of the carboline nuclei 5 and 5a. Additionally we appreciate the support of Dr. Gwen Chmurny for determination of $100-\mathrm{MHz}$ NMR spectra, Richard Ware for mass spectral determinations and the Analytical Department of Pfizer Central Research for elemental analyses.

Registry No. 2a, 74311-69-6; 2a (amide), 98717-38-5; 2a•HCl, 98675-08-2; 2b, 74311-68-5; 2c, 74311-70-9; 2d (amide), 98651-75-3; 2d $\cdot \mathrm{HCl}, 98675-07-1 ;(\pm)-5,69623-07-0 ;(\pm)-5\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right.$ deriv), 98634-60-7; $(\pm)-5\left(\mathrm{CH}_{2} \mathrm{CN}\right.$ deriv), 98634-61-8; $(\pm)-5\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CN}\right.$ deriv), 77378-64-4; $(\pm)-5\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CN}\right.$ deriv), $98634-62-9 ;(\pm)-5$ $\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COPh}\right.$ deriv), 98634-63-0; (\pm)-5 $\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOEt}\right.$ deriv), 98634-64-1; $(\pm)-5\left(\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NHz}\right.$ deriv), 98651-79-7; $(\pm)-5\left(\left(\mathrm{CH}_{2}\right)_{6}\right.$ NHz deriv), 98651-80-0; $(\pm)-5\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NHz}\right.$ deriv), 98651-81-1; 5a.6a, 76700-26-0; $5 \mathrm{a} \cdot \mathrm{HCl}, 83502-36-7$; 5b-6b, $76700-24-8 ; 5 \mathrm{~b} \cdot \mathrm{HCl}$, 98818-01-0; 6a, 54896-72-9; 6b, 949-45-1; (\pm)-7, 76700-29-3; 7, 75738-79-3; 8, 98634-89-0; 9, 58038-68-9; 9 ($\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CN}$ deriv), 58039-14-8; $9\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CN}\right.$ deriv), 83535-77-7; $9\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOEt}\right.$ deriv), 98634-65-2; $9\left(\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}\right.$ deriv), $83545-87-3 ; 10 \mathrm{a} \cdot \mathrm{HCl}$, 58039-02-4; (\pm)-10b-HCl, 98634-82-3; 11a, 98634-66-3; (\pm)-11b, 98634-67-4; 12a, 98634-68-5; (\pm)-12b $\cdot \mathrm{HCl}, 77378-81-5 ;$; $13 \mathrm{~g} \cdot \mathrm{HCl}$,

98634-83-4; (\pm)-13b $\mathrm{HCl}, 98634-84-5$; (\pm)-14, 98634-59-4; (\pm)-15, 98634-70-9; (\pm)-16, 98634-71-0; 17, 98651-78-6; (\pm)-18, 98651-76-4; (\pm)-19, 98634-72-1; (\pm)-20-HCl, $98651-82-2 ; 21,98634-73-2 ; 23$ (n $=5$), 98634-74-3; (\pm)-25, 83514-71-0; (\pm)-26, 83514-73-2; 27, 98634-85-6; 28, 98634-86-7; (\pm)-29a, 83514-78-7; 29b, 98675-09-3; 30, 98634-87-8; 31, 98634-88-9; 32, 72358-71-5; 33, 98634-75-4; 33. $\mathrm{PhCH}_{2} \mathrm{Br}, 98634-77-6$; 34a $\cdot \mathrm{HCl}, ~ 98634-76-5$; 34b, 98634-79-8; $34 \mathrm{~b} \cdot \mathrm{HCl}, 98634-80-1$; 34c, $98634-81-2$; (\pm)-4- $\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$ $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}, 75738-74-8 ;(R)-4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}-d-$ ephedrine, $75738-76-0 ;(R)-4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}$, 75738-75-9; $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}, 108-86-1 ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, 62-53-3 ;(\pm)-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}-$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CO}_{2} \mathrm{H}, 552-63-6 ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NCO}, 103-71-9 ; \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{Br}$, 111-24-0; $4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}, 371-40-4 ; 4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{~F}, 460-00-4 ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}$ $\mathrm{H}_{2} \mathrm{Br}, 100-39-0 ; 4-\mathrm{C}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{~F}, 3874-54-2$; D-(+)-phenyalanine, 673-06-3; L-(-)-phenylalanine, 63-91-2; 2-(4-amino-butyl)tetrahydro- γ-carboline, 98634-69-6; 9-(β-chloroethyl)carbazole, 1140-35-8; 2-bromo- N-methylpyridinium iodide, 52693 -56-8; N-phenylcyclohexylamine, 1821-36-9; cyclohexylamine, 108-91-8; hydantoin, 461-72-3; 4-chloropyridine hydrochloride, 7379-35-3; 1-benzyl-4-[N, N-bis[(4-fluorophenyl)amino]]-2Hpyridine, 98634-78-7.

Synthesis and Antihypertensive Activity of a Series of 4-Amino-6,7-dimethoxyquinazoline Derivatives

Philippe M. Manoury,* Jean L. Binet, André P. Dumas, Françoise Lefèvre-Borg, and Icilio Cavero
Chemistry and Biology Departments, Laboratoires d'Etudes et de Recherches Synthēlabo (L.E.R.S.), 92220 Bagneux, France. Received December 3, 1984

Abstract

A series of N^{2}-[(acylamino)alkyl]-6,7-dimethoxy-2,4-qu: antagonists. When administered to spontaneously h: derivatives showed good antihypertensive activity, wh -olinediamines was synthesized as potential α_{1}-adrenoceptor ensive rats at $10 \mathrm{mg} / \mathrm{kg}$ po, a number of propanediamine is the ethanediamine derivatives, albeit being structurally more closely related to prazosin, were devoid of this property. The most active derivative, N - [3-[(4-amino-6,7-dimethoxy-2-quinazolinyl)methylamino]propyl]tetrahydro-2-furancarboxamide hydrochloride, alfuzosin (12), showed high selectivity for peripheral α_{1}-postjunctional adrenoceptors. At equiactive antihypertensive doses, its effect on the pressor response to postural changes in conscious dog was less marked than that shown by prazosin. In the light of these results, alfuzosin was selected for clinical evaluation.

Prazosin (1) may be considered as the first member of a new class of antihypertensive agents for which the main mechanism of action appears to be the competitive antagonism of α_{1}-adrenoceptors. ${ }^{1}$ The clinical efficacy of this agent ${ }^{2}$ encouraged us to search, through modifications of the structure of its side chain, a new derivative in which the blockade of α_{1}-adrenoceptors would be associated with other desirable properties for the treatment of hypertension, such as diuresis, direct vasodilation, or the lack of serious orthostatic hypotension upon the administration of the first dose as it was reported for prazosin. ${ }^{3}$ Although many derivatives of prazosin-terazosin ${ }^{4}$ (2), doxazosin ${ }^{5}$ (3), tiodazosin ${ }^{6}$ (4), bunazosin (5)-are under clinical investigation, none, to our knowledge, appears to have a structure in which the piperazine moiety has been replaced by an alkanediamine chain. In this report, we describe the
(1) Cavero, I. Life Sci. 1980, 27, 1525.
(2) Brogden, R. N.; Heel, R. C.; Speight, T. M.; Avery, G. S. Drugs 1977, 14, 163.
(3) Thien, T.; Koene, R. A. P.; Wijdeveld, P. G. A. B. Lancet 1977, 1, 363.
(4) Kyncl, J. J.; Hollinger, R. E.; Oheim, K. W.; Winn, M. Pharmacologist 1980, 22, 272.
(5) Timmermans, P. B. M. W. M.; Kwa, H. Y.; Ali, F. K.; Van Zwieten, P. A. Arch. Int. Pharmacodyn. Ther. 1980, 245, 218.
(6) (a) Schurig, J. E.; Cavanagh, R. L.; Roebel, L. E.; Buyniski, J. P. Pharmacologist 1977, 19, 213, abstr 485. (b) Buyniski, J. P.; Glick, A.; Ryan, J. R.; McMahon, F. G. Clin. Pharmacol. Ther. 1980, 27, 247.
synthesis and biological activity of some N^{2}-[(acyl-amino)alkyl]-6,7-dimethoxy-2,4-quinazolinediamines (634).

Chemistry. The compounds listed in Table I were synthesized by the routes shown in Schemes I and II. The preparation involved the condensation, in refluxing isoamyl

Scheme I

Scheme II. Method C

57

58

11-13.15-20
alcohol, of 2-chloro-4-amino-6,7-dimethoxyquinazoline ${ }^{8}$ (35) with N-acylalkanediamine (36-47) (method A). Alternatively, the coupling of 35 with N-benzylalkanediamine (48-50), followed by catalytic hydrogenation afforded 54-56, which were converted into 21-27 and 31-33 by acylation (method B, Scheme I). A number of $1,3-$ propanediamine derivatives ($\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$) were conveniently prepared by the condensation of 35 with 3 -(methylamino)propanenitrile and catalytic reduction of the intermediate 57 to provide 58 , which was finally acylated to afford $13,15,16,18-20$ (method C, Scheme II).

The starting N-acylalkanediamines were prepared by two different pathways. One route (Scheme III) used the

[^0]Scheme III. Method D

36-38, 45-47
conversion of N-benzylamino alcohols into N -benzylalkanediamines, which were acylated and then debenzylated by catalytic hydrogenation to yield 36-38 and 45-47 (method D). The N-acylpropanediamines (R_{1} or $\mathrm{R}_{2}=\mathrm{H}$) were synthesized by a different route (Scheme IV, method E), namely, by using the 3-(methylamino)propanenitrile as the starting material, which was first acylated and then reduced to provide a mixture of primary and secondary amines. The proportion of each compound depended on the catalyst, on the reduction conditions, and also on the substituent R_{3}. Hydrogenation of $3-[(N$-acyl)methylamino]propanenitrile in methanol saturated with ammonia, effected in the presence of Raney Ni, afforded only 44 when R_{3} was a cyclopentyl group and a mixture $60 / 40$

Table I. N^{2}-[(Acylamino)alkyl]-6,7-dimethoxy-2,4-quinazolinediamines

no.	n	R_{1}	R_{2}	R_{3}	formula ${ }^{\text {a }}$	meth	yield, ${ }^{\text {b }}$ \%	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { \% fall in } \\ \mathrm{BP}^{d}(10 \\ \mathrm{mg} / \mathrm{kg} \mathrm{po}) \\ \hline \end{gathered}$	
									2 h	4 h
6	2	CH_{3}	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{7}$	A	35	220	0	0
7	2	CH_{3}	CH_{3}	2 -furyl	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClN}_{5} \mathrm{O}_{4}$	A	47	262	0	0
8	3	H	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClN}_{5} \mathrm{O}_{3}$	A	51	269	-9	-7
9	3	H	CH_{3}	tetrahydro-2-furyl	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClN}_{5} \mathrm{O}_{4}$	B	75	222-223	-8	-6
10	3	CH_{3}	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Cl}$	A	67	171	-31	-23
11	3	CH_{3}	H	2 -furyl	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClN}_{5} \mathrm{O}_{4}$	C	44	194-198	-20	-17
12	3	CH_{3}	H	tetrahydro-2-furyl	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClN}_{5} \mathrm{O}_{4}$	A	53	225	-34	-24
13	3	CH_{3}	H	tetrahydro-3-furyl	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClN}_{5} \mathrm{O}_{4}$	C	83	248	-24	-10
14	3	CH_{3}	H	cyclopropyl	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{ClN}_{5} \mathrm{O}_{3}$	A	55	270	-19	-12
15	3	CH_{3}	H	cyclopentyl	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{3}$	C	28	228-232	-30	-20
16	3	CH_{3}	H	2,3,5,6-tetrahydro-2-pyranyl	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{4}$	C	76	125-128	-27	-7
17	3	CH_{3}	H	1,4-benzodioxan-2-yl	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClN}_{5} \mathrm{O}_{5}$	A	30	185	+2	-6
18	3	CH_{3}	H-	2,3-dihydro-2-benzofuranyl	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClN}_{5} \mathrm{O}_{4}$	C	53	145	-22	-19
19	3	CH_{3}	H	2-benzofuranyl	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{ClN}_{5} \mathrm{O}_{4}$	C	78	181	0	0
20	3	CH_{3}	H	cinnamyl	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClN}_{5} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	C	78	208	0	+3
21	3	CH_{3}	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{ClN}_{5} \mathrm{O}_{3}$	B	75	218-220	-23	-15
22	3	CH_{3}	CH_{3}	$3-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{3}$	B	94	163	-10	0
23	3	CH_{3}	CH_{3}	$3-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{4}$	B	90	191	-12	0
24	3	CH_{3}	CH_{3}	$3,5-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Cl}$	B	77	166	-6	-2
25	3	CH_{3}	CH_{3}	$3,4,5-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{2}$	$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{ClN}_{5} \mathrm{O}_{6}$	B	58	196	-11	-6
26	3	CH_{3}	CH_{3}	3-pyridyl	$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ClN}_{6} \mathrm{O}_{3}$	B	67	190	-5	-9
27	3	CH_{3}	CH_{3}	2 -furyl	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{ClN}_{5} \mathrm{O}_{4}$	B	78	163	-24	-20
28	3	CH_{3}	CH_{3}	tetrahydro-2-furyl	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{ClN}_{5} \mathrm{O}_{4}$	A	85	182	-14	-7
29	3	CH_{3}	CH_{3}	$2-\mathrm{CH}_{3} \mathrm{~S}$-1,3,4-oxadiazol-5-yl	$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{ClN}_{7} \mathrm{O}_{4} \mathrm{~S}$	B	84	166	-20	-6
30	3	CH_{3}	$i-\mathrm{C}_{4} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{ClN}_{5} \mathrm{O}_{3}$	A	66	206	0	+6
31	3	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{3}$	B	91	170	-16	-12
32	3	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{ClN}_{5} \mathrm{O}_{3}$	B	60	225	-1	-5
33	3	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	2 -furyl	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{4}$	B	50	166	-16	-11
34 prazosin	4	CH_{3}	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{3}$	A	89	258	-21	-12
$10 \mathrm{mg} / \mathrm{kg}$ po									-37	-35^{e}
$3 \mathrm{mg} / \mathrm{kg}$ po									-30	-25^{e}

${ }^{a}$ All compounds were identified as hydrochlorides (except 16 , which was an oxalate) and were analyzed for C, H, N. ${ }^{b}$ Yields are not optimized. ${ }^{c}$ Melting points are uncorrected. ${ }^{d}$ Antihypertensive activity in spontaneously hypertensive rats (SHR) in which the drug was given orally at $10 \mathrm{mg} / \mathrm{kg}$. ${ }^{e}$ Mean values from five independent groups studied over the screening period of the new compounds.

Table II. N-(Acylamino)alkylenediamines

no.	n	R_{1}	R_{2}	R_{3}	formula ${ }^{\text {a }}$	meth	yield, \%	mp or bp , ${ }^{\circ} \mathrm{C}(\mathrm{mmHg})$
36	2	CH_{3}	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$	D	69	135-140 (0.01)
37	2	CH_{3}	CH_{3}	2-furyl	$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$	D	75	128-132 (0.01)
38	3	H	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$	D	50	$143^{\text {b }}$
39	3	CH_{3}	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$	E	38	155்-158 (0.1)
40	3	CH_{3}	H	cyclopropyl	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$	E	72	97-100 (0.07)
41	3	CH_{3}	H	cyclopentyl	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$	E	79	115-120 (0.07)
42	3	CH_{3}	H	tetrahydro-2-furyl	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$	E	53	114-116 (0.07)
43	3	CH_{3}	H	1,4-benzodioxan-2-yl	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$	E	32	$121^{\text {c }}$
44	3	$\mathrm{H}^{\text {H }}$	CH_{3}	cyclopentyl	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$	E	20	$190^{\text {c }}$
45	3	CH_{3}	CH_{3}	tetrahydro-2-furyl	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$	D	79	122 (0.05)
46	3	CH_{3}	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$	D	80	133-135 (0.01)
47	4	CH_{3}	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$	D	80	145 (0.05)

${ }^{a}$ Compounds for which formulas are given were analyzed for $\mathrm{C}, \mathrm{H}, \mathrm{N} .{ }^{b}$ Characterized as the hydrochloride. ${ }^{c}$ Characterized as the oxalate.
of primary and secondary amines when R_{3} was a tetrahydrofuryl moiety. The same reaction in the presence of Rh / C provided only the secondary amines (39-43) in most cases. When the products were obtained as a mixture of isomers, they could be separated by column chromatography or fractional crystallization of their salts. Isomer
assignment was made on the basis of spectral and physical data. The structure was also confirmed by coupling 41 and 42 ($\mathrm{R}_{3}=$ cyclopentyl or tetrahydro-2-furyl) with 35 to afford 12 and 15 , which were identical with the products obtained by direct acylation of the structurally well-defined primary amine 58. By distillation or treatment in alkaline

Scheme IV. Method E

1

44
$+$

39-43
medium, 44 was partially converted into 41 , which seemed to be thermodynamically more stable. This conversion probably proceeded through an unstable hexahydro-1,3-pyrimidin-2-ol (Scheme IV), explaining the apparent migration of the methyl group from one nitrogen to the other.

Biological Results and Structure-Activity Relationships

A number of compounds showed good antihypertensive activity when given orally at $10 \mathrm{mg} / \mathrm{kg}$ to spontaneously hypertensive rats. The results of this primary screening test are given in Table I.

Derivatives of ethanediamine 6 and 7 , in contrast to those of 1,3-propanediamine, were completely devoid of blood pressure lowering effects. The most active compounds were those in which R_{3} was either an unsubstituted phenyl (10, 21), a furyl (27), a tetrahydrofuryl (12), or a cyclopentyl (15) ring. Derivative 34 with a butyl chain (n $=4$) was somewhat less active than the propyl analogue (21). The introduction of a methyl (22) or methoxy groups (23-25) in the aromatic ring led to inactive derivatives. A similar relationship was noted for compounds in which R_{3} was a pyridine ring (26), a benzodioxan (17), or a benzofuran (19) moiety. Replacement of the phenyl or furyl groups of 10 and 27 by 1,3,4-oxadiazolyl (29), tetrahydro3 -furyl (13), and 2-tetrahydropyranyl (16) moieties afforded compounds which were still active, but their duration of action was shorter than that of $12,15,18,21$, and 27. Secondary amides, such as 10 and 12 , were somewhat more potent than the corresponding tertiary amides 21 and 28 . In contrast, the secondary amide 11, in which R_{3} was a furyl moiety, was less potent than the corresponding tertiary amide 27. These results indicate that the furyl moiety can influence favorably the antihypertensive activity and also that the role played by R_{2} is important. The deriv-
atives in which R_{1} and R_{2} are methyl groups were much more potent than $30-33$, which bear bulkier substituents, while the secondary amines 8 and $9\left(R_{1}=H\right)$ lacked antihypertensive activity.

Discussion

At the beginning of our program on α_{1} adrenoceptor antagonists we speculated that compound 7 , directly derived from prazosin by breaking the 2,3 -carbon bond of the piperazine moiety of prazosin, would show antihypertensive properties, while its homologue 27, was not expected to be as active. Such a prediction was arrived at by comparing the distances between the two nitrogen atoms in the side chain of compounds 7, 27, and prazosin. Thus, measurements of these distances on Dreiding models shows 7 , in its extended conformation ($3.8 \AA$), to be closer to prazosin ($3.2 \AA$) than is $27(5.1 \AA$), equally in its extended conformation. Despite this apparent resemblance of 7 to prazosin, it turned out to be devoid of any activity in the SHR while 27, surprisingly, exerted strong antihypertensive effects.

Data listed in Table I also show that R_{1}, R_{2}, and R_{3} have a considerable influence on the potency of the derivatives since very slight changes of these substituents can completely abolish the blood pressure lowering effects. The fact that compounds 8 and 9 , in which R_{1} is a hydrogen atom, are inactive suggests that the presence of a tertiary amino group in position 2 of the quinazoline ring is necessary. Replacement of the methyl group in 21 and 27 by bulkier substituents (39-41) increases the values of lipophilic and steric parameters and results in compounds with poor antihypertensive activity. Comparison of the lipophilicity of some compounds in the series did not permit to unveil a correlation between this physicochemical parameter and antihypertensive activity. For instance, the most potent derivative 12 has a lipophilicity very different from that of 10 or 15 , which, however, produce a decrease in blood pressure. In contrast, the very active compound 10 has a lipophilicity close to that of 17 and 19 , both of which do not exert antihypertensive effects.
These results suggest that lipophilicity does not play a decisive role in determining the antihypertensive potency of the various compounds in our chemical series. In contrast, steric effects of R_{1} and R_{2} seem to have a more important influence since an increase in their size (30-33) might modify the conformation of the propanediamine chain and afford molecules which cannot bind strongly to the receptor. Furthermore, aromatic ring substitution (22, 23) or the replacement of phenyl in 10 and 21 by pyridine (26), benzofuran (19), and benzodioxan (17) moieties results in a reduced activity; thus, the structural requirements of R_{3} are very strict.
This dependency of the antihypertensive activity upon substituent R_{3} may appear surprising for a molecule which interacts with the α-adrenoceptors stimulated by the transmitter noradrenaline. Structurally, the 2 -aminoquinazoline portion of the described compounds seems to recall the noradrenaline molecule more than any part of the side chain, for the fitting of α-adrenoceptors. The biological results would suggest that our derivatives, like prazosin, probably have another binding site close to but different from that of noradrenaline, and this site appears to have very strict structural requirements. Comparison of the antihypertensive activity of 12 with 13 and 16-19 or of 14 with 15 indicates that the position of substitution and the size and nature of the ring are of great importance. For instance, it is surprising the absence of blood pressure lowering properties of the benzofuranyl derivative 19 while the dihydrobenzofuranyl analogue 18 is active. A regres-
sion analysis was done in our series, but it did not permit to reveal any significant correlation.

Our results also show that other differences exist with the prazosin series since, for instance, 17, an open analogue of the active doxazosin ${ }^{5} 3$, does not exert any antihypertensive effects, suggesting moderate similarities between the two series, due to the fact that opening the piperazine ring and lengthening the alkylene chain together with certain R_{3} substituents result in conformational changes which are not compatible with biological activity.

In conclusion, the antihypertensive properties of our molecules appear to strongly depend on the length of the alkanediamine chain, the size of R_{1} and R_{2}, and the nature of R_{3} substituents. Maximum activity is observed in compounds having a propyl chain between the two nitrogen atoms and in which R_{1} is a methyl group, R_{2} is a hydrogen atom or a methyl group, and R_{3} is an unsubstituted aromatic or heterocyclic alicyclic ring such as furan, tetrahydrofuran, or cyclopentane.

The most potent derivatives ($10,12,15$) as antihypertensive agents were chosen for further pharmacological evaluation. When given orally in rats at $10 \mathrm{mg} / \mathrm{kg}$ during 7 days, 10 showed, like prazosin, ${ }^{9}$ a progressive decrease in blood pressure lowering effects, indicating the development of tolerance. This drawback was not found with alfuzosin (12), which proved to be an antihypertensive agent one-third as potent as prazosin, in acute and chronic administration in rats and dogs. ${ }^{10}$ The duration of the antihypertensive effects of 12 was the same as that of prazosin when equipotent doses are studied (Table I). Alfuzosin (12) also exhibited a relatively high selectivity for peripheral α_{1}-postjunctional adrenoceptor "in vitro" and "in vivo" pharmacological tests. ${ }^{11}$ Moreover, 12, unlike prazosin ${ }^{12}$ but similarly to papaverine, was found to relax aortic strips contracted with either KCl or CaCl_{2}, a property which may be of clinical relevance. At equiactive antihypertensive doses, the inhibitory effects of 12 on the pressor response to postural changes were less marked than those shown by prazosin. In the light of these results, 12 (alfuzosin) is under clinical trials as a potential antihypertensive agent.

Experimental Section

Melting points were determined on a Büchi melting point apparatus and are uncorrected. IR spectra were taken on a Perkin-Elmer 399 spectrophotometer. NMR spectra were obtained on a Bruker WP 80 or WP 200 SY spectrometer using tetramethylsilane as internal reference. Where analyses are reported by elemental symbols, results were within $\pm 0.4 \%$ of the calculated values.
General Methods for the Preparation of \boldsymbol{N}^{2} [(Acyl-amino)alkyl]-6,7-dimethoxy-2,4-quinazolinediamines (Table I, 6-34). Condensation of 2-chloro-4-amino-6,7-dimethoxyquinazoline with amino amides, amino nitriles and diamines were achieved according the literature method. ${ }^{8}$

Method A. $\quad N$-[3-[(4-Amino-6,7-dimethoxy-2-quinazolinyl)methylamino]propyl]tetrahydro-2-furancarboxamide Hydrochloride (12). A mixture of 18.4 g (0.1 mol) of 42 and $21.5 \mathrm{~g}(0.09 \mathrm{~mol})$ of 2 -chloro- 4 -amino- 6,7 -dimethoxyquinazoline (35) ${ }^{8}$ in 250 mL of isoamyl alcohol was stirred under argon and refluxed for 12 h . After being cooled, the precipitate was filtered off and washed with isoamyl alcohol and then with
(9) Smith, R. D.; Tessman, D. K.; Kaplan, H. R. J. Pharmacol. Exp. Ther. 1981, 217, 397.
(10) Cavero, I.; Lefèvre-Borg, F.; Manoury, P. M. Br. J. Pharmacol. 1984, 81, 13P.
(11) Cavero, I.; Galzin, A. M.; Langer, S. Z.; Lefèvre-Borg, F.; Manoury, P. M.; Pimoule, C. Br. J. Pharmacol. 1984, 81, 14P.
(12) Cavero, I.; Fênard, S.; Gomeni, R.; Lefèvre, F.; Roach, A. G. Eur. J. Pharmacol. 1978, 49, 259.
ethyl ether. The filtrate was concentrated in vacuo, and the residue was triturated in acetone and filtered off. The crude solid was recrystallized from a mixture of ethyl alcohol and ethyl ether to give $25.5 \mathrm{~g}(66 \%)$ of $12, \mathrm{mp} 223^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClN}_{5} \mathrm{O}_{4}\right) \mathrm{C}$, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$.

Method B. \boldsymbol{N}-Methyl- \boldsymbol{N}-[3-[(4-amino-6,7-dimethoxy-2-quinazolinyl)methylamino]propyl]-3-methoxybenzene. carboxamide Hydrochloride (23). (a) $\boldsymbol{N}^{1}, \boldsymbol{N}^{2}$-Dimethyl-$N^{2}$-(phenylmethyl)- N^{1}-(4-amino-6,7-dimethoxy-2-quinazolinyl)-1,3-propanediamine (51). A mixture of 6 g (0.025 mol) of $35,9.7 \mathrm{~g}(0.05 \mathrm{~mol})$ of N^{1}, N^{2}-dimethyl- N^{1}-(phenyl-methyl)-1,3-propanediamine ${ }^{13}$ and 2 mL of pyridine was heated at $130^{\circ} \mathrm{C}$ for 30 min . The mixture was partitioned between aqueous NaHCO_{3} and chloroform. The extract was dried and then concentrated in vacuo. The oily residue was purified by column chromatography on alumina with chloroform-methanol (9:1) as eluent to give after recrystallization from 2-propanol 7 g (70%) of 51 , mp $128^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The derivatives $52\left(\mathrm{R}_{1}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{R}_{2}=\mathrm{CH}_{3}\right)$ and $53\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\right.$ $\mathrm{C}_{2} \mathrm{H}_{5}$) were similarly prepared from the corresponding benzylated amines 49 and 50 with yields of 73% and 68%. They did not crystallize and were used without purification for the next step.
(b) N^{1}, N^{2}-Dimethyl- N^{1}-(4-amino-6,7-dimethoxy-2-quinazolinyl)-1,3-propanediamine (54). A solution of 11.5 g (0.029 mol) of 51 in 250 mL of methanol and 17 mL of 3.4 N ethanolic HCl and 3 g of $5 \% \mathrm{Pd} / \mathrm{C}$ was hydrogenated at $80^{\circ} \mathrm{C}$ at a $280 \mathrm{psi}_{2}$ pressure until complete uptake of hydrogen. The catalyst was filtered off and washed with 70% methanol. The solvent was evaporated and the solid residue was washed twice with boiling methanol to provide $9.2 \mathrm{~g}(85 \%)$ of $54, \operatorname{mp} 240^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$. Compounds 55 (mp $262^{\circ} \mathrm{C}$) $\left(\mathrm{R}_{1}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{R}_{2}=\mathrm{CH}_{3}\right)$ and $56\left(\mathrm{mp} 270^{\circ} \mathrm{C}\right)\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{C}_{2} \mathrm{H}_{5}\right)$ were similarly obtained from 52 and 53 with yields of 86% and 78% and were identified as dihydrochlorides. Anal. $55\left(\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$. Anal. $56\left(\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(c) Acylation of 54 . A mixture of $7.5 \mathrm{~g}(0.02 \mathrm{~mol})$ of 54 in 100 mL of chloroform was treated with $2.8 \mathrm{~g}(0.07 \mathrm{~mol})$ of sodium hydroxide pellets and 60 mL of water. A solution of $3.75 \mathrm{~g}(0.022$ mol) of 3-methoxybenzenecarboxylic acid chloride in 300 mL of chloroform was added dropwise and the mixture stirred for 1 h at room temperature. Workup afforded the free base, which was converted into its hydrochloride (23) (90\%) and recrystallized from 2-propanol, mp $191^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.

Method C. N-[3-[(4-Amino-6,7-dimethoxy-2-quinazolinyl)methylamino]propyl]cyclopentanecarboxamide Hydrochloride (15). (a) 3-[(4-Amino-6,7-dimethoxy-2-quinazolinyl)methylamino]propanenitrile (57). A mixture of $14.4 \mathrm{~g}(0.06 \mathrm{~mol})$ of 35 and $10 \mathrm{~g}(0.12 \mathrm{~mol})$ of 1 -(methyl-amino)-3-propanenitrile ${ }^{14}$ in 100 mL of isoamyl alcohol was stirred and refluxed under argon for 5 h . After being cooled, the mixture was filtered off and washed several times with hot ethyl alcohol to afford $12.1 \mathrm{~g}(62 \%)$ of $57, \mathrm{mp} 270^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClN}_{5} \mathrm{O}_{2}\right)$ C, H, N.
(b) N^{1}-Methyl- N^{1}-(4-amino-6,7-dimethoxy-2-quinazolinyl)-1,3-propanediamine (58). A $5.7-\mathrm{g}(0.02 \mathrm{~mol})$ quantity of 57 was dissolved in 120 mL of 15% alcoholic ammonia and hydrogenated over Raney Ni catalyst at $70^{\circ} \mathrm{C}$ and 1000 psi H_{2} pressure. The catalyst was filtered off and the filtrate was evaporated. The residue was dissolved in dichloromethane and filtered. Evaporation of the filtrate gave an oil, which was converted into the hydrochloride in ethyl alcohol to afford $3 \mathrm{~g}(52 \%)$ of 58 recrystallized from 2-propanol, $\operatorname{mp} 270^{\circ} \mathrm{C}$. Anal. ($\mathrm{C}_{14}{ }^{-}$ $\mathrm{H}_{22} \mathrm{ClN}_{5} \mathrm{O}_{2}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(c) N-[3-[(4-Amino-6,7-dimethoxy-2-quinazolinyl)methylamino]propyl]cyclopentanecarboxamide Hydrochloride (15). A solution of $16 \mathrm{~g}(0.14 \mathrm{~mol})$ of cyclopentanecarboxylic acid in 300 mL of THF was treated with 22 g (0.14 mol) of carbonyldiimidazole and the mixture was heated with stirring at $40^{\circ} \mathrm{C}$ for 1 h . After cooling at $10^{\circ} \mathrm{C}, 29 \mathrm{~g}(0.1 \mathrm{~mol})$ of 58 was added and the mixture was refluxed for 3 h . The solvent was evaporated and the residue was partitioned between 2 N NaOH

[^1]and chloroform. Workup gave the free base, which was converted into hydrochloride salt and recrystallized from 2-propanol to give $32.1 \mathrm{~g}(75 \%)$ of $15, \mathrm{mp} 228-232{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$, N, Cl.

General Methods for the Preparation of \boldsymbol{N}-(Acyl)alkylenediamines (Table II, 36-47). Method D. N-[3-(Methylamino) propyl]- N -(2-methyl-1-propyl)benzenecarboxamide (46). A solution of $60 \mathrm{~g}(0.24 \mathrm{~mol}) \mathrm{N}$-(phenylmethyl) N -methyl-3-chloropropanamine ${ }^{15}$ and $146 \mathrm{~g}(2 \mathrm{~mol})$ of 2-methylpropanamine in 250 mL of methanol was refluxed for 3 h . The mixture was cooled and concentrated in vacuo; 5 N sodium hydroxide was added to the residue, which was extracted three times with ether and concentrated in vacuo and fractionated under reduced pressure to give 42.6 g (65%) of N^{1}-(phenylmethyl)-N^{1}-methyl- N^{2}-(2-methyl-1-propyl)propane-1,3-diamine (59), bp $128-131^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The hydrochloride of 59 was prepared in 2-propanol, mp 106 ${ }^{\circ} \mathrm{C}$.

A solution of $18.7 \mathrm{~g}(0.069 \mathrm{~mol})$ of this salt in 100 mL of chloroform was treated with a solution of sodium hydroxide (4.2 $\mathrm{g}, 0.105 \mathrm{~mol}$ of NaOH pellets in 42 mL of water). A solution of $9.8 \mathrm{~g}(0.069 \mathrm{~mol})$ of benzenecarboxylic acid chloride in 30 mL of chloroform was added dropwise and the mixture stirred for 1 h . Workup gave 23 g of the crude product, which was diluted with 250 mL of methanol and 25 mL of 2.9 N ethanolic HCl and hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}$ at $80^{\circ} \mathrm{C}$ and a 1000 psi H_{2} pressure until H_{2} uptake was completed. The catalyst was filtered off and the filtrate concentrated.

The residue was diluted with 2 N sodium hydroxide and extracted with chloroform. After washing and drying, the organic phase was concentrated in vacuo and fractionated to afford 13.8 $\mathrm{g}(80 \%)$ of N -[3-(methylamino) propyl]- N -(2-methyl-1-propyl)benzenecarboxamide (46), bp $133-135^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$, which was converted into its hydrochloride from 2-propanol, $\mathrm{mp} 136{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.

Method E. (a) Tetrahydro-N-[3-(methylamino)-propyl]-2-furancarboxamide (42). (1) Tetrahydro-N-(3-cyanopropyl)- N -methylfurancarboxamide (60). A $32.4-\mathrm{g}$ (0.3 mol) quantity of ethyl chloroformate was added dropwise at 0 ${ }^{\circ} \mathrm{C}$ to a solution of $34.8 \mathrm{~g}(0.3 \mathrm{~mol})$ of tetrahydro-2-furancarboxylic acid and 30.3 g of $\mathrm{Et}_{3} \mathrm{~N}$ in 250 mL of THF. During the addition, the temperature of the mixture was kept below $5^{\circ} \mathrm{C}$. After completion of the addition, the mixture was stirred for 15 min at $5^{\circ} \mathrm{C}$ and then a solution of $25.2 \mathrm{~g}(0.3 \mathrm{~mol})$ of 3 -(methylamino) propanenitrile in 100 mL of THF was slowly added. The mixture was stirred for 1 h and kept at room temperature overnight. The mixture was filtered off and the solvent evaporated. The residual liquid was distilled to give $41 \mathrm{~g}(75 \%)$ of $60, \mathrm{bp}$ $118-120^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2) Tetrahydro-N-[3-(methylamino)propyl]-2-furancarboxamide (42). A solution of 26.5 g (0.145 mol) of 60 in 300 mL of 10% ethanolic ammonia was hydrogenated at $80^{\circ} \mathrm{C}$ over Rh / C at $840 \mathrm{psi}_{2}$ pressure. After H_{2} uptake was completed, the mixture was cooled and the catalyst filtered off and the filtrate concentrated to afford $18.4 \mathrm{~g}(68 \%)$ of 42 : bp $120-122^{\circ} \mathrm{C}(0.07$ $\mathrm{mm})$; NMR (CDCl_{3}) $\delta 2.66(2 \mathrm{H}, \mathrm{t}), 2.45(3 \mathrm{H}, \mathrm{s}), 2.4-1.5(6 \mathrm{H}$, m), $1.5(1 \mathrm{H}, \mathrm{s})$; IR (film) $3500-3100,1665,1530 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(b) \boldsymbol{N}-[3-(Methylamino) propyl]cyclopentanecarboxamide (41) and \boldsymbol{N}-Methyl- \boldsymbol{N}-(aminopropyl)cyclopentanecarboxamide (44). (1) \boldsymbol{N}-(3-Cyanopropyl)- \boldsymbol{N}-methylcyclopentanecarboxamide (61). A solution of 53 g (0.4 mol) of cyclopentanecarboxylic acid chloride was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of $33.6 \mathrm{~g}(0.4 \mathrm{~mol})$ of 3 -(methylamino) propanenitrile and 55.8 mL of $\mathrm{Et}_{3} \mathrm{~N}$ in 100 mL of THF. The mixture was allowed to warm to room temperature and stirred for 1 h ; precipitated $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ was removed by filtration and the filtrate was evaporated to dryness and the resultant oil was distillated to afford $65.3 \mathrm{~g}(91 \%)$ of $61, \mathrm{bp} 122-124{ }^{\circ} \mathrm{C}(0.07 \mathrm{~mm})$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2) \boldsymbol{N}-[3-(Methylamino) propyl]cyclopentanecarboxamide (41) and \boldsymbol{N}-Methyl- \boldsymbol{N}-(3-aminopropyl)cyclopentanecarboxamide (44). A solution of 27 g of 61 in 150 mL of 10%
ethanol ammonia was hydrogenated at $80^{\circ} \mathrm{C}$ over Rh / C at a 840 psi H_{2} pressure. Workup yielded $21.7 \mathrm{~g}(79 \%)$ of a mixture of 41 and 44.

A $72-\mathrm{g}$ mixture of 41 and 44 was converted into the hydrochloride salt in CHCl_{3} with 83.4 mL of 4.62 N ethanol HCl . The mixture was evaporated to dryness and the residue was crystallized from 2-propanol to yield after recrystallization from 2-propanol 53 g of 41 as hydrochloride salt: $\mathrm{mp} 162-164^{\circ} \mathrm{C}$; NMR (CDCl_{3}) $\delta 6.92(1 \mathrm{H}, \mathrm{s}), 3.75(2 \mathrm{H}, 9), 2.7(2 \mathrm{H}, \mathrm{t}), 2.52(1 \mathrm{H}, \mathrm{m}), 2.45(3$ $\mathrm{H}, \mathrm{s}), 1.72(11 \mathrm{H}, \mathrm{m})$; IR (film) $3280,1640,1540 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
The 2-propanol filtrates were evaporated to dryness, and the residue was converted into free base. This base was treated with a half equimolar amount of oxalic acid in 2-propanol to give 44 recrystallized from 2-propanol as hemioxalate: $\mathrm{mp} 190^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.52(2 \mathrm{H}, \mathrm{m}), 3.07-2.97(4 \mathrm{H}, \mathrm{m}), 2.73(2 \mathrm{H}, \mathrm{m}), 1.75$ ($10 \mathrm{H}, \mathrm{m}$), 1.37 ($2 \mathrm{H}, \mathrm{s}$); IR (film) $3200-3500,1630-1640 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. When the hydrogenation of 61 was performed over Raney Ni instead of Rh / C, only 44 was obtained. Coupling 41 with 35 as described in method A afforded a compound which was the same as 15 obtained with method B.
Screening for Antihypertensive Activity. Experiments were carried out in spontaneously hypertensive male rats (Okamoto strain), which were at least 14 weeks old. They were placed for approximately 30 min in a temperature $\left(28^{\circ} \mathrm{C}\right)$ and humidity (60%) controlled cabinet before applying to the tail an inflatable cuff and a piezoelectric transducer to pick up arterial pulse waves (W and W BP Recorder, Model 8005) according to the technique described by Gerold and Tschirky. ${ }^{16}$ Heart rate was measured by counting automatically the arterial pulses occurring over $10-\mathrm{s}$ periods. The cuff pressure required to produce the disappearance of the arterial pulse is the value of the systolic blood pressure. Three blood pressure measurements were taken before giving any treatment, and the lowest one was chosen as a control value. Results are expressed as changes in blood pressure with respect to the control value. Groups of five animals were dosed orally with either placebo ($2.0 \mathrm{~mL} / \mathrm{kg}$ of a $0.2 \% \mathrm{v} / \mathrm{v}$ solution of Tween 80 in distilled water) or 10 mg of each newly synthetized compound dissolved in the same vehicle. In these experiments, prazosin was used as reference compound.
Table I reports the magnitude of the antihypertensive effect produced by each compound 2 and 4 h after the oral administration. No significant changes in heart rate were observed so these results are not given in Table I.
Registry No. 6, 65189-44-8; 6. $\mathrm{HCl}, 98902-19-3 ; 7$, 96649-38-6; $7 \cdot \mathrm{HCl}, 96649-39-7 ; 8,65189-52-8 ; 8 . \mathrm{HCl}, 65189-53-9 ; 9,98902-34-2$; $10,98902-35-3 ; 10 \cdot \mathrm{HCl}, 65189-49-3 ; 11,98902-36-4 ; 11 \cdot \mathrm{HCl}$, 98902-29-5; 12, 81403-80-7; 12-HCl, 81403-68-1; 13, 76362-32-8; $13 \cdot \mathrm{HCl}, 81403-72-7$; 14, $76362-35-1$; $14 \cdot \mathrm{HCl}, 81403-75-0 ; 15$, $98902-37-5 ; 15-\mathrm{HCl}, 81403-71-6 ; 16,76362-34-0 ; 16-\mathrm{HCl}, 81403-74-9$; 17, $79959-12-9 ; 17 \cdot \mathrm{HCl}, 79959-09-4 ; 18,76362-36-2 ; 18 \cdot \mathrm{HCl}$, 81403-77-2; 19, 76377-81-6; 19.HCl, 81403-76-1; 20, 98902-38-6; $20 \cdot \mathrm{HCl}, 98902-30-8 ; 21,98902-39-7 ; 21 \cdot \mathrm{HCl}, 65189-29-9$; 22, $72766-65-5 ; 22 \cdot \mathrm{HCl}, 65189-55-1 ; 23,98902-40-0 ; 20 \cdot \mathrm{HCl}, 65189-56-2$; 24, 98902-41-1; 24-HCl, 65189-57-3; 25, $98902-42-2 ; 25 \cdot \mathrm{HCl}$, 65189-58-4; 26, $98902-43-3 ; 26 \cdot \mathrm{HCl}, 72766-63-3$; 27, 98902-44-4; $27 \cdot \mathrm{HCl}, 65189-43-7$; 28, $76362-33-9$; $28 \cdot \mathrm{HCl}, 81403-73-8$; 29, 65189-36-8; 29. $\mathrm{HCl}, 65189-35-7 ; 30,98902-45-5 ; 30 \cdot \mathrm{HCl}, 65189-47-1$; 31, $98902-46-6$; $31 \cdot \mathrm{HCl}, 65189-50-6$; 32, $98902-47-7$; $32 \cdot \mathrm{HCl}$, 65189-48-2; 33, $98902-48-8 ; 33 \cdot \mathrm{HCl}, 65189-51-7$; 34, 98902-49-9; $34 \cdot \mathrm{HCl}, 65189-54-0 ; 35,23680-84-4 ; 36,98902-12-6 ; 37,96649-52-4$; 38, 6108-74-3; 39, 98902-17-1; 40, 98902-18-2; 41, 81403-70-5; $41 \cdot \mathrm{HCl}, 98902-32-0 ; 42,81403-67-0 ; 43,79959-07-2$; 43•oxalate, 98902-50-2; 44, 72104-47-3; 44. ${ }^{1} /$ 2 oxalate, 2 98902-33-1; 45, 98902-13-7; 46, 98902-14-8; 46. $\mathrm{HCl}, 98902-51-3 ; 47,98902-15-9$; 48, $60630-68-4 ; 49,98902-20-6 ; 50,98902-21-7 ; 51,65189-24-4 ; 51 \cdot 2 \mathrm{HCl}$, 65189-23-3; 52, 98902-22-8; 52-2HCl, 98921-40-5; 53, 98902-23-9; $53 \cdot 2 \mathrm{HCl}, 98902-24-0 ; 54,72779-30-7$; $54 \cdot 2 \mathrm{HCl}, 65189-25-5 ; 55$, $98902-27-3 ; 55.2 \mathrm{HCl}, 98902-25-1 ; \mathbf{5 6}, 98902-28-4 ; \mathbf{5 6} \cdot 2 \mathrm{HCl}$, $98902-26-2 ; 57,76362-28-2 ; 58,76362-29-3 ; 58 \cdot \mathrm{HCl}, 81403-69-2$; $59 \cdot \mathrm{HCl}, \quad 98902-31-9 ; \quad \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}, \quad 101-98-4$; $\mathrm{PhCH}_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}, 4720-29-0 ; \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}, 5814-$ $42-6 ; \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}, 98901-97-4 ; \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$,

17542-47-1; $\mathrm{PhCH}_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}, 42245-33-0 ; \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})-$ $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}, 3161-52-2 ; \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Cl}$, $98901-98-5$; $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NHMe}, 102-11-4 ; \mathrm{PhCH}_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$, $13910-48-0 ; \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHBu}-i, 98901-99-6 ; \mathrm{PhCH}_{2} \mathrm{~N}-$ $(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NHMe}, 98902-00-2 ; \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}(\mathrm{Me}) \mathrm{COPh}$, 98902-01-3; $\mathrm{PhCH}_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}(\mathrm{Me}) \mathrm{COC}_{4} \mathrm{H}_{3} \mathrm{O}-2$, 98902-02-4; $\mathrm{PhCH}_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHCOPh}, 98902-03-5 ; \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}-$ (Me)COTHF-2, 98902-04-6; $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}(\mathrm{Bu}-i) \mathrm{COPh}$, 98902-05-7; $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{4} \mathrm{~N}(\mathrm{Me}) \mathrm{COPh}, 98902-06-8 ;$ $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}(\mathrm{Me}) \mathrm{COph} \cdot \mathrm{HCl}, 98902-07-9 ; \mathrm{PhCH}_{2} \mathrm{NH}-$ $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}(\mathrm{Me}) \mathrm{COC}_{4} \mathrm{H}_{3} \mathrm{O}-2 \cdot \mathrm{HCl}, \quad 98902-08 \cdot 0 ; \mathrm{PhCH}_{2} \mathrm{NH}-$ $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHCOPh} \cdot \mathrm{HCl}, 98902-09-1 ; \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}(\mathrm{Me})-$ COTHF-2. $\mathrm{HCl}, \quad 98902-10-4 ; \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}(\mathrm{Bu}-i)$ $\mathrm{COPh} \cdot \mathrm{HCl}, 98902-11-5 ; \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{4} \mathrm{~N}(\mathrm{Me}) \mathrm{COPh} \cdot \mathrm{HCl}$,

98921-39-2; $\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NHMe}, 693-05-0 ; \mathrm{NC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}(\mathrm{Me}) \mathrm{COPh}$, 23873-66-7; c-PrCON(Me) $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CN}, 98902-16-0 ; c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{CON}-$ (Me) $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CN}, 72104-46-2 ; \mathrm{NC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}(\mathrm{Me}) \mathrm{COTHF}-2,72104-$ $44-0$; $\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}(\mathrm{Me}) \mathrm{COR}$ ($\mathrm{R}=1,4$-benzodioxan-2-yl), 79959-06-1; tetrahydro-2-furancarboxylic acid, 16874-33-2; tetrahydro3 -furoic acid, 89364-31-8; 3-methylbenzoyl chloride, 1711-06-4; 3 -methoxybenzoyl chloride, 1711-05-3; 3,5-dimethoxybenzoyl chloride, 17213-57-9; 3,4,5-trimethoxybenzoyl chloride, 4521-61-3; 3 -pyridinecarbonyl chloride, 10400-19-8; 2-furancarbonyl chloride, 527-69-5; 2-(methylthio)-1,3,4-oxadiazole-5-carbonyl chloride, 62373-33-5; cyclopropanecarbonyl chloride, 4023-34-1; cyclopentanecarbonyl chloride, 4524-93-0; 1,4-benzodioxane-2-carbonyl chloride, 3663-81-8; tetrahydro-2-furancarbonyl chloride, 52449-98-6.

5-(Alkylsulfonyl)salicylanilides as Potential Dental Antiplaque Agents

Michael T. Clark, ${ }^{\dagger}$ Robert A. Coburn, ${ }^{* \dagger}$ Richard T. Evans, ${ }^{\ddagger}$ and Robert J. Genco ${ }^{\ddagger}$
Department of Medicinal Chemistry, School of Pharmacy and Department of Oral Biology, School of Dentistry, State University of New York at Buffalo, Buffalo, New York 14260. Received April 29, 1985

Abstract

A series of 225 -(alkylsulfonyl)salicylanilides was synthesized and evaluated for in vitro antibacterial and antiplaque activity against Actinomyces viscosus and Streptococcus mutans, adherent microorganisms implicated in periodontal disease and dental caries. The minimum inhibitory concentrations of 25 salicylanilides (including 5 -acyl-, 5 -alkyl-, and 5-(alkylsulfonyl)-4'-bromo- and -4'-(trifluoromethyl)salicylanilides) were found to correlate ($r=0.94$) with estimated $\log D$ values. Several salicylanilides, such as 5 -(decylsulfonyl)- and 5 -(dodecylsulfonyl)- 4^{\prime}-(trifluoromethyl)salicylanilides (15 and 19) were found to exhibit high levels of in vitro antibacterial and antiplaque activity against A. viscosus and S. mutans.

A number of 5-acyl- and 5-alkylsalicylanilides (1a and 1b) have been reported to exhibit high levels of antibacterial activity against Actinomycetes, ${ }^{1}$ adherent bacteria associated with marginal inflammatory gingivitis. ${ }^{2}$ The development of la and 1b was based upon the antibacterial properties of $3,4^{\prime}, 5$-tribromosalicylanilide (tribromsalan, TBS, 2a), as well as the caries-inhibiting activity of fluorophene (2b) in the rat. ${ }^{3-6}$ Salicylanilides, such as 1a, were found to exhibit significant in vitro antiplaque activity in a quantitative antiplaque bioassay reflecting oral conditions. ${ }^{7-9}$ TBS (2a) was a component of an oral preparation found to exhibit clinical effects against plaque formation and gingivitis in man. ${ }^{10,11}$ Since usage of halogenated salicylanilides such as $\mathbf{2 a}$ and $\mathbf{2 b}$ has been restricted by the FDA, ${ }^{12}$ due to photoallergic effects observed only with halogenated derivatives, ${ }^{13}$ new nonhalogenated salicylanilides were sought with antimicrobial properties optimized against oral bacteria associated with gingivitis, periodontal disease, and caries.

Several 5-acyl derivatives, 1a, appear to be more effective against Actinomyces viscosus in vitro than TBS. ${ }^{1}$ One derivative of $1 \mathrm{a}, \mathrm{Y}=n$-decanoyl, $\mathrm{X}=4^{\prime}$-nitro (1d), has been reported to be more effective than TBS in inhibiting the development of gingivitis in Beagle dogs, when employed in an oral mouthrinse preparation. ${ }^{14}$ The salicylanilides have not been reported to display the undesirable organoleptic and staining properties associated with cationic surfactant antimicrobials, and therefore, they represent a promising class of agents for the topical control of the development of caries and periodontal disease.

Since the electron-withdrawing 5 -acyl group appeared more effective than the 5 -alkyl group in enhancing both antimicrobial properties and solubility of these very lipophilic derivatives, ${ }^{1}$ the 5 -alkylsulfonyl group was chosen

[^2]
as an alternative substituent which would further increase phenol acidity and permit incremental adjustments in
(1) Coburn, R. A.; Batista, A. J.; Evans, R. T.; Genco, R. J. J. Med. Chem. 1981, 24, 1245.
(2) Ellen, R. P. In "Host-Parasite Interactions in Periodontal Diseases"; Genco, R. J., Mergenhagen, S. E., Eds.; American Society for Microbiology: Washington, DC, 1982; pp 98-111.
(3) Baker, R. J.; Coburn, R. A.; Genco, R. J.; Evans, R. T J. Periodont. Res. 1978, 13, 474.
(4) Coburn, R. A.; Baker, P. J.; Evans, R. T.; Genco, R. J.; Fischman, S. J. J. Med. Chem. 1978, 21, 828.
(5) Muhlmann, H. R. Helv. Odont. Acta 1973, 17, 99.
(6) Tikus, H. W. Helv. Odont. Acta 1973, 17, 105.
(7) Evans, R. T.; Baker, P. J.; Coburn, R. A.; Genco, R. J. J. Dent. Res. 1977, 56, 559.
(8) Evans, R. T.; Baker, P. J.; Coburn, R. A.; Genco, R. J. J. Periodontol. 1977, 48, 156.

[^0]: (7) (a) Igarashi, T.; Nakajima, Y.; Ohtake, S. Jpn. Circ. J. 1977, 41, 903. (b) Kawasaki, T.; Uezono, K.; Abe, I.; Nakamuta, G.; Ueno, M.; Kawazoe, N.; Omae, T. Eur. J. Clin. Pharmacol. 1981, 20, 399.
 (8) Althuis, T. H.; Hess, H. J. J. Med. Chem. 1977, 20, 146.

[^1]: (13) Giudicelli, P. R.; Najer, H.; Manoury, P. M.; Obitz, D. C. French Patent 2, 279-383, 1976.
 (14) Cook, A. H.; Reed, K. J. J. Chem. Soc. 1945, 399.

[^2]: ${ }^{\dagger}$ Department of Medicinal Chemistry.
 ${ }^{\ddagger}$ Department of Oral Biology.

