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DFT calculations on the liquid phase interaction and corrosion inhibition properties of 2-ethylbenzimidazole
(EBI) and its derivative ethyl (2-ethylbenzimidazolyl)acetate (EEBA) on mild steel in hydrochloric acid (0.5, 5
and 1.5 M) at three different temperatures (303, 308 and 313 K) have been studied using EIS, polarization, ad-
sorption measurements and computational calculations. Results show that EBI and EEBA act as effective inhibi-
tors for the corrosion of mild steel in hydrochloric acid media. Polarization studies showed that both the
inhibitors behave as mixed type inhibitors with respect to the electrode reactions. EEBA offers better inhibition
efficiency than EBI. The inhibition efficiency found to decrease with increase in temperature in either of the
cases. The mechanism involves adsorption phenomenon and in the case of EEBA, the adsorption obeyed Lang-
muir adsorption isotherm. For EBI, the adsorption obeyed Langmuir adsorption isotherm except for 313 K in
1.5 M HCl, for which the best fit adsorption isotherm was Temkin adsorption isotherm.
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1. Introduction

Mild steel is widely used as structural material in automobiles, pipes
and chemical industries [1]. Acid solutions are generally used for re-
moval of undesirable scale and rust on the metals, cleaning of boilers
and heat exchangers, oil-well acidizing in oil recover and so on [2–6].
However the rate of metal dissolution caused by the acidic media is
quite high. A most efficient solution to the problems caused by corro-
sion is the use of corrosion inhibitors. The use of organic inhibitors is
one of the most practical methods for protection of metals against cor-
rosion, and is becoming increasingly popular according to recent studies
[7]. Most common inhibitors are organic compounds containing func-
tional electronegative groups, π electrons in triple or conjugated double
bonds and hetero atoms like N, S and O [8]. These organic compounds
can adsorb on the metal surface and thereby reduce the corrosion rate
[9]. The researches show that these molecules adsorb on the metal sur-
face by displacingwatermolecules on the surface and forming a protec-
tive film [10–12]. Especially, the studies show that chloride containing
acidic medium plays an important role because chloride ions easily ad-
sorb on the inner Helmholtz plane [13]. It is very well known that
HCl(aq) is one of the most widely used acid for descaling, degreasing,
pickling, etc. Therefore the protection efficiency of the inhibitor in this
medium is very important [14]. In recent years, there is considerable
amount of effort devoted to studying inhibition properties of benzimid-
azole and its derivatives for metallic corrosion. Benzimidazole and its
derivatives have received considerable attention on their inhibition
properties of metallic corrosion over the past years [15–16]. Benzimid-
azole is a heterocyclic organic compound, and the nitrogen atom and
the aromatic ring in the molecular structure are likely to facilitate the
adsorption of the compounds on the metal surface [17]. Some deriva-
tives of benzimidazoles have been demonstrated as excellent inhibitors
for metals and alloys in acidic solution, and exhibit different inhibition
performance with the difference in substituent groups and substituent
positions on the imidazole ring [18–24]. J. Alijourani et al. investigated
the corrosion inhibition of carbon steel in hydrochloric acid and
sulphuric acids in the presence of some benzimidazole derivatives
such as benzimidazole (BI), 2-methylbenzimidazole (2-CH3-BI) and
2-mercaptobenzimidazole (2-SH-BI). In both the media 2-SH-BI
showed highest efficiency and 2-BI showed lowest efficiency [25]. X.
Wang et al. had conducted studies on the influences of a benzimidazole
derivative namely 1,8-bis(1-chlorobenzyl-benzimidazolyl)-octane
(CBO) on the corrosion behaviour of mild steel in different concentra-
tions of HCl. The studies showed that the inhibitor is an excellent
mixed type inhibitor [26]. Y. Tang et al. conducted studies on
three novel benzimidazole derivatives, 2-aminomethylbenzimidazole
(2-ABI), bis(2-benzimidazolylmethyl)amine (BBIA) and tris(2-
benzimidazolylmethyl)amine (TBIA) as inhibitors for mild steel in 1 M
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HCl. The inhibition efficiencywas found to depend on the concentration
of the inhibitor, temperature and concentration of the acid solution [27].
A. Dutta et al. tested the different bis-benzimidazole derivatives as po-
tential corrosion inhibitors for mild steel in 1 M HCl and the inhibitors
were proved to be mixed type inhibitors [28]. M. Yadav et al. studied
the inhibitive action of synthesised benzimidazole derivatives namely
2-((1-morpholinomethyl)1H-benzo[d]imidazole-2-yl)phenol (MBP),
2-((1-piperazine-1-yl)methyl-1H-benzo[d]imidazole-2yl)phenol
(PzMBP) and 2-(1-((piperazine-1-yl)methyl)-1H-benzo[d]imidazole-
2-yl)phenol (PMBP) on corrosion of N80 steel in 15% HCl solution. It
was found that the inhibition efficiency of all the inhibitors increased
with increase in concentration of inhibitors and decreasedwith increase
in temperature. The studies also found out that the inhibitors were
mixed type [29]. All the studies revealed that the benzimidazole deriv-
atives inhibited the corrosion by getting adsorbed on to the metal sur-
face. Another remarkable feature is that during the adsorption on to
the metal surface, benzimidazole molecules show two anchoring sites
suitable for surface bonding: the nitrogen atomwith its lonely sp2 elec-
tron pair and the aromatic rings [30].

The aim of the present investigation is to examine the inhibitive
properties of 2-ethylbenzimidazol (EBI) (Fig. 1a) and its derivative
ethyl(2-ethylbenzimidazolyl)acetate (EEBA) (Fig. 1b) on mild steel in
different concentrations of HCl (0.5, 1 and 1.5 M). The study has been
Fig. 1. Optimized geometries of (a)EBI (b) EEBA.
conducted using EIS and potentiodynamic polarization techniques.
Quantum chemical parameters were also calculated.

2. Experimental

2.1. Inhibitor

2.1.1. 2-Ethylbenzimidazole
A mixture of o-phenylenediamine (10 g, 0.092 mol) and propionic

aid (0.11 mol) was dissolved in 4 M HCl (10 ml) and refluxed at
100 °C for 12 h. Completion of the reaction was monitored using TLC.
The contents were cooled to room temperature and neutralized with
saturated solution of NaHCO3 [31].

2.1.2. Ethyl (2-ethylbenzimidazolyl)acetate
The solution of 2-ethylbenzimidazol (0.062 mol) in acetone (20 ml)

was mixed with ethylchloroacetate (7.9 ml, 0.074 mol) and potassium
carbonate (16.5 g, 0.12 mol) and refluxed for 6 h. Completion of the re-
action was monitored by TLC. The reaction mixture was filtered. From
the clear filtrate, excess acetone was removed by distillation and then
was added towater. The solid product separatedwas collected by filtra-
tion and dried. Further purification was done by crystallization from
ethyl acetate to give ethyl(2-methylbenzimidazolyl)acetate [31].

2.2. Medium

The medium of the study was made from reagent grade HCl (E.
Merck) and doubly distilled water. All tests were performed in aerated
medium under different temperatures (303, 308 and 313 K) and atmo-
spheric pressure.

2.3. Materials

The mild steel specimen used was of the following composition
(wt.): C (0.20%), Mn (1%), P (0.03%), S (0.02%) and Fe (98.75%). The
mild steel specimens used were cut in 4.8 × 1.9 cm2 coupons and
polished as recommended by ASTM (0–4 grit of 1200 mesh). During
the electrochemicalmeasurements only 1 cm2 areawas exposed. Before
measurements, the samples were polished using buffing machine and
different grades of emery paper (6–1200 grade) followed by washing
with ethanol, acetone and finally with distilledwater for achievingmir-
ror bright finish.

2.4. Electrochemical measurements

Electrochemical tests were carried out in a conventional three elec-
trode corrosion cell with platinum sheet (1 cm2 surface area) as auxilia-
ry electrode and saturated calomel electrode (SCE) as the reference
electrode. Theworking electrodewas first immersed in the test solution
and after establishing a steady state open circuit potential (OCP), the
electrochemical measurements were carried out in a Gill AC computer
controlled electrochemical work station (ACM, UK, Model No: 1475).
Electrochemical impedance spectroscopy (EIS) measurements were
carried outwith amplitude of 10mV (RMS) AC Sinewavewith frequen-
cy range of 10 kHz–0.1 Hz. The polarization curves were obtained in the
potential range from−250mV to+250mV(vs. SCE)with a sweep rate
of 60 mV/min.

2.5. Computational study

The theoretical calculationswere carried out using B3LYP. It is a ver-
sion of DFT method which uses Beck's three parameter functional (B3)
and it includes a mixture of HF with DFT exchange terms associated
with the gradient corrected correlation functional of Lee, Yang and
Parr (LYP) [32]. It has much less convergence problems than those
found for pure DFT methods [33]. The full geometry optimization of



Fig. 2. Randle's circuit.

Fig. 3.Nyquist plots for mild steel corrosion in (a) 0.5 M HCl(b) 1MHCl and (c) 1.5MHCl
in the absence and presence of EBI at 303 K.
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the inhibitor was carried out at the B3LYP/6-31G* level using Gaussian
03 program package. The quantum chemical parameters calculated
were EHOMO, ELUMO, χ (electro negativity), η (global hardness), etc.
Fukui indices were also determined.
3. Results and discussion

3.1. Electrochemical measurements

3.1.1. Electrochemical impedance spectroscopy (EIS)
The EIS study was done for mild steel in various concentrations of

HCl ranging from 0.5 M to 1.5 M in the presence and absence of the in-
hibitors EBI and EEBA. The study was done in the absence and presence
Fig. 4.Nyquist plots formild steel corrosion in (a) 0.5MHCl (b) 1MHCl and (c) 1.5MHCl
in the absence and presence of EEBA at 303 K.



Table 1a
Charge transfer resistance (Rct), corrosion rate (C.R) and percentage inhibition efficiency of EBI obtained from EIS study.

Conc. Of
HCl (M)

Conc. Of
EBI (ppm)

Temperature (K)

303 308 313

Rct (Ω cm2) C.R (mm/yr) %IE Rct (Ω cm2) C.R (mm/yr) %IE Rct (Ω cm2) C.R (mm/yr) %IE

0.5 Blank 8.24 36.67 – 86.20 3.51 – 67.42 4.49 –

50 37.92 7.97 78.38 171.20 1.77 49.65 114.00 2.65 40.86
100 97.35 3.10 91.58 227.50 1.33 62.11 226.80 1.33 70.27
150 199.3 1.52 95.89 539.00 0.56 84.01 345.40 0.88 80.48
200 426.3 0.71 98.08 633.00 0.48 86.41 441.80 0.68 84.74

1 Blank 6.05 49.96 – 13.00 23.26 – 7.79 38.33 –

50 14.84 20.37 59.2 22.16 13.64 41.34 12.84 23.55 39.06
100 35.65 8.48 83.02 40.11 7.54 67.59 16.22 18.64 51.9
150 39.41 7.67 84.64 46.38 6.52 71.97 26.32 11.49 70.36
200 118.10 2.56 94.88 64.47 4.69 79.8 34.06 8.88 77.09

1.5 Blank 9.79 30.90 – 6.53 46.29 – 4.65 65.02 –

50 22.48 13.45 56.44 9.61 31.46 32.00 5.14 58.82 9.5
100 25.77 11.73 62.01 9.75 31.02 33.03 5.97 50.62 21.19
150 56.59 5.34 82.69 10.31 29.33 36.66 6.52 46.34 28.68
200 175.60 1.72 94.42 11.99 25.22 45.54 6.84 44.23 32.01
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of various concentrations of inhibitors ranging from 50 to 200 ppm
(ppm by weight) at temperatures 303, 308 and 313 K.

The equivalent circuit proposed to fit and interpret the EIS data was
Randle's circuit (Fig. 2) in which there is charge transfer resistance (Rct)
parallel with double layer capacitance (Cdl) in series with solution resis-
tance (Rs). Nyquist plots obtained from the study were shown in Figs. 3
and 4 (only the representative figures are given).

Nyquist plots are electrochemical impedance spectra in a complex
plane. The existence of a single semi-circle showed the single charge
transfer process during dissolution which is unaffected by the presence
of inhibitor molecules. The addition of inhibitor molecules causes an in-
crease in Rct values [34]. The increase in Rct values is attributed to the
formation of a protective film on the metal-solution interface [35,36].
Thus it can be concluded that the inhibitor molecules function by ad-
sorption on to the metal surface and thereby causing an increase in Rct

value [37].
All the Nyquist plots had a depressed semi-circle shape in the com-

plex planewith centre under the real axis. This behaviour is a character-
istic of solid electrodes. The depressed semi-circle shape is due to the
non-ideal behaviour of double layer as a capacitor. This in turn is due
to the surface heterogeneity resulting from surface roughness, impuri-
ties, dislocations, grain boundaries, adsorption of inhibitors, etc. The
high frequency part of the impedance and phase angle reflects the be-
haviour of heterogeneous surface layer whereas the low frequency
part shows the kinetic response for the charge transfer reaction [38].
Table 1b
Charge transfer resistance (Rct), Corrosion rate (C.R) and percentage inhibition efficiency of EE

Conc. Of
HCl (M)

Conc. Of EEBA
(ppm)

Temperature (K)

303 308

Rct (Ω cm2) C.R (mm/yr) %IE Rct (Ω

0.5 Blank 36.54 8.27 – 21.3
50 787.60 0.38 95.4 160.6
100 841.90 0.36 95.7 215.6
150 1285.0 0.24 97.2 270.0
200 1388.0 0.22 97.4 438.1

1 Blank 34.96 8.65 – 9.2
50 477.10 0.63 92.7 65.4
100 673.10 0.45 94.8 96.5
150 846.60 0.36 95.9 146.1
200 898.10 0.34 96.1 160.0

1.5 Blank 18.74 16.13 – 8.2
50 211.1 1.43 91.1 66.1
100 443.8 0.68 95.8 73.3
150 573.3 0.53 96.7 77.1
200 665.1 0.45 97.2 83.9
Thus the parallel combination of double layer capacitance and charge
transfer resistance which are in series with solution resistance, particu-
larly in the presence of an efficient inhibitor, is found to be an inade-
quate approach for modelling the metal-acid solution interface [39].
Thus to account for the non-ideal behaviour, it is necessary to use a con-
stant phase element, CPE instead of double layer capacitance [40]. The
CPE can be modelled as follows:

ZCPE ¼ jωcð Þ−α ð1Þ

where ZCPE is the impedance, j is the square root of−1, c is the capaci-
tance and α is the measure of non-ideality of the capacitor and has a
value in the range of 0 b α b 1 [41].

The charge transfer resistance values were calculated from the dif-
ference in impedance at lower and higher frequencies. The double
layer capacitance, Cdl and the frequency at which the imaginary compo-
nent of the impedance maximum were obtained from the equation
given below:

Cdl ¼
1

ωXRct
ð2Þ

where ω = 2πfmax and fmax is the frequency at which the imaginary
component of impedance is maximum.
BA obtained from EIS study.

313

cm2) C.R (mm/yr) %IE Rct (Ω cm2) C.R (mm/yr) %IE

4 14.17 – 19.03 15.89 –

0 1.88 86.7 90.23 3.35 78.9
0 1.40 90.1 135.10 2.24 85.9
0 1.12 92.1 228.70 1.32 91.7
0 0.69 95.1 328.10 0.92 94.2
2 32.78 – 5.49 54.98 –

6 4.62 85.9 33.28 9.09 83.5
0 3.13 90.4 49.20 6.15 88.8
0 2.07 93.7 53.02 5.70 89.6
0 1.89 94.2 70.88 4.27 92.2
4 36.68 – 5.19 58.2 –

8 4.57 87.5 22.58 13.39 76.9
3 4.12 88.8 25.25 11.97 79.4
6 3.92 89.3 30.87 9.79 83.2
2 3.60 90.2 45.35 6.67 88.5
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Percentage inhibition efficiencieswere calculated fromcharge trans-
fer resistance values as follows:

IE %ð Þ ¼ R�
ct−Rct

R�
ct

� 100 ð3Þ

where Rct⁎ and Rct denote charge transfer resistance in the presence and
absence of the inhibitors.

Result obtained from EIS study for the inhibitor, EBI has been sum-
marized in Table 1a and that for EEBA in Table 1b. From the thorough
analysis of the result, it can be seen that for both the inhibitors, at all
the three temperatures, the charge transfer resistance values as well
as the inhibition efficiency increased with increase in concentration of
Fig. 5. Polarization curves for mild steel corrosion in (a) 0.5 M HCl (b) 1 M HCl and
(c) 1.5 M HCl in the absence and presence of EBI at 303 K.
the inhibitor. The inhibition efficiency decreased with acid concentra-
tion. Another observation made from EIS study was that the efficiency
of the inhibitors decreased with increase in temperature. This leads to
the conclusion that inhibition was achieved by the adsorption of the in-
hibitors on themild steel surface. As the temperaturewas increased, the
adsorption of the inhibitor on to the mild steel surface became difficult
which caused the inhibition efficiency to decrease. Thus maximum effi-
ciencywas obtained for 200 ppm concentration of the inhibitor in 0.5M
HCl at 303K for both the inhibitors. It was also found that EEBA is amore
efficient inhibitor than EBI.
Fig. 6. Polarization curves for mild steel corrosion in (a) 0.5 M HCl (b) 1 M HCl and
(c) 1.5 M HCl in the absence and presence of EEBA at 303 K.



Table 2a
Corrosion current density (icorr), corrosion rate (C.R) and percentage inhibition efficiency (%IE) of EBI in 0.5 M HCl obtained from potentiodynamic polarization study.

Conc. Of EBI
(ppm)

Temperature (K)

303 308 313

−Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE −Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE −Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE

Blank 445.23 3.99 46.33 – 470.49 0.46 5.37 – 432.85 0.36 4.21 –

50 475.09 0.79 9.21 80.1 442.84 0.24 2.83 47.3 439.85 0.22 2.49 40.6
100 474.36 0.31 3.62 92.5 442.91 0.18 2.05 61.8 462.65 0.11 1.29 69.3
150 478.35 0.16 1.87 95.9 457.02 0.07 0.88 83.6 445.56 0.069 0.80 80.9
200 485.00 0.08 0.98 97.9 455.99 0.065 0.76 85.8 458.4 0.057 0.067 84.2

Table 2b
Corrosion current density (icorr), corrosion rate (C.R) and percentage inhibition efficiency (%IE) of EBI in 1 M HCl obtained from potentiodynamic polarization study.

Conc. Of EBI
(ppm)

Temperature (K)

303 308 313

−Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE −Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE −Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE

Blank 484.00 1.55 18.01 – 498.88 1.03 11.99 – 547.29 4.29 49.78 –

50 447.37 0.67 7.77 56.9 422.48 0.59 6.83 43.0 406.79 2.63 30.49 38.8
100 457.32 0.25 2.92 83.8 530 0.36 4.15 65.4 489.39 2.18 25.24 49.3
150 452.87 0.23 2.70 85.2 414.34 0.29 3.33 72.3 477.75 1.22 14.13 71.6
200 472.16 0.10 1.22 93.2 413.96 0.22 2.59 78.4 420.85 1.05 12.13 75.6

Table 3a
Corrosion current density (icorr), corrosion rate (C.R) and percentage inhibition efficiency (%IE) of EEBA in 0.5 M HCl obtained from potentiodynamic polarization study.

Conc. Of EEBA
(ppm)

Temperature (K)

303 308 313

−Ecorr
(mV)

icorr
(mA/cm2)

C.R
(mm/yr)

%IE −Ecorr
(mV)

icorr
(mA/cm2)

C.R
(mm/yr)

%IE −Ecorr
(mV)

icorr
(mA/cm2)

C.R
(mm/yr)

%IE

Blank 510.83 0.657 7.61 – 455.13 1.163 13.47 – 420.31 1.253 14.53 –

50 457.54 0.041 0.48 93.7 467.43 0.162 1.87 86.1 480.11 0.269 3.12 78.5
100 497.40 0.032 0.38 95.1 481.61 0.113 1.31 90.3 489.56 0.180 2.09 85.6
150 476.45 0.031 0.36 95.2 478.64 0.091 1.05 92.2 491.25 0.107 1.24 91.5
200 479.74 0.027 0.31 95.9 490.85 0.055 0.64 95.2 485.98 0.076 0.88 93.9

Table 2c
Corrosion current density (icorr), corrosion rate (C.R) and percentage inhibition efficiency (%IE) of EBI in 1.5 M HCl obtained from potentiodynamic polarization study.

Conc. Of EBI
(ppm)

Temperature (K)

303 308 313

−Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE −Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE −Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE

Blank 448.8 2.32 26.85 – 401.93 3.19 37.04 – 399.21 4.63 53.63 –

50 457.65 1.00 11.68 56.5 399.82 2.21 25.56 30.9 387.98 4.21 48.78 9.0
100 457.56 0.86 10.00 62.7 479.7 2.14 24.80 33.1 398.5 3.59 41.69 22.3
150 466.24 0.40 4.69 82.5 399.96 2.04 23.67 36.1 395.98 3.36 38.93 27.4
200 469.05 0.17 1.99 92.6 398.72 1.83 21.16 42.9 399.86 3.09 35.80 33.2

Table 3b
Corrosion current density (icorr), corrosion rate (C.R) and percentage inhibition efficiency (%IE) of EEBA in 1 M HCl obtained from potentiodynamic polarization study.

Conc. Of EEBA
(ppm)

Temperature (K)

303 308 313

−Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE −Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE −Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE

Blank 489.12 0.728 8.44 – 494.7 2.534 29.37 – 490.25 3.884 45.01 –

50 485.25 0.057 0.65 92.2 466.6 0.394 4.57 84.4 466.56 0.647 7.50 83.3
100 456.33 0.043 0.49 94.1 469.7 0.240 2.79 90.5 484.33 0.473 5.49 87.8
150 435.14 0.039 0.44 94.7 484.2 0.167 1.94 93.4 502.47 0.407 4.72 89.5
200 463.86 0.029 0.34 95.9 476.2 0.155 1.81 93.9 472.14 0.302 3.50 92.2

712 R. Mohan et al. / Journal of Molecular Liquids 220 (2016) 707–717



Table 3c
Corrosion current density (icorr), corrosion rate (C.R) and percentage inhibition efficiency (%IE) of EEBA in 1.5 M HCl obtained from potentiodynamic polarization study.

Conc. Of EEBA
(ppm)

Temperature (K)

303 308 313

−Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE −Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE −Ecorr (mV) icorr (mA/cm2) C.R (mm/yr) %IE

Blank 486.41 1.269 14.72 – 438.38 3.032 35.14 – 442.43 4.987 57.79 –

50 479.84 0.114 1.32 91.0 444.50 0.367 4.25 87.9 431.19 1.142 13.24 77.1
100 474.3 0.058 0.67 95.4 459.08 0.351 4.06 88.4 447.33 1.031 11.95 79.3
150 448.65 0.041 0.47 96.8 458.90 0.317 3.67 89.5 444.55 0.839 9.73 83.2
200 469.62 0.038 0.44 97.0 452.27 0.281 3.25 90.7 443.65 0.573 6.65 88.5
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3.1.2. Potentiodynamic polarization study
This method involves themonitoring of the current that is produced

as a function of time or potential by varying the potential of theworking
electrode [42]. Both anodic and cathodic polarization curves for mild
steel in various concentrations of HCl ranging from 0.5 to 1.5 M HCl in
the presence and absence of different concentrations of the inhibitors,
EBI and EEBA, ranging from 50 to 200 ppm at temperatures 303, 308
Fig. 8. Langmuir adsorption isotherms for the interaction of 2-EBI on mild steel in (a) 0.5 M (b)
1.5 M HCl at 313 K.
and 313 K are shown in Figs. 5 and 6. The result obtained from
the study for EBI is shown in Tables 2a–2c and that for EEBA in
Tables 3a–3c.The percentage inhibition efficiency was calculated in
each case using the following equation:

IE %ð Þ ¼ icorr−i�corr
icorr

� 100 ð4Þ
1 M (c) 1.5 M HCl and (d) Temkin adsorption isotherm for 2-EBI-mild steel interaction in



Fig. 9. Langmuir adsorption isotherms for EEBA-mild steel interaction in (a) 0.5M (b) 1M
and (c) 1.5 M HCl.
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where icorr and i*corr denote corrosion current density in the absence and
presence of the inhibitor. The corrosion current densities were deter-
mined by the extrapolation of anodic and cathodic tafel lines to the cor-
rosion potential, Ecorr.

From the result obtained from the study, it is clearly evident that
for both the inhibitors, at all the three temperatures 303, 308 and
313 K, the corrosion current density decreased with increase in concen-
tration of the inhibitor. Therefore, the percentage inhibition efficiency
also increased with increase in concentration of the inhibitor. Increase
in temperature as well as increase in acid concentration caused
an increase in corrosion current density thereby decreasing the
inhibition efficiency. The maximum efficiency was obtained for
200 ppm concentration of the inhibitors in 0.5MHCl at 303 K. From po-
tentiodynamic polarization study also, it was seen that EEBA was more
efficient inhibitor than EBI. The result obtained from the potentiody-
namic polarization study was in perfect agreement with that obtained
from EIS study.

On analyzing the tafel plots it could be understood that the addition
of the inhibitors, EBI and EEBA, didn't cause the corrosion potential to
shift towards anodic or cathodic region. Also there was change on
both anodic and cathodic polarization curves after inhibitor addition.
This observation leads to the conclusion that the inhibitors, EBI and
EEBA act as mixed type inhibitors. A comparison of percentage inhibi-
tion efficiencies of the two inhibitors were given in Fig. 7 in the online
version at http://dx.doi.org/10.1016/j.molliq.2016.04.113. (Please refer
in the supplementary materials).

3.2. Adsorption study

As known, the adsorption isotherms provide important information
on interaction between the inhibitor and metal surface [43]. The inter-
action of the inhibitor and steel iron surface is described on the model
followed by adsorption isotherms. Adsorption of inhibitor molecules
on surface is a substitution process where an exchange of adsorbed
watermoleculeswith organicmolecules occurred. The degree of surface
covered (θ) by inhibitor on steel is dependent on inhibitor concentra-
tion at constant temperature, this way adsorption isotherm is evaluated
at equilibrium conditions [44]. The inhibition efficiencies of organic
molecules mainly depend on their adsorption ability on the metal
surface. Therefore, it is of utmost importance to determine the relation
between adsorption and corrosion inhibition. Several adsorption
isotherms were attempted to fit the degree of surface coverage values,
θ (%IE/100) to adsorption isotherms including Frumkin, Temkin,
Freundlich and Langmuir isotherms. The values for various concentra-
tions of inhibitors in acidic media have been evaluated from EIS
measurements. In the case of EBI, when Cinh/ vs. Cinh was plotted, a
straight line with R2 value close to unity was obtained in all the cases
and thus obeyed Langmuir adsorption isotherm (Fig. 8a–c), except
value at 313 K in 1.5 M HCl which gave straight line with R2 value

close to unity when vs. Log Cinh was plotted and in this case
Temkin adsorption isotherm was obeyed as represented in Fig. 8d. The
θ values for EEBA obeyed Langmuir adsorption isotherm at all the
three temperatures in different acid concentrations which are repre-
sented in Fig. 9.

Langmuir adsorption isotherm can be represented using the follow-
ing equation:

Cinh

θ
¼ 1

Kads
þ Cinh: ð5Þ

Temkin adsorption isotherm can be represented using the following
equation:

exp fθð Þ ¼ KadsCinh ð6Þ
where Cinh is the concentration of inhibitor in ppm, Kads is the equilibri-
um constant for adsorption-desorption process which is obtained from
the following equation:

Kads ¼
θ

Cinh 1−θð Þ : ð7Þ

The free energy of adsorption ΔGads was calculated using the
equation:

ΔGads ¼ −RTln 55:5 Kadsð Þ: ð8Þ

doi:10.1016/j.molliq.2016.04.113


Table 4a
Adsorption parameters obtained for different concentrations of EBI at different acid concentration and temperatures.

Conc. of
HCl (M)

Conc. Of
EBI (ppm)

Temperature (K)

303 308 313

Kads (104 M−1) −ΔGads (kJ/mol) Kads (104 M−1) −ΔGads (kJ/mol) Kads (104 M−1) −ΔGads (kJ/mol)

0.5 50 1.06 33.47 0.28 30.68 0.20 30.25
100 1.59 34.49 0.24 30.21 0.35 31.65
150 2.28 35.39 0.51 32.15 0.40 32.04
200 3.77 36.66 0.46 31.90 0.41 32.07

1 50 0.42 31.16 0.21 29.82 0.18 30.06
100 0.71 32.47 0.30 30.82 0.15 29.61
150 0.53 31.75 0.25 30.32 0.23 30.61
200 1.35 34.08 0.29 30.69 0.245 30.77

1.5 50 0.38 30.88 0.14 28.79 0.03 25.35
100 0.238 29.71 0.07 27.13 0.0392 25.99
150 0.46 31.39 0.05 26.50 0.0391 25.98
200 1.24 33.85 0.06 26.71 0.03 25.65
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From Tables 4a and 4b, it can be seen that Kads values are relatively
high. This shows the high adsorption ability of inhibitor on mild steel
surface [45]. It can also be seen from the table thatΔGads values are neg-
ative. This indicates the spontaneity of adsorption and the stability of
adsorbed layer on mild steel surface [46,47]. It is said that the values
of ΔGads obtained around −20 kJ/mol or lower indicate physisorption
whereas the values around −40 kJ/mol indicate chemisorption
[48–50]. The adsorption phenomena of an organic molecule cannot be
considered as purely physical or chemical adsorption phenomena [51,
52]. The adsorption of inhibitor on to themild steel surfacemay involve
both physisorption and chemisorption. From electrochemical studies it
was found that %IE decreased with increase in temperature. This can
be explained by considering the point that the adsorption of inhibitor
on mild steel surface is not effective at higher temperatures.
3.3. Computational study

To investigate the effect ofmolecular structure on inhibition efficien-
cy, some quantum chemical calculations were performed. Various
quantum chemical parameters of the two inhibitors were calculated
using Gaussian 03 program package. In the case of EBI, the energy of
highest occupied molecular orbital (EHOMO) is −5.8762 eV. For EEBA,
the value of EHOMO is −5.798 eV. The energy of the lowest unoccupied
molecular orbital (ELUMO) obtained for EBI is −0.2313 eV. For EEBA,
the value of ELUMO is −0.205 eV. In the case of EBI, the energy gap
(ΔE), ELUMO–EHOMO is 5.6449 eV and the energy gap for EEBA is
5.593 eV. An idea about the inhibition efficiency of the molecule will
be obtained from ΔE value. A small ΔE value indicates more efficient
Table 4b
Adsorption parameters obtained for different concentrations of EEBA in different acid concentr

Conc. of
HCl (M)

Conc. Of
EEBA (ppm)

Temperature (K)

303 308

Kads (104 M−1) −ΔGads (kJ/mol) Kads

0.5 50 8.63 38.75 2.71
100 4.63 37.18 1.89
150 4.81 37.28 1.62
200 3.89 36.74 2.02

1 50 5.28 37.51 2.25
100 3.79 36.68 1.95
150 3.24 36.28 1.96
200 2.56 35.69 1.60

1.5 50 4.26 36.97 2.91
100 4.74 37.24 1.65
150 4.06 36.85 1.16
200 3.61 36.55 0.95
inhibition [14]. The HOMO and LUMO of the two inhibitor molecules
were given in Fig. 10 in the online version at http://dx.doi.org/10.
1016/j.molliq.2016.04.113. (please refer in the supplementary mate-
rials). The ΔE value for EEBA is smaller than that of EBI which shows
that EEBA is more efficient inhibitor than EBI. Thus the theoretical
study is in perfect agreement with the electrochemical studies.

The optimized molecular geometries of EBI and EEBA were deter-
mined and shown in Fig. 1. Condensed Fukui indices of EBI and EEBA
were calculated and the results are given in Tables 5 in the online ver-
sion at http://dx.doi.org/10.1016/j.molliq.2016.04.113.a and b (please
refer in the supplementary materials). The local reactivity of the inhibi-
tor molecule had been investigated using the condensed Fukui indices
which give an indication about the reactive centres ofmolecules (nucle-
ophilic and electrophilic centres). The molecular regions where the
Fukui function is large are chemically softer than the regions where
the Fukui function is small. The site of nucleophilic attack will be the
one with maximum f+ value and the site of electrophilic attack will be
the one with maximum f− value. From the table we can see that in
the case of EBI, f+ value is the highest for C (3). Hence this is the site
for nucleophilic attack. The f− value is the highest for C (5). Hence this
is the site for electrophilic attack. In the case of EEBA, f+ value is the
highest for C (7) and hence this is the site for nucleophilic attack. The
f− value is highest for C (5). Hence this is the site for electrophilic attack.
4. Conclusions

Electrochemical measurements such as EIS and potentiodynamic
polarization were used to study the corrosion inhibition efficiency of
ation and temperatures.

313

(104 M−1) −ΔGads (kJ/mol) Kads (104 M−1) −ΔGads (kJ/mol)

36.42 1.56 35.58
35.49 1.27 35.04
35.11 1.53 35.53
35.67 1.69 35.79
35.95 2.11 36.36
35.58 1.65 35.72
35.59 1.19 34.87
35.07 1.23 34.96
36.61 1.39 35.28
35.15 0.802 33.85
34.25 0.69 33.45
33.74 0.80 33.84

doi:10.1016/j.molliq.2016.04.113
doi:10.1016/j.molliq.2016.04.113
doi:10.1016/j.molliq.2016.04.113
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different concentrations of EBI and EEBA in various concentrations of
HCl ranging from 0.5 to 1.5 M at temperatures 303, 308 and 313 K.
Based on this study it can be concluded that

(i) In the presence of EBI and EEBA there is effective reduction in
corrosion of mild steel exposed to HCl.

(ii) The inhibition efficiency of EBI and EEBA increases with increase
in its concentration. The efficiency was found to decrease with
increase in temperature aswell as increase in acid concentration.
In the case of both the inhibitors, maximum efficiency was ob-
served in 0.5MHCl at 303K. EEBAwas found to bemore efficient
inhibitor than EBI.

(iii) The mode of inhibition of EBI and EEBA was through adsorption
on to themild steel surface. Themode of adsorptionwas believed
to be both physisorption and chemisorption. For EBI, the adsorp-
tion obeyed Langmuir adsorption isotherm except for 313 K in
1.5MHCl, forwhich the best fit adsorption isothermwas Temkin
adsorption isotherm. For EEBA, the adsorption obeyed Langmuir
adsorption isotherm.

(iv) Various quantum chemical parameters as well as optimized ge-
ometry of the inhibitor were calculated. Theoretical study also
showed that EEBA was more efficient inhibitor than EBI. The
Fukui indices were also calculated.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.molliq.2016.04.113.
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