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Abstract:  The use of  polyleucine in the diastereoselective, catalyst-controlled epoxidation of 

enantiomerically pure 7-heterosubstituted-ct,13-unsaturated ketones (1), to yield the corresponding 

ct,13-epoxy-)',8-(isopropylidene)dioxy carbonyl compounds, is described. © 1999 Elsevier Science Ltd. 
All rights reserved. 

Many reagents and catalysts enable enantioselective synthesis, but only a few are powerful enough to 

control reactions of  chiral compounds so as to overcome intrinsic diastereoselection in both the matched and 

mismatched sense. ~ One such system involves the well-known Katsuki-Sharpless epoxidation of  

)'-heterosubstituted allylic alcohols. 2 Elsewhere it has been reported that polyleucine acts as a highly 

versatile enantioselective epoxidation catalyst. 3 Herein we extend this powerful methodology by 

demonstrating epoxidation of  7-heterosubstituted-ct,13-unsaturated carbonyl compounds (bearing a chiral 

centre in the )'-position), using polyleucine as a chiral catalyst to overwhelm the intrinsic diastereofacial 

preference exhibited by the chiral substrate. 

The dioxolane (4S)-1 was chosen as a substrate for this investigation. Using the recently reported silica 

gel-supported sodium metaperiodate methodology, 4 one pot oxidative cleavage of 1,2:5,6-diisopropylidene- 

D-mannitol with subsequent olefination using phenylcarbonylmethylene triphenylphosphorane afforded (S)-I 

in 97 % yield (ratio of  isomers E:Z = 2 : 1). The E/Z-mixture was separated by flash chromatography and 

the isomers studied individually with respect to polyleucine-catalysed oxidation. 

Epoxidation of the E-isomer (4S)-1 under biphasic conditions 3a (UHP/DBU/THF) in the absence of  

polyleucine gave the isomeric epoxides 2 (syn) and 3 (anti) in the ratio of  1 : 2.2. As expected from earlier 

work, immobilised poly-D-leucine (i-PDL) was the matched catalyst providing 3 in excellent 

diastereoselectivity (1 : 30 and 1 : 20), using two protocols. 3 However, polymer-control of the 

diastereoselectivity was not impressive in the mismatched case using immobilised poly-L-leucine (i-PLL) as 

the chiral catalyst. It is noteworthy that the rate of the background reaction is relatively fast yet the 

polyamino acids still exert a significant control, particularly in the matched case. In an attempt to decrease 

the rate of the background reaction, the reaction temperature was lowered. Percarbonate conditions 3b 

(Na2CO31.5H202/DME/H20) responded best to the lower temperature, resulting in a much improved 

diastereoselectivity in the mismatched case using i-PLL (3.8 : 1)(see Table 1). Recrystallisation of the 

diastereomerically enriched epoxides 2 and 3 provided single diastereomers 5 (for the physical parameters of 

compound 3 see reference 9; compound 2 had mp 64 °C, [ct]o = -35.9 ° [c 1, CHCI3]). Proof of  the 

anti-diastereoselectivity of the matched case was obtained from crystal structure analysis. 6 
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Scheme 1. 

Table 1: Influence of Polyleneine on the Epoxidatinn of E-1 

Temperature Catalyst Time 2 : 3 d 

~ - ~ O  H 

O ~  Ph 

H O 
3 

Matching Isolated yield 

20 °C None a 5 h 1 : 2.2 

20 °C i-PDL a 5 h 1 : 30 matched 

20 °C i-PLL a 5 h 1 : 1 mismatched 

20 °C None b 30 min 1 : 2.7 

20 °C i-PDL b 30 min 1 : 20 matched 

20 °C i-PLL b 30 min 2.4 : 1 mismatched 

to -3 °C None b 24 h 1 : 3.0 5 % sm c left 

to -3 °C i-PDL b 24 h 1 : 34 matched 

to -3 °C i-PLL b 24 h 3.8 : 1 mismatched 

93 % 

95 % 

92 % 

94 % 

97 % 

96 % 

94 % 

97 % 

98% 
a) UHP, DBU, THF, 20 °C. b) Na2CO3.1.5 H202, DME:H20 (2:1). c) sin: starting material, d) determined by HPLC. 
i-PDL: immobilised poly-D-leueine; i-PLL: immobilised poly-L-leucine. 

Epoxidation of the Z-isomer (4S)-1 is stereoconvergent with respect to its E-isomer, thus once again 

affording the epoxides 2 and 3, Biphasic epoxidation of Z-(4S)-I in the absence of catalyst very rapidly 

afforded 3 as the major diastereomer, with i-PDL appreciably enhancing the diastereoselectivity in the 

matched sense. In the mismatched case the slight intrinsic control is completely overturned by i-PLL to give 

a syn/anti ratio of  3.6 : 1 and 4.0 : 1 using the biphasic reaction conditions at 20 °C and -30 °C respectively 

(see Table 2). 

Table 2: Influence of Polyleucine on the Epoxidation of (Z)-I 

Temperature Catalyst Time 2 : 3 d Matching Isolated yield 

20 °C None a 50 min 1 : 1.3 92 % 

20 °C i-PDL a 35 min 1 : 8.0 matched 91% 

20 °C i-PLL a 35 min 3.6 : I mismatched 94 % 

-30 °C i-PLL a 18 h 4.0 : 1 mismatched 90 % 
a) and d) As for Table 1. i-PDL: immobilised poly-D-leucine; i-PLL: immobilised poly-L-leucine. 

Furthermore, epoxidation of  a mixture of  geometric isomers of  (4S)-1 (E:Z; 2:1) with matched catalyst 

(i-PDL) under biphasic protocol at 20 °C, afforded a 2 : 3 diastereomer ratio of at least 1 : 17, thus, in a 

synthetic sense obviating the necessity to separate the Wittig olefination E/Z mixture. 

Racemic enone rac-1 was prepared from glycerol (4) as shown in Scheme 2. Swem oxidation of the 

acetonide rac-5 was low yielding and problematic. 7 However, a one pot Swern oxidation and Wittig 

olefination afforded the stable dioxolane rac-1, in excellent yield (99 % fi'om rac-5, E:Z = 1 : 1). 
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Scheme 2. 

Epoxidation of the racemic E-isomer E-rac-1 under percarbonate conditions without polyleucine at 0 °C 

favoured the anti epoxide in a ratio of  1 : 3.0. Careful analysis of  the reaction mixture resulting from a poly- 

L-leucine catalysed epoxidation, under the same conditions, revealed a matched 2 : 3 ratio of  1 : 37 for the 

(4R)-enantiomer of  1, and confirmed a mismatched ratio of 3.9 : 1 for (4S)-1 (cflast  entry Table 1). The 

increase in the matched diastereoselectivty for i-PLL compared to i-PDL was attributed to the greater 

enantiopurity of the natural L-leucine (in comparison to the unnatural D-leucine) used in the preparation of 

leucine N-carboxyanhydride prior to polymerisation. 

In an attempt to expand the polyleucine methodology to the epoxidation of  ot,~-unsaturated esters, the 

corresponding dioxolane 6 was synthesised by Wittig olefmation of  (4R)-2,2-dimethyl-l,3-dioxolan-4- 

carbaldehyde with t-butoxycarbonylmethylene triphenylphosphorane. Attempted substrate controlled 

epoxidation of  (4R)-6 afforded the unexpected hydroperoxy compounds 7 and 8 with an excellent 

diastereoselectivity in favour of  the syn isomer 7 (15.7 : 1). The ratio ofdiastereoisomers was obtained from 

the integration of  the sharp signal of  the hydroperoxy proton in the 1H-NMR spectrum and the 

stereochemistry of  the major diastereomer was based on literature precedent for additions of alkoxides to 

7-alkoxyalkenoates, which have been shown to proceed with syn-diastereoselectivity. 8 Attempted 

polyleucine controlled epoxidation of  6 afforded the same hydroperoxides with a lowering in the 

diastereoselectivity and negligible matching or mismatching (see Table 3). The syn-hydroperoxide 79 is 

currently under investigation as a chiral oxidation reagent. 

3-0 3-0 3-0 
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6 7 8 

Scheme 3. 

Table 3: Oxidation of 6 with urea-hydrogenperoxide and base, with and without polyleucine 
I Temperature Catalyst Time 7 : 8 Isolated yield 

20 °C None a 5 h 15.7 : 1 25 %b 
20 °C i-PDL a 5 h 2.4 : 1 40 %c 

20 °C i-PLL a 5 h 3.2 : 1 27 %d 
a) As for Table 1. b) 33 % starting material recovered, c) 30 % starting material recovered, d) 35 % starting material recovered. 

In summary, we have demonstrated, for a chiral y-heteroatom substituted ct,~-unsaturated enone, that 

polyleueine is a sufficiently powerful epoxidation catalyst to overcome intrinsic stereocontrol. This new 

finding allows the efficient synthesis of  highly functionalised enantiomerically pure intermediates required 
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for elaboration towards natural products and other target molecules. Further work in extending this 
methodology and utilising the highly functionalised enantiomerically pure intermediates is in progress. 
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