of these two products could

be conveniently established by 1H NMR analysis, due to a

difference in the symmetry of products: there are two methyl

signals for 10 and a single methyl line at δ 2.81 ppm in the case

of 29. Pyrene and naphthalene were less reactive under the

same ball milling conditions and reactions stopped at the stage

of formation of product 3 and 15. One-step preparation of

quinone 30 [39], was achieved by melting reactants at 140 °C

for 10 min. Under these conditions, a mixture of adducts 3 and

30 (1.5:1 ratio) was obtained. The product ratio was established

by 1H NMR analysis of the characteristic H-10 proton signal of

product 3 (peak resonance doublet at δ 9.2 ppm), which is

shifted towards lower magnetic field in quinone 30 (δ 10.0

ppm), and concurrent appearance of singlet for H-3 at δ 9.1

ppm. These experiments demonstrate that quinones could be

prepared by simple one-pot FC protocols in the case of reactive

aromatics.

In situ Raman spectroscopy [60] was applied to study mecha-

nistic aspects of the solid state reaction of phthalic anhydride

with p-xylene. Raman spectra were simulated and positions of

signals for transient reactive intermediates were predicted by

density functional theory method B3LYP/6-31G* (Supporting

Information File 1) [61]. The stretching of the +C≡O bond of

the acylium ion was predicted to be at about 2300 cm−1. Raman

spectroscopy revealed that the complexation of phthalic an-

hydride with AlCl3 is rapid, and within 3 minutes of milling all

anhydride is consumed (Figure 1). After 3 minutes of milling,

high fluorescence prevents further following of the reaction

progress. These spectra indicate that rapid complexation of an-

hydride with AlCl3 takes place, whereas the formation of the

acylium ion intermediate could not be unequivocally verified.

Similar conclusions could be drawn from ex situ IR spectrosco-

py [62] which indicates rapid complexation and disappearance

of phthalic anhydride (Supporting Information File 1, Figures

S43 and S44). A further study was carried on complexation of

phthalic anhydride with AlCl3 (Supporting Information File 1,

Figure S45). Although there are weak signals at 2300 and

3050 cm−1 which could be associated with the acylium ion and

the intermediate cation, the raise of intensities of these signals

over the time is quite unlikely to come from reactive species

(time needed to transfer sample from ball mill to IR spectropho-

tometer and acquire spectra are within several minutes, which

could be detrimental to reactive species to survive in the open

air). These signals are not visible after the standard acidic work-

up and further study would require the use of in situ IR spec-

troscopy in solution [63].
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Figure 1: In situ Raman monitoring of reaction of phthalic anhydride with p-xylene.

Conclusion
In conclusion, the experimental results demonstrate that

Friedel–Crafts acylations could be effectively carried out under

solid state ball-milling conditions. The reaction takes place by

the initial complexation of the carbonyl group of the acylation

reagent with aluminium trichloride.

Supporting Information
Supporting Information File 1
Details of experimental procedures, spectroscopic

characterization data of compounds and computational

procedures.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-15-130-S1.pdf]

Acknowledgements
We acknowledge the financial support of the Ministry of

Science, Education and Sport of Croatia (Project No. 098-

0982933-2920).

ORCID® iDs
Anamarija Briš - https://orcid.org/0000-0002-2718-3711
Davor Margetić - https://orcid.org/0000-0002-1039-6569

References
1. Olah, G. A.; Reddy, V. P.; Prakash, G. K. S. Friedel-Crafts Reactions.

Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: New York,
2000. doi:10.1002/0471238961.0618090515120108.a01

2. Sartori, G.; Maggi, R. Advances in Friedel-Crafts Acylation Reactions:
Catalytic and Green Processes; CRC Press: Boca Raton, FL, U.S.A.,
2009. doi:10.1201/9781420067934

3. Toda, F., Ed. Organic Solid-State Reactions; Topics in Current
Chemistry, Vol. 254; Springer: Heidelberg, Germany, 2005.
doi:10.1007/b98357

4. Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025–1074.
doi:10.1021/cr940089p

5. Tanaka, K. Solvent-free Organic Synthesis; Wiley-VCH: Weinheim,
Germany, 2003. doi:10.1002/3527601821

6. Begum, S.; Zehra, S. Q.; Siddiqui, B. S. Synth. Commun. 2006, 36,
3203–3224. doi:10.1080/00397910600908900

7. Matlack, A. Introduction to Green Chemistry; CRC Press: Boca Raton,
2010; pp 219 ff.

8. Pivsa-Art, S.; Okuro, K.; Miura, M.; Murata, S.; Nomura, M.
J. Chem. Soc., Perkin Trans. 1 1994, 1703–1707.
doi:10.1039/p19940001703
AlCl3 is the most common Lewis acid employed in FCR. Other LA
catalysts were applied in solution reactions. See this reference for:
InCl3, SbCl5, TiCl4, FeCl3, SnCl4, ZnCl2.

9. Garkhedkar, A. M.; Senadi, G. C.; Wang, J.-J. Org. Lett. 2017, 19,
488–491. doi:10.1021/acs.orglett.6b03642
See for ZnBr2.

10. Makarov, A. S.; Kekhvaeva, A. E.; Hall, C. J. J.; Price, D. R.;
Trushkov, I. V.; Uchuskin, M. G. Tetrahedron 2017, 73, 7042–7053.
doi:10.1016/j.tet.2017.10.054
See for CuBr2.

11. Ichikawa, K.; Chano, K.; Inoue, M.; Sugita, T. Bull. Chem. Soc. Jpn.
1982, 55, 3039–3040. doi:10.1246/bcsj.55.3039
See for CuCl2.

12. Peng, C.; Zhang, J.; Xue, J.; Li, S.; Wang, X.-N.; Chang, J.
J. Org. Chem. 2018, 83, 9256–9266. doi:10.1021/acs.joc.8b01255
See for ZnI2.

https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-15-130-S1.pdf
https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-15-130-S1.pdf
https://orcid.org/0000-0002-2718-3711
https://orcid.org/0000-0002-1039-6569
https://doi.org/10.1002%2F0471238961.0618090515120108.a01
https://doi.org/10.1201%2F9781420067934
https://doi.org/10.1007%2Fb98357
https://doi.org/10.1021%2Fcr940089p
https://doi.org/10.1002%2F3527601821
https://doi.org/10.1080%2F00397910600908900
https://doi.org/10.1039%2Fp19940001703
https://doi.org/10.1021%2Facs.orglett.6b03642
https://doi.org/10.1016%2Fj.tet.2017.10.054
https://doi.org/10.1246%2Fbcsj.55.3039
https://doi.org/10.1021%2Facs.joc.8b01255


Beilstein J. Org. Chem. 2019, 15, 1313–1320.

1319

13. Ball Milling Towards Green Synthesis: Applications, Projects,
Challenges; Stolle, A.; Ranu, B., Eds.; RSC Green Chemistry, Vol. 31;
Royal Society of Chemistry: Cambridge, UK, 2015.
doi:10.1039/9781782621980

14. Wang, G.-W. Chem. Soc. Rev. 2013, 42, 7668–7700.
doi:10.1039/c3cs35526h

15. Stolle, A.; Szuppa, T.; Leonhardt, S. E. S.; Ondruschka, B.
Chem. Soc. Rev. 2011, 40, 2317–2329. doi:10.1039/c0cs00195c

16. James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.;
Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.;
Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.;
Waddell, D. C. Chem. Soc. Rev. 2012, 41, 413–447.
doi:10.1039/c1cs15171a

17. Kaupp, G. CrystEngComm 2009, 11, 388–403. doi:10.1039/b810822f
18. Margetić, D.; Štrukil, V. Practical Considerations in Mechanochemical

Organic Synthesis; Mechanochemical Organic Synthesis; Elsevier:
Amsterdam, Netherlands, 2016; pp 1–54.
doi:10.1016/b978-0-12-802184-2.00001-7

19. Troschke, E.; Grätz, S.; Lübken, T.; Borchardt, L.
Angew. Chem., Int. Ed. 2017, 56, 6859–6863.
doi:10.1002/anie.201702303

20. Briš, A.; Đud, M.; Margetić, D. Beilstein J. Org. Chem. 2017, 13,
1745–1752. doi:10.3762/bjoc.13.169

21. Glasovac, Z.; Trošelj, P.; Jušinski, I.; Margetić, D.; Eckert-Maksić, M.
Synlett 2013, 24, 2540–2544. doi:10.1055/s-0033-1339876

22. Štrukil, V.; Sajko, I. Chem. Commun. 2017, 53, 9101–9104.
doi:10.1039/c7cc03510a

23. Portada, T.; Margetić, D.; Štrukil, V. Molecules 2018, 23, No. 3163.
doi:10.3390/molecules23123163

24.Đud, M.; Margetić, D. Int. J. Org. Chem. 2017, 7, 140–144.
doi:10.4236/ijoc.2017.72011

25. Caution: Aluminium trichloride dust is very irritant and corrosive and
reacts violently with water. For its handling appropriate protection
measures should be implemented (Supporting Information File 1).

26. Howard, J. L.; Sagatov, Y.; Browne, D. L. Tetrahedron 2018, 74,
3118–3123. doi:10.1016/j.tet.2017.11.066

27. Yu, J.; Hong, Z.; Yang, X.; Jiang, Y.; Jiang, Z.; Su, W.
Beilstein J. Org. Chem. 2018, 14, 786–795. doi:10.3762/bjoc.14.66

28. Su, W.; Yu, J.; Li, Z.; Jiang, Z. J. Org. Chem. 2011, 76, 9144–9150.
doi:10.1021/jo2015533

29. Friščić, T.; Trask, A. V.; Jones, W.; Motherwell, W. D. S.
Angew. Chem., Int. Ed. 2006, 45, 7546–7550.
doi:10.1002/anie.200603235

30. Denlinger, K. L.; Ortiz-Trankina, L.; Carr, P.; Benson, K.;
Waddell, D. C.; Mack, J. Beilstein J. Org. Chem. 2018, 14, 688–696.
doi:10.3762/bjoc.14.57

31. Gonnet, L.; Tintillier, T.; Venturini, N.; Konnert, L.; Hernandez, J.-F.;
Lamaty, F.; Laconde, G.; Martinez, J.; Colacino, E.
ACS Sustainable Chem. Eng. 2017, 5, 2936–2941.
doi:10.1021/acssuschemeng.6b02439

32. Howard, J. L.; Brand, M. C.; Browne, D. L. Angew. Chem., Int. Ed.
2018, 57, 16104–16108. doi:10.1002/anie.201810141

33. Liu, M.; Wu, L. Faming Zhuanli Shenqing 106905136, Jun 30, 2017.
See for FeCl3 employed in FCR acylations with phthalic anhydride in
solution.

34. Clar, E. Chem. Ber. 1948, 81, 169–175.
doi:10.1002/cber.19480810215
See for ZnCl2 employed in FCR acylations with phthalic anhydride in
solution.

35. Kehoe, T. D.; Sabnis, R. W.; Balchunis, R. J. Oral care compositions
with color changing indicator. PCT Int. Appl. WO2006105260, Oct 5,
2006.
Chem. Abstr. 2006, 145, 397365. See for ZnCl2 employed in FCR
acylations with phthalic anhydride in solution.

36. Nakamura, H.; Tanaka, N.; Matsuhashi, H. J. Jpn. Pet. Inst. 2010, 53,
276–282. doi:10.1627/jpi.53.276
See for sulfated ZrO2 employed in FC acylations with phthalic
anhydride in solution.

37. Madje, B. R.; Shelke, K. F.; Sapkal, S. B.; Kakade, G. K.;
Shingare, M. S. Green Chem. Lett. Rev. 2010, 3, 269–273.
doi:10.1080/17518251003776877
See for sulfated ZrO2 employed in FCR acylations with phthalic
anhydride in solution.

38. Maeimi, H.; Brojerdi, S. S. Polycyclic Aromat. Compd. 2014, 34,
504–517. doi:10.1080/10406638.2014.910238
See for SiO2/sulfuric acid employed in FCR acylations with phthalic
anhydride in solution.

39. Casas-Solvas, J. M.; Mooibroek, T. J.; Sandramurthy, S.;
Howgego, J. D.; Davis, A. P. Synlett 2014, 25, 2591–2594.
doi:10.1055/s-0034-1379026

40. Arcamone, F.; Bernardi, L.; Patelli, B.; Giardino, P.; Di Marco, A.;
Casazza, A. M.; Soranzo, C.; Pratesi, G. Experientia 1978, 34,
1255–1257. doi:10.1007/bf01981401

41. Andersen, J.; Mack, J. Green Chem. 2018, 20, 1435–1443.
doi:10.1039/c7gc03797j

42. Kaupp, G.; Funk, B.; Benz, H. U.; Heupel, A.; Zoz, H. Conference
paper APMA-2017. The 4th International Conference on Powder
Metallurgy in Asia, Hsinchu, Taiwan, April 9–11, 2017.

43. Sato, H.; Dan, T.; Onuma, E.; Tanaka, H.; Aoki, B.; Koga, H.
Chem. Pharm. Bull. 1991, 39, 1760–1772. doi:10.1248/cpb.39.1760
Methyl ether cleavage is a common process in Friedel–Crafts reactions
with AlCl3, when acylation occurs at the ortho-position. See also
references [40,44,45].

44. Sato, H.; Kuromaru, K.; Ishizawa, T.; Aoki, B.; Koga, H.
Chem. Pharm. Bull. 1992, 40, 2597–2601. doi:10.1248/cpb.40.2597

45. Saha, K.; Lajis, N. H.; Abas, F.; Naji, N. A.; Hamzah, A. S.; Shaari, K.
Aust. J. Chem. 2008, 61, 821–825. doi:10.1071/ch08084

46. Ghiaci, M.; Asghari, J. Synth. Commun. 1998, 28, 2213–2220.
doi:10.1080/00397919808007036

47. Wiznycia, A. V.; Desper, J.; Levy, C. J. Dalton Trans. 2007,
1520–1527. doi:10.1039/b700001d

48. Schoental, R. J. Chem. Soc. 1952, 4403–4406.
doi:10.1039/jr9520004403

49. Breton, G. W.; Vang, X. J. Chem. Educ. 1998, 75, 81–82.
doi:10.1021/ed075p81

50. Margetić, D.; Butler, D. N.; Warrener, R. N.; Murata, Y. Tetrahedron
2011, 67, 1580–1588. doi:10.1016/j.tet.2010.12.032

51. Margetić, D.; Butler, D. N.; Warrener, R. N. Synlett 2013, 24,
2609–2613. doi:10.1055/s-0033-1339879

52. Murata, Y.; Kato, N.; Fujiwara, K.; Komatsu, K. J. Org. Chem. 1999, 64,
3483–3488. doi:10.1021/jo990013z

53. Waddell, D. C.; Mack, J. Green Chem. 2009, 11, 79–82.
doi:10.1039/b810714a

54. Alibert, S.; Santelli-Rouvier, C.; Castaing, M.; Berthelot, M.;
Spengler, G.; Molnar, J.; Barbe, J. Eur. J. Med. Chem. 2003, 38,
253–263. doi:10.1016/s0223-5234(03)00018-7

55. Reifenrath, W. G.; Bertelli, D. J.; Micklus, M. J.; Fries, D. S.
Tetrahedron Lett. 1976, 17, 1959–1962.
doi:10.1016/s0040-4039(00)78089-0

https://doi.org/10.1039%2F9781782621980
https://doi.org/10.1039%2Fc3cs35526h
https://doi.org/10.1039%2Fc0cs00195c
https://doi.org/10.1039%2Fc1cs15171a
https://doi.org/10.1039%2Fb810822f
https://doi.org/10.1016%2Fb978-0-12-802184-2.00001-7
https://doi.org/10.1002%2Fanie.201702303
https://doi.org/10.3762%2Fbjoc.13.169
https://doi.org/10.1055%2Fs-0033-1339876
https://doi.org/10.1039%2Fc7cc03510a
https://doi.org/10.3390%2Fmolecules23123163
https://doi.org/10.4236%2Fijoc.2017.72011
https://doi.org/10.1016%2Fj.tet.2017.11.066
https://doi.org/10.3762%2Fbjoc.14.66
https://doi.org/10.1021%2Fjo2015533
https://doi.org/10.1002%2Fanie.200603235
https://doi.org/10.3762%2Fbjoc.14.57
https://doi.org/10.1021%2Facssuschemeng.6b02439
https://doi.org/10.1002%2Fanie.201810141
https://doi.org/10.1002%2Fcber.19480810215
https://doi.org/10.1627%2Fjpi.53.276
https://doi.org/10.1080%2F17518251003776877
https://doi.org/10.1080%2F10406638.2014.910238
https://doi.org/10.1055%2Fs-0034-1379026
https://doi.org/10.1007%2Fbf01981401
https://doi.org/10.1039%2Fc7gc03797j
https://doi.org/10.1248%2Fcpb.39.1760
https://doi.org/10.1248%2Fcpb.40.2597
https://doi.org/10.1071%2Fch08084
https://doi.org/10.1080%2F00397919808007036
https://doi.org/10.1039%2Fb700001d
https://doi.org/10.1039%2Fjr9520004403
https://doi.org/10.1021%2Fed075p81
https://doi.org/10.1016%2Fj.tet.2010.12.032
https://doi.org/10.1055%2Fs-0033-1339879
https://doi.org/10.1021%2Fjo990013z
https://doi.org/10.1039%2Fb810714a
https://doi.org/10.1016%2Fs0223-5234%2803%2900018-7
https://doi.org/10.1016%2Fs0040-4039%2800%2978089-0


Beilstein J. Org. Chem. 2019, 15, 1313–1320.

1320

56. Xu, Q.; Wang, G.; Wang, X.; Wu, T.; Pan, X.; Chan, A. S. C.;
Yang, T.-K. Tetrahedron: Asymmetry 2000, 11, 2309–2314.
doi:10.1016/s0957-4166(00)00193-2

57. Reference [2], p. 43: Product 29 was also prepared by double acylation
reaction of p-xylene with phthalic anhydride or with phthaloyl chloride
using TfOH.

58. Sartori, G.; Casnati, G.; Bigi, F.; Foglio, F. Gazz. Chim. Ital. 1990, 120,
13–19.

59. Rosenfeld, S.; VanDyke, S. J. Chem. Educ. 1991, 68, 691–692.
doi:10.1021/ed068p691

60. Gracin, D.; Štrukil, V.; Friščić, T.; Halasz, I.; Užarević, K.
Angew. Chem., Int. Ed. 2014, 53, 6193–6197.
doi:10.1002/anie.201402334

61. Comparison of signals obtained experimentally was performed with
Raman spectra calculated at the B3LYP/6-31G* level and corrected by
scaling factor of 0.9614.

62.Đud, M.; Glasovac, Z.; Margetić, D. Tetrahedron 2019, 75, 109–115.
doi:10.1016/j.tet.2018.11.038

63. Huang, Z.; Jin, L.; Han, H.; Lei, A. Org. Biomol. Chem. 2013, 11,
1810–1814. doi:10.1039/c3ob27094g
Further study would require in situ IR spectroscopy in solution. See for
details.

License and Terms
This is an Open Access article under the terms of the

Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0). Please note

that the reuse, redistribution and reproduction in particular

requires that the authors and source are credited.

The license is subject to the Beilstein Journal of Organic

Chemistry terms and conditions:

(https://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one

which can be found at:

doi:10.3762/bjoc.15.130

https://doi.org/10.1016%2Fs0957-4166%2800%2900193-2
https://doi.org/10.1021%2Fed068p691
https://doi.org/10.1002%2Fanie.201402334
https://doi.org/10.1016%2Fj.tet.2018.11.038
https://doi.org/10.1039%2Fc3ob27094g
http://creativecommons.org/licenses/by/4.0
https://www.beilstein-journals.org/bjoc
https://doi.org/10.3762%2Fbjoc.15.130

	Abstract
	Introduction
	Results and Discussion
	Conclusion
	Supporting Information
	Acknowledgements
	ORCID iDs
	References

