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Chirality-Economy Catalysis: Asymmetric Transfer Hydrogenation 
of Ketones by Ru-Catalysts of Minimal Stereogenicity
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Xiangyou Xing1,*
1Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 
518055, China 
2School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, 
China.

ABSTRACT: This manuscript describes the design and synthesis of Ru-catalysts that feature only single stereogenic element, yet 
this minimal chirality resource is demonstrated to be well competent for effecting high levels of stereoinduction in the asymmetric 
transfer hydrogenation over a broad range of ketone substrates, including those that are not accommodated by known catalyst 
systems. The single stereogenic center of the (1-pyridine-2-yl)methanamine) is the only point-chirality in the catalysts, which 
simplifies this catalyst system relative to existing literature protocols.  
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The Noyori asymmetric hydrogenation (AH) and 

asymmetric transfer hydrogenation (ATH) of carbonyl 
compounds into their optically enriched alcohol products serve 
as cornerstones of modern catalysis technologies, and have 
found widespread applications in both academic and industrial 
settings.1 Catalyst systems with representative structures being 
(S)-Tol-BINAP/(S,S)-DPEN-Ru and its various structural 
analogs are effective in asymmetric hydrogenation of ketones, 
and the high level of enantioface differentiation is the 
synergistic effect of three stereogenic identities (all red stars 
denoted in Figure 1A).2,3 Asymmetric transfer hydrogenation 
offers an attractive alternative to asymmetric hydrogenation, 
because it does not require hazardous hydrogen gas or a 
pressure vessel, and the hydrogen donors are environmentally 
friendly, inexpensive and easy to handle.4 In Noyori’s 
pioneering asymmetric transfer hydrogenation of aryl alkyl 
ketones by 6-arene/chiral TsDPEN-Ru (Figure 1B), the 
remarkable enantiocontrol primarily originates from the CH/ 
interaction between 6-arene and the aromatic substituent in 
ketone substrates.5 A matched combination of the two 
stereogenic centers in the chiral diamine moiety (denoted in 
red stars in Figure 1B) is necessary to obtain high 
enantioselectivities; mismatching of the two point-chirality 
centers or only one stereogenic center results in a markedly 
decrease in the enantioselectivities.6 Although there is a 
mechanistic network between asymmetric hydrogenation and 
asymmetric transfer hydrogenation,7 only a few chiral (or 
achiral but tropos) diphosphine/chiral diamine (with two 
matching point-chirality centers) derived catalyst systems have 
been developed in asymmetric transfer hydrogenation of 
ketones in good enantioselectivities.7a,8 Compared to simple 
aryl alkyl ketones that have been reduced successfully by 
asymmetric transfer hydrogenation, diaryl ketones especially 
aryl N-heteroaryl  ketones that  structurally confer significant 
pharmaceutical relevance have been a  long-term challenge in 

this field, and only a few successful examples by either ATH 
or AH have been reported.9a,10
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Figure 1. Ru-Catalysts of Minimal Stereogenicity and Simplified 
Structure in Asymmetric Transfer Hydrogenation. 

A close inspection of the relevant asymmetric transfer 
hydrogenation transition state,7c,e as illustrated in Figure 1B, 
suggests that it is the C-2 chirality (stereogenic center bound 
to the active NH2 function)  of the TsDPEN diamine ligand 
that positions closest to reacting center as well as the 
corresponding pericyclic six-membered ring, and thus has the 
strongest influence on the chirality transfer. We therefore 
hypothesized that a simple amino-pyridine ligand bearing 
merely a single chiral center might be sufficient to induce 
desired high enantioselectivities. The design is summarized in 
catalyst structure A (Figure 1C), in which the combination of 
simple, readily available (1-(pyridine-2-yl)methanamines) 
with an achiral diphosphine is envisioned to replicate the 
stereoinduction of the canonical Noyori catalysts framework. 
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It was anticipated that this concept would considerably reduce 
the costs of the catalysts and enable modular tuning of the 
catalyst system through evaluation of different combination of 
achiral phosphine/amine ligands, leading to a practical 
asymmetric transfer hydrogenation of broad scope. Herein, we 
report the design and synthesis of Ru-catalysts with minimal 
stereogenicity and simplified structure that allow for practical 
asymmetric transfer hydrogenation of a wide range of ketones 
(including both aryl alkyl and aryl N-heteroaryl ketones) using 
iPrOH as the operationally convenient hydrogen source 
(Figure 1C).
Scheme 1. Identification of the Optimal Catalyst Structure 
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Since the two structurally simplest and readily available 
achiral diphosphines are 1,2-bis(diphenylphosphanyl)benzenes 
and bis(diphenylphosphino)alkanes, a brief catalyst screening 
was conducted with 1 mol % loading of Ru-complexes (B1-
B12) formed by combining these diphosphines and (1-
(pyridine-2-yl)methanmine derivatives,10b,11 and with 2’-
chloroacetophenone as the model substrate under very mild 
transfer hydrogenation conditions (Scheme 1). The 
performances of the catalysts B1-B5 reveal that the 
enantioselectivity is improved when the branched alkyl 
substituents were incorporated into optically pure (1-(pyridine-
2-yl)methanmines: ethyl (1% ee), cyclopropyl (45% ee), 
cyclopentyl (54% ee), cyclohexyl (70% ee) and isopropyl (71% 
ee). Use of a sterically bulkier aryl substituent in the 1,2-
bis(diarylphosphanyl)benzene ligand in B6, failed to improve 

enantioselectivity as compared to that of B5; however, tuning 
the electronic properties of the aryl group with electron-
withdrawing CF3 and F substituents markedly diminished the 
chiral induction ability of the resultant catalysts B7 and B8 
(merely 5% and 4% ees, respectively). The linker length of 
bis(diphenylphosphino)alkanes in B9-B11 exerted an 
influence on the product ees with the propane moiety of B10 
giving rise to the highest enantioselectivity (91% ee). Use of 
triphenylphosphine (2 equiv) gave an active catalyst (B12), 
but the product was formed in poor ee. Examination of the X-
ray crystal structures of B10 and B12 revealed that the key 
Ru–NH2 bond length was shortened from 2.1202 Å in acyclic 
B12 to 2.0946 Å in cyclic B10, hinting on more effective 
chirality transfer in the latter that results from closer proximity 
of the ligand chirality in the pericyclic transition state (Figure 
1C). These results collectively established the catalyst B10 to 
be optimal and its potential was therefore further thoroughly 
examined.

As compiled in Table 1, the catalyst B10, even at 0.1 mol % 
catalyst loading, was shown to be capable of effecting 
asymmetric transfer hydrogenation of various aryl alkyl 
ketones with generally good isolated yields and enantiomeric 
excesses. Ortho-substitution on the aryl ring by electron 
donating substituents (Me, OMe, OEt, OBn) or electron-
withdrawing substituents (F, Cl, Br, I, CF3, NO2) are all well 
tolerated leading to 90-96% ees in alcohol products 1-11. Aryl 
ketones bearing para- or meta-substitution, including the 
strongly electron-donating dimethylamino (NMe2) in 13, were 
also reduced to their corresponding alcohols with 90% ees 
(12-15). Ketones with larger aromatic rings, such as 1- and 2-
acetonaphthone, were both smoothly hydrogenated to give 16 
and 17 in 92% ee and 91% ee, respectively. Phenyl cyclohexyl 
ketone produced 18 with an impressive 97% ee, which is 
remarkable as only very few known asymmetric transfer 
hydrogenation systems provided high enantioselectivity with 
this nearly iso-steric substrate.12 Transfer hydrogenations of 
indole/quinolone/pyrimidine methyl ketones were also 
investigated, and good enantioselectivities were obtained in 
these cases (19, 91% ee; 20, 88% ee; 21, 82% ee).

Compared to simple aryl alkyl ketones, asymmetric transfer 
hydrogenations of aryl N-heteroaryl ketones have been rarely 
reported.9a,10b Particularly for non-ortho-substituted aryl N-
heteroaryl ketones, introduction of the N-oxide was required to 
obtain high enantioselectivities.9 A variety of this heteroaryl 
substrates were examined and excellent enantioselectivities 
were obtained (Table 2). The simplest phenyl pyridinyl ketone 
was reduced to alcohol 22 in 92% yield and 91% ee. These 
results represent a significant improvement relative to the 82% 
yield and merely 7% ee documented on the same substrate 
with the well-known 6-arene/TsDPEN-Ir transfer 
hydrogenation catalyst system.9b Substrates bearing various 
pyridine ring substitution were well tolerated, with formation 
of alcohols 23-27 in good yields and enantioselectivities. 
Substrates bearing phenyl ring substitution, including at the 
ortho (28-32), para (33-38), and meta (39-40) positions, were 
all reduced in 90-97% ees. The structure of 31 was verified by 
X-ray crystallography, confirming unambiguously its absolute 
stereochemistry assignment. In the cases of 23, 34, 38, 39, 
dramatic improvements in enantioselections (90-94% ees) 
were once again accomplished as compared to literature 
results (4-15% ees).9b Finally, substrate with extended 
conjugation, i.e. naphthalene pyridinyl ketone was 
hydrogenation to the alcohol 41 in 91% ee.
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Table 1. Asymmetric Transfer Hydrogenation of Aryl Alkyl Ketones by Catalyst B10 a

Me

OH

66% yield, 90% eeb

Me

OH

94% yield, 96% ee

Me

OH

95% yield, 94% ee

Me2N

OMe OEt

Me

OH

91% yield, 90% ee

Me

OHF Cl

Me

OHBr

Me

OH

96% yield, 90% eeb

Br Me

OH

96% yield, 92% ee

Me

OH

95% yield, 91% eeb

96% yield, 93% ee

Me

OH

83% yield, 92% ee

89% yield, 92% ee

OH

72% yield, 94% eeb

Me

NO2

Me Me

OHCF3
Et

80% yield, 90% ee

Me

OH

99% yield, 93% ee

OBn

Me

OH

96% yield, 90% eea

MeO

Cl

94% yield, 93% ee

OH

95% yield, 97% ee

Me

OHI

79% yield, 95% eeb

Me

OH

N
Bn

84% yield, 91% ee

Et

OH

84% yield, 96% ee

OMe

OH

1 2 4 53

18

10 11

6 7

8 9 14

15

1312

16 17 19

N

Me

OH

76% yield, 88% eec
20

N

N

Me

OH

99% yield, 82% ee
21

Ru

N

Cl

Cl

N

P

P
Ph2

Ph2

Me
MeH2

Aryl Alkyl

O
Catalyst B10 (0.1 mol%)

tBuOK (15 mol%)

Aryl Alkyl

OH
iPrOH:CH2Cl2 = 2:1

23 oC, 2 h

B10

a General condition: ketone (0.2 mmol), catalyst B10 (0.1 mol%), tBuOK (15 mol%), iPrOH/CH2Cl2 (2:1), 23 °C, 2 h. Yields of isolated 
products are given. b 1 mol% catalyst B10 was used in order to get good conversion in 2 h. c 0.01 m% catalyst B10 was used.

Table 2. Asymmetric Transfer Hydrogenation of Aryl N-heteroaryl Ketones by Catalyst B10 a
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for the opposite enantiomers by 6-arene/TsDPEN Ir catalysts.9
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Thanks to the ligand/substrate structural similarity, the 
synthetic utility of this new catalysis protocol was further 
explored to establish a three-step preparation of a chiral (1-
(pyridine-2-yl)methanmine ligand in its enantio-pure form (> 
99% ee). As shown in Scheme 2, asymmetric transfer 
hydrogenation of cyclohexyl 2-pyridyl ketone under the above 
defined standard conditions provided (S)-configured alcohol 
42 in 76% yield and 84% ee. A single recrystallization 
furnished this intermediate in enantiomerically pure form (> 
99% ee). The subsequent stereochemical inversion was 
achieved under Mitsunobu conditions (PPh3, DIAD, 
diphenylphosphoroazidate (DPPA), and DBU) leading to the 
azide 43 in 87% yield.13 Catalytic reduction of 43 produced 
the desired cyclohexyl (1-(pyridine-2-yl)methanmine in 90% 
yield and > 99% ee. The method is more efficient and 
economic than the conventional chiral auxiliary-based 
strategy.14 

Scheme 2. A Concise Synthesis of Chiral Amine Ligand
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In summary, we have described the design and discovery of 
new Ru-catalysts in which a single element of chirality 
induces high enantioselectivity in the asymmetric transfer 
hydrogenation for a broad range of carbonyl substrates (39 
examples, > 90% ee), including substrates that are not possible 
with literature-known protocols. This work would suggest a 
strategy for catalyst design and help stimulate structural 
tailoring of some catalysts towards high levels of simplicity, 
efficiency and practicality. Ongoing research that includes 
modification of the catalysts and exploration of their extended 
application in asymmetric catalysis is in progress.
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