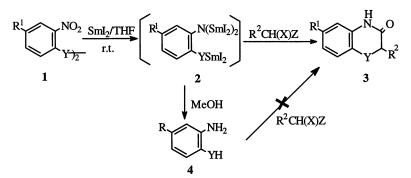


Tetrahedron Letters 42 (2001) 3125-3127

TETRAHEDRON LETTERS

Synthesis of 2*H*-1,4-benzothiazin-3(4*H*)-ones and 2*H*-1,4-benzoselenazin-3(4*H*)-ones with the aid of samarium(II) iodide

Weihui Zhong^a and Yongmin Zhang^{a,b,*}


^aDepartment of Chemistry, Zhejiang University (Campus Xixi), Hangzhou 310028, PR China ^bLaboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China

Received 11 January 2001; revised 21 February 2001; accepted 28 February 2001

Abstract—Bis(*o*-nitrophenyl) disulfides or diselenides were easy to reduce by samarium(II) iodide to produce the active intermediates **2** in situ, which readily react with α -halocarboxylic derivatives to yield the corresponding products 2*H*-1,4-benzo-thiazin-3(4*H*)-ones and 2*H*-1,4-benzoselenazin-3(4*H*)-ones, respectively, in moderate to high yields under mild conditions. © 2001 Elsevier Science Ltd. All rights reserved.

2H-1,4-Benzothiazin-3(4H)-one derivatives have attracted strong interest due to their biological properties.¹ For example, they can be used as efficient tranquilizers,1b angiotensin converting enzyme inhibitors1c or aldose reductase inhibitors.^{1d} The method for preparing this kind of compound using o-aminothiophenols or o-aminophenyldisulfides as starting materials requires harsh conditions such as acid or base as a catalyst, moderate to high thermal conditions and prolonged reaction times.^{1a,2} These derivatives can also be obtained from other procedures such as cyclization of alkyl 2-haloacetamidophenyl sulfides^{3a} or reductive cyclization of α -(o-nitrophenylthio)carboxylic acids with the aid of sodium borohydride and palladium on charcoal.3b Although many methods have been introduced for the preparation of 2H-1,4-benzothiazin-3(4*H*)-ones, to our knowledge very few reports on the synthesis of 2H-1,4-benzoselenazin-3(4*H*)-ones are known.⁴ Here, we wish to describe a new method for the preparation of 2H-1,4-benzothiazin-3(4*H*)-ones and 2H-1,4-benzoselenazin-3(4*H*)-ones with the aid of samarium(II) iodide.

Kagan's reagent, samarium(II) iodide⁵ (SmI₂) is an exceptional reagent for promoting reductive cyclization reactions, and the chemistry of this reagent has been well documented in several reviews.⁶ Previous research demonstrated that nitro groups, sulfur–sulfur bonds or selenium–selenium bonds were easy to reduce and cleave with samarium(II) iodide.^{7,8} These interesting

Scheme 1. $R^1 = H$, Cl; Y = S, Se; $R^2 = H$, alkyl, aryl; $Z = CO_2H$, CO_2Me , CO_2Et , CN.

Keywords: samarium(II) iodide; nitro group; disulfide; diselenide; reductive cyclization; 2*H*-1,4-benzothiazin-3(4*H*)-one; 2*H*-1,4-benzoselenazin-3(4*H*)-one.

^{*} Corresponding author. E-mail: yminzhang@mail.hz.zj.cn

Entry	\mathbb{R}^1	Y	$R^{2}CH(X)Z$	Temp. (°C)	Time (h)	Yield (%) ^a
3a	Н	S	BrCH ₂ CO ₂ Et	Rt	2	83, 0 ^ь
	Н	S	ClCH ₂ CO ₂ Et	60	3	61
	Н	S	ClCH ₂ CO ₂ H	60	4	60
	Н	S	CICH ₂ CN	60	24	0^{c}
3b	Н	S	CH ₃ CH(Br)CO ₂ H	40	3	73
3c	Н	S	(CH ₃) ₂ CHCH(Br)CO ₂ H	60	4	55, 0 ^b
3d	Н	S	$C_6H_5CH(Br)CO_2Me$	60	4	65
3e	Cl	S	BrCH ₂ CO ₂ Et	Rt	2	84
3f	Cl	S	CH ₃ CH(Br)CO ₂ H	40	3	71
3g	Cl	S	(CH ₃) ₂ CHCH(Br)CO ₂ H	60	4	59
3h	Н	Se	BrCH ₂ CO ₂ Et	Rt	2	88
3i	Н	Se	CH ₃ CH(Br)CO ₂ H	40	3	79
3j	Н	Se	(CH ₃) ₂ CHCH(Br)CO ₂ H	60	4	71, 0 ^b
3k	Cl	Se	BrCH ₂ CO ₂ Et	Rt	2	89
31	Cl	Se	CH ₃ CH(Br)CO ₂ H	40	3	81
3m	Cl	Se	(CH ₃) ₂ CHCH(Br)CO ₂ H	60	4	75

Table 1. Preparation of 2H-1,4-beznothiazin-3(4H)-ones and 2H-1,4-benzoselenazin-3(4H)-ones by SmI₂

^a Isolated yields based on bis(o-nitrophenyl) disulfides or diselenides.

^b MeOH (0.2 mL) was added after the formation of the intermediates **2** and *o*-aminothiophenols or *o*-aminoselenophenols were obtained. In this case, no products **3** could be detected.

° The reaction was studied at 0°C, 25°C and at reflux.

results prompted us to investigate a new application of samarium(II) iodide, which is SmI_2 -mediated simultaneous reduction of two functional groups to form an active trivalent samarium species and its application in the synthesis of heterocyclic compounds.⁹ In order to extend the application of this reagent, we investigated the SmI_2 -mediated simultaneous reduction of the nitro group and the sulfur–sulfur bond or the selenium–selenium bond in bis(*o*-nitrophenyl) disulfides and diselenides.

It was found in our experiment^{10,11} that when 0.5 equivalents of bis(o-nitrophenyl) disulfides 1 (Y=S) were added dropwise to 7 equivalents of SmI₂ in anhydrous THF at room temperature under a nitrogen atmosphere, the deep blue color of the solution changed to a yellow color within several minutes; while under similar conditions, bis(o-nitrophenyl) diselenides 1 (Y = Se) led to a brown-red color. The above phenomena hinted that the nitro group was reduced and the sulfur-sulfur bond or selenium-selenium bond was reductively cleaved simultaneously by SmI₂ to form the intermediate 2 as a 'living' species in situ.^{8c,9} When α-halocarboxylic derivatives were treated with intermediate 2, the desired products 2H-1,4-benzothiazin-3(4H)-ones **3a**-g and 2H-1,4-benzoselenazin-3(4H)ones **3h–m** were obtained in good yields (Scheme 1 and Table 1).

The results are summarized in Table 1. According to Table 1, we found that α -bromoesters are more reactive than other α -halocarboxylic derivatives (entry 3a); chloroacetonitrile failed to react with the active species 2 to yield a similar product 3a. However, if the intermediates 2 were protonated by adding MeOH, the corresponding products 4 (*o*-aminothiophenols or *o*-aminoselenophenols) were obtained; if this was followed by adding α -halocarboxylic derivatives under

similar conditions (entries 3a, 3c and 3j), no reaction took place and no products 3 could be detected.

In summary, a series of 2H-1,4-beznothiazin-3(4H)ones and 2H-1,4-beznoselenazin-3(4H)-ones was synthesized via reductive cyclization of bis(*o*-nitrophenyl) disulfides or diselenides with α -halocarboxylic derivatives. The advantages of our method are the easily accessible starting materials, convenient manipulation and the moderate to high yields of the process.

Acknowledgements

We are grateful to the National Natural Science Foundation of China (Project No. 29872010) and the NSF of Zhejiang province for financial support.

References

- (a) Krapcho, J.; Szabo, A.; Williams, J. J. Med. Chem. 1963, 6, 214; (b) Laubach, G. D. US 2,956, 054 (1962) (Chem. Abstr. 1962, 57: 3454g); (c) Trapani, G.; Latrofa, A.; Franco, M.; Liso, G. Farmaco 1995, 50, 107 (Chem. Abstr. 1995, 123: 55813k); (d) Tawada, H.; Sugiyama, Y.; Ikeda, H.; Yamamoto, Y.; Meguro, K. Chem. Pharm. Bull. 1990, 38, 1238.
- (a) Angeloni, A. S.; Pappalardo, G. Gazz. Chim. Ital. 1961, 91, 633 (Chem. Abstr. 1962, 56: 10136e); (b) Jacobsen, N.; Lolind-Andersen, H. Synthesis 1990, 911; (c) Hori, M.; Kataoka, T.; Shimizu, H.; Imai, Y. Chem. Pharm. Bull. 1979, 27, 1973.
- (a) Prasad, R. N.; Tietie, K. Can. J. Chem. 1966, 44, 1247; (b) Coutts, R. T.; Barton, D. L.; Smith, E. M. Can. J. Chem. 1966, 44, 1733; (c) Teulon, J. M. Ep 162,176 (1985) (Chem. Abstr. 1986, 104: 109668r).

- (a) Develotte, J. Ann. Chim. 1950, 12, 215 (Chem. Abstr. 1951, 45: 1582d); (b) Jacquemin, P. V.; Christiaens, L. E.; Renson, M. J.; Evers, M. J.; Dereu, N. Tetrahedron Lett. 1992, 33, 3863.
- Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693.
- For reviews, see: (a) Krief, A.; Laval, A. M. Chem. Rev. 1999, 99, 745; (b) Molander, G. A. Acc. Chem. Res. 1998, 31, 603; (c) Molander, G. A.; Harris, C. R. Tetrahedron 1998, 54, 3321; (d) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307; (e) Imamota, T. Lanthanides in Organic Synthesis; Academic Press: London, 1994; Chapter 4; (f) Molander, G. A. Chem. Rev. 1992, 92, 29; (g) Curran, D. P.; Fevig, T. L.; Jasperse, C. P.; Totleben, M. J. Synlett 1992, 943.
- (a) Zhang, Y.; Lin, R. Synth. Commun. 1987, 17, 329; (b) Souppe, D. L.; Namy, J. L.; Kagan, H. B. J. Organomet. Chem. 1983, 250, 227.
- (a) Jia, S. X.; Zhang, Y. M. Synth. Commun. 1994, 24, 387; (b) Zhang, Y. M.; Yu, Y. P.; Lin, R. H. Synth. Commun. 1993, 23, 189; (c) Fukuzawa, S.; Niiomoto, Y.; Fujinami, T.; Sakai, S. Heteroatom. Chem. 1990, 1, 490.
- (a) Chen, X. Y.; Zhong, W. H.; Zhang, Y. M. J. Chem. Res. 2000, 386; (b) Chen, X. Y.; Zhong, W. H.; Zhang, Y. M. Chin. Chem. Lett. 2000, 11, 387; (c) Zhong, W. H.; Chen, X. Y.; Zhang, Y. M. Heteroatom. Chem. 2001, 12, in press.
- 10. General procedure: A solution of bis(o-nitrophenyl)disulfides or diselenides (0.5 mmol) in dry THF (3 mL) was added dropwise to the solution of SmI₂ (7 mmol) in THF (30 mL) at room temperature under a nitrogen atmosphere. The deep blue color of the solution changed to yellow (as for bis(o-nitrophenyl) disulfides) or brownish red (as for bis(o-nitrophenyl) diselenides) within 5–10 minutes. Then a solution of α -halocarboxylic derivative

(1.1 mmol) in anhydrous THF (2 mL) was added slowly. After being stirred for a given time (Table 1, the reaction was monitored by TLC), the reaction was quenched with dilute HCl (0.1 mol/L, 3 mL) and extracted with ether $(3\times30 \text{ mL})$. The organic phase was successively washed with a saturated solution of Na₂S₂O₃ (15 mL), saturated brine (15 mL), and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to give the crude product which was purified by preparative TLC using ethyl acetate and cyclohexane (1:3) as eluant.

11. Typical physical data of new compounds are listed. Compound 3c, 2-isopropyl-2H-1,4-benzothiazin-3(4H)-one 115-117°C. v_{max}: 3320 (NH), 2975, 2850, 1380 (CH₃, CH), 1665 (C=O) cm⁻¹. $\delta_{\rm H}$: 9.80 (1H, br s, NH), 7.32– 6.96 (4H, m, ArH), 3.11 (1H, d, J=7.8 Hz, CH), 2.13-1.80 (1H, m, CH), 1.04 (6H, d, J = 6.5 Hz, 2×CH₃). m/z(%): 208 (M+1, 17), 207 (M⁺, 71), 165 (100), 164 (41), 136 (60), 132 (71). Anal. C₁₁H₁₃NOS. Calcd C, 63.74; H, 6.32; N, 6.76. Found C, 63.89; H, 6.11; N, 6.53%. Compound 3j, 2-isopropyl-2H-1,4-benzoselenazin-3(4H)-one 123-125°C. v_{max}: 3335 (NH), 2980, 2830, 1375 (CH₃, CH), 1655 (C=O) cm⁻¹. $\delta_{\rm H}$: 9.82 (1H, br s, NH), 7.46– 6.95 (4H, m, ArH), 3.20 (1H, d, J=8.0 Hz, CH), 2.15-1.81 (1H, m, CH), 1.07 (6H, d, J = 6.5 Hz, 2×CH₃). m/z(%): 255 (⁸⁰Se-M⁺, 100), 253 (⁷⁸Se-M⁺, 54.5), 213 (48), 211 (24.6), 184 (25), 132 (87), 83 (87). Anal. C₁₁H₁₃NOSe. Calcd C, 51.99; H, 5.16; N, 5.51. Found C, 52.12; H, 5.03; N, 5.65%. Compound 3l, 6-chloro-2-methyl-2H-1,4benzoselenazin-3(4H)-one 178-180°C. v_{max}: 3325 (NH), 2960, 2830, 1380 (CH₃, CH), 1660 (C=O) cm⁻¹. $\delta_{\rm H}$: 10.23 (1H, br s, NH), 7.60-6.85 (3H, m, ArH), 3.56 (1H, q, J=7.2 Hz, CH), 1.53 (3H, d, J=7.2 Hz, CH₃). m/z (%): 261 (⁸⁰Se-M⁺, 82), 180 (24), 156 (33), 154 (100), 55 (27). Anal. C₉H₈ClNOSe. Calcd C, 41.49; H, 3.10; N, 5.38. Found C, 41.56; H, 3.21; N, 5.14%.