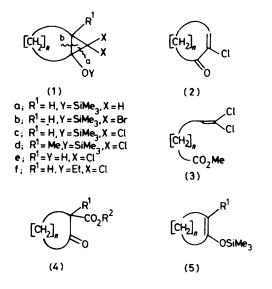
View Article Online / Journal Homepage / Table of Contents for this issue


Synthesis of α-Alkoxycarbonylcycloalkanones by Electrolysis of 1-Trimethylsiloxybicyclo[n.1.0]alkanes

By Sigeru Torii,* Tsutomu Okamoto, and Naoki Ueno

(Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama, Japan 700)

Summary The α -alkoxycarbonylcycloalkanones (4) were synthesized in 39—79% yields from the (n+3), (n+3)dichloro-1-trimethylsiloxybicyclo[n.1.0]alkanes (1c; n =4, 5, and 10) by electrolysis in alcohols in the presence of iron (III) nitrate at -13 to -10 °C. 1-TRIMETHYLSILOXVBICYCLO[n.1.0]ALKANES (1a, 1b, and 1c) undergo ring cleavage reactions at bond a or b of the cyclopropane ring. The regioselectivity of the bond fission of (1a) seems to be dependent on conditions; *i.e.*, base-catalysed ring opening occurs at bond a^1 and homolytic

cleavage with iron(III) chloride at bond b.² Refluxing of (1b) in benzene for 5 h and/or allowing (1b) to stand in methanolic hydrochloric acid at room temperature gives ring homologation products (2) by fission of bond $b.^3$ In contrast, Schäfer et al. have found that anodic oxidation of (1f) affords the acyclic ω -dichlorovinylidene esters (3; n = 4, 5, and 6), preferentially.⁴ As part of our programme on development of electrosynthetic reactions, we have found a convenient method for the introduction of an alkoxycarbonyl group at the α -position of cycloalkanones, which involves a novel anodic cleavage at bond a of (1c) in the presence of iron(III) nitrate in alcohols, leading to the formation of the β -keto esters (4).⁵

A typical electrolysis procedure is as follows: a solution of (1c; n = 4; 0.45 mmol), LiClO₄.3H₂O (6.23 mmol), and $Fe(NO_3)_3.9H_2O$ (0.46 mmol) in MeOH (95 ml) was added to the anode compartment of an electrolysis cell.⁶ The cathode compartment contained a solution of LiClO₄.3H₂O (1.24 mmol) in MeOH (23 ml). The mixture was electrolysed with a constant current of 0.003 A/cm,² terminal voltage 5 V (cell voltage ca. 1.3 V vs. SCE), using platinum

TABLE. Yields of α -alkoxycarbonylcycloalkanones (4) from (1c)^a and (1d)a

-[CH ₂] _n -	α -Alkoxycarbonylcycloalkanones (4) ^b		
n	R ¹	R ² c	Yield, d 🖌
4	н	Me	72
4	н	Et	77
5	н	Me	73
5	н	Et	97
10	н	Me	39e
10	н	Et	48e
4	Me	Me	56
4	Me	Et	61

* The 1-trimethylsiloxy-(n+3), (n+3)-dichlorobicyclo[n,1,0]alkanes (1c) and (1d) were prepared as follows: 50% aqueous NaOH (1 ml) was added to a stirred mixture of (5; 1 mmol) and benzyltriethylammonium chloride (0.022 mmol) in CHCl₃ (10 ml) for 10 min at 3-4 °C. The mixture was worked up and gave (1c) and (1d) in 87-94% yield. Satisfactory analytical and spectral data were obtained for the new compounds (1c; n = 4, 5, and 10; 1d; n = 4). ^b Ref. 5. ^c R² refers to the alcohol (MeOH or EtOH) used as electrolysis solvent. ^d Based on isolated yields. isolated yields. • The low solubility of (1c; n = 10) in alcohols suppresses the formation of (4; n = 10).

electrodes (6 cm^2) at -13 to $-10 \degree \text{C}$ for 30 min. The methanolic solution in the anode compartment was concentrated and the residue was taken up in ether-benzene (1:1). The organic layer was washed with brine, dried (Na_2SO_4) , and concentrated. The residue was chromato-graphed (SiO₂, hexane-ether, 10:1) to give a 72% yield of (4; n = 4; $R^1 = H$, $R^2 = Me$). Other results are given in the Table. In contrast 1-trimethylsiloxy-6,6-dichlorobicyclo[3.1.0] hexane (1c; n = 3) afforded exclusively the corresponding ring homologation product (2; n = 3); other bicyclo[n.1.0]alkane systems (1c; n = 4, 5, and 10) were not obtained. The ester (3; n = 4) could be obtained in the electrolysis of (1c) and/or (1e)[†] under the same conditions as described for (1c), except that the iron(III) nitrate was omitted.

An important feature of the reaction is the fact that temperature has a profound effect on the yields of (4); the best results were obtained at -13 to -10 °C, yields decreasing above or below this temperature range. Higher temperatures favoured the formation of the ring homologation products (2; n = 4).

(Received, 24th November 1977; Com. 1209.)

† The alcohol (1e; n = 4) was prepared quantitatively from (1c; n = 4) by stirring in MeOH for 1.5 h at 0-5 °C: i.r. (neat) 3300 cm⁻¹ (OH); δ (CDCl₃) 2.72 (s, 1H, OH).

- ¹ J. M. Conia and C. Girard, Tetrahedron Letters, 1973, 2767.
- ² Y. Ito, S. Fujii, and T. Saegusa, *J. Org. Chem.*, 1976, **41**, 2073. ³ P. Amice, L. Blanco, and J. M. Conia, *Synthesis*, 1976, 196.

- ⁴ M. Klehr and H. J. Schäfer, Angew. Chem. Internat. Edn., 1975, 14, 247.
 ⁵ L. Ruest, G. Blourin, and P. Deslongchamps, Synth. Comm., 1976, 6, 169 and references cited therein.
 ⁶ S. Torii, H. Tanaka, and T. Okamoto, Bull. Chem. Soc. Japan, 1972, 45, 2783.