420 Short Papers SYNTHESIS

A New Methodology for Obtaining α -Oxo Ester Equivalents: Sulfanylation of α -Sulfonyl Carboxylic Esters in a Solid/Liquid Phase Transfer Catalytic System

Blanka Wladislaw,* Liliana Marzorati, Nelson Ferreira Claro Junior, Claudio Di Vitta Instituto de Química, Universidade de São Paulo, C.P. 26.077, CEP. 05599-970, São Paulo, S.P., Brazil Fax + 55(11)8155579

Received 2 April 1996; revised 5 September 1996

A new, convenient procedure for the synthesis of a wide range of α -methylsulfanyl- α -phenylsulfonyl carboxylic esters has been developed and their facile conversion to the corresponding α -oxo esters demonstrated.

In the course of our studies of the reactions of α -sulfonyl carbanions¹ we became interested in α -sulfonyl carboxylic esters, which, by sulfanylation, could lead to esters containing the $> C(SR)SO_2R$ group,²⁻⁴ the synthetic equivalent of a C=O group. α -Oxo esters are of interest not only because of their biological importance, but also as synthetic precursors of α -amino esters.⁵

Although sulfanylation reactions in homogeneous media have been extensively investigated, ⁶ the few studies in the literature that have used phase transfer catalysis are limited to nitriles. ^{7–8} It was reported that disulfides are not convenient sulfanylating agents due to the liberation of the RS⁻ anion which inhibits the catalytic process by formation of a lipophilic ion pair RS⁻Q⁺ with the cation of the catalyst.

In a previous study⁹ on sulfanylation of benzylic sulfones by phase transfer catalysis using NaOH as base and Herquat as catalyst, we were able to avoid this drawback by employing S-methyl methanethiosulfonate as the sulfanylating agent, which leads to a less nucleophilic -SO₂CH₃ leaving group.

More recently, the solid-liquid system consisting of solid $K_2\mathrm{CO}_3$ in the presence of triethylbenzylaminium chloride (TEBA), introduced by Makosza et al. ¹⁰ for the carbon alkylation of active methylene compounds, was employed in our laboratory for sulfanylation of some α -sulfinyl ketones. ¹¹ We found that this methodology could be very convenient for sulfanylation of α -sulfonyl carboxylic esters containing fairly strongly acidic CH groups, in addition to the fact that the use of $K_2\mathrm{CO}_3$ as base instead of NaOH avoids the hydrolysis of the ester.

In fact, when several alkyl 1a-e and arylacetic 1f-j α -phenylsulfonyl carboxylic esters were submitted to reaction with S-methyl methanethiosulfonate at room temperature in benzene, in the presence of solid K_2CO_3 and TEBA, ¹⁰ the corresponding monosulfanylated derivatives 2a-e and 2f-j were obtained in good yields. It is noteworthy that only a slight decrease of yield and an increase of the reaction time were observed when some selected α -sulfonyl esters 1a, b and f were sulfanylated under the same reaction conditions, employing dichloromethane as solvent (Table).

Proof that these sulfanylation reactions really occur by phase transfer catalysis was obtained by performing the reaction of S-methyl methanethiosulfonate with ethyl α -phenylsulfonylpropionate (1b) and phenylacetate 1f in the presence of K_2CO_3 in benzene and in the absence of

Table. Sulfanylation of Some Ethyl α -Phenylsulfonyl Carboxylates $\mathbf{1}\mathbf{a}-\mathbf{j}$

$$\begin{array}{c|c} R \\ C_6H_5SO_2CH-CO_2Et \end{array} \xrightarrow{K_2CO_3,TEBA(0,1eq.),MeSSO_2Me} \\ \hline 1 \\ C_6H_5SO_2-C-CO_2E \end{array}$$

Starting Sulfonyl		Time (h)		Products 2 (Yields %) ^a	
Est	ers 1 R	$_{\rm C_6H_6}^{\rm in}$	$_{\mathrm{CH_{2}Cl_{2}}}^{\mathrm{in}}$	$_{\mathrm{C_6H_6}}^{\mathrm{in}}$	$_{\rm CH_2Cl_2}^{\rm in}$
a	Н	1	2	75	75
b	Me	1	2	96	92
c	Et	4		70	
d	<i>i-</i> Pr	6		39	
e	Hex	4		86	
f	C_6H_5	4	6	86	79
g	$C_6H_4OMe(p)$	4		56	
h	$C_6H_4Cl(p)$	4		72	
i	$C_6H_4NO_2(p)$	4		75	
j	$C_6H_4Me(p)$	4		43	

^a Isolated.

TEBA, which afforded the corresponding sulfanylated products 2b and 2f in only 6 and 20 % yield, respectively.

The superiority of this method over the conventional homogeneous one becomes evident upon comparison with the reaction of the sulfonyl esters 1b and 1f with S-methyl methanethiosulfonate in the presence of NaH in DMSO, which afforded the corresponding sulfanylated products 2b and 2f in much lower yields (55 and 64%, respectively).

Of the available methods for the transformation of α -sulfanylated α -sulfonyl esters, $^{2-4}$ the thermal decomposition elaborated in our laboratory for the obtention of aldehydes and ketones 4,12 seemed to be most appropriate since, unlike acid hydrolysis, it should not affect the ester group.

The thermal decomposition of ethyl α -sulfonyl- α -sulfanyl phenyl acetate (1f) took place at 150 °C to give ethyl phenylglyoxylate in 93% yield. It is noteworthy that a higher temperature (160 °C) was necessary for thermal decomposition of the corresponding propionate 1b, obtained by de-ethoxycarbonylative sulfanylation of the α -sulfonyl (methyl) malonic ester¹⁰ to give ethyl pyruvate in 68% yield.

Thus, in summary, the method reported here, sulfanylation in phase transfer catalysis, at room temperature

April 1997 SYNTHESIS 421

using solid K_2CO_3 , catalytic amounts of TEBA and S-methyl methanethiosulfonate as sulfanylating agent, followed by thermal decomposition, represents a simple and general route to aliphatic and aromatic α -oxo esters.

Microanalyses were performed on a Perkin Elmer 2400 CHN elemental analyser. Mps were determined in a Thomas Hoover Kofler hot-stage apparatus, using a Dynamics Optics AHT microscope and are uncorrected. All ¹H NMR spectra were recorded on a Bruker AC-200 spectrometer. Chemical shifts are expressed in ppm relative to SiMe₄ as internal standard. NMR samples were prepared using CDCl₃ (99.8 atom %D, containing 0.03 % v/v TMS, Aldrich). Gravity chromatography was performed on Merck Kieselgel 60 (70–230 mesh).

Ethyl α -phenylsulfonylcarboxylates $\mathbf{1a-b}$ and $\mathbf{1e-j}$ were prepared by a modified procedure of condensation of NaSO₂Ph with the appropriate α -bromo esters. Compounds $\mathbf{1c}$ and $\mathbf{1d}$ were prepared by alkylation of phenylsulfonylacetate $\mathbf{1a}$.

Ethyl Phenylsulfonylacetate (1 a); Typical Procedure:

A solution of ethyl bromoacetate (42 g, 0.25 mol) and NaSO₂Ph (49 g, 0.30 mol) in EtOH (200 mL) was refluxed for 12 h and left standing at r.t. for an additional 12 h. The solvent was removed under reduced pressure and, after addition of $\rm H_2O$ (200 mL), the oily layer was separated and dissolved in $\rm CH_2Cl_2$ (50 mL). After extraction of the aqueous layer with $\rm CH_2Cl_2$ (3 × 50 mL), the combined extracts were dried (Na₂SO₄) and concentrated. The crude solid residue was purified by recrystallization from EtOH/ $\rm H_2O$, affording 47 g (82%) of pure sulfonyl ester, mp 41–43°C (lit. 14 41–42°C).

Ethyl 2-(Phenylsulfonyl)propanoate (1b):

Yield 86%, bp 162°C/1 Torr (lit.14 132°C/0.2 Torr).

Ethyl 2-(Phenylsulfonyl)octanoate (1e):

Yield 78 %, bp 174 °C/0.6 Torr, ¹H NMR: $\delta = 0.86$ (t, J = 7 Hz, 3 H), 1.15 (t, 3 H), 1.25–1.29 (m, 8 H), 1.98–2.00 (m, 2 H), 3.86–3.94 (dd, 1 H), 4.10 (q, J = 7 Hz, 2 H), 7.56–7.89 (m, 5 H).

Anal. calc. for C₁₆H₂₄O₄S: C, 61.51; H, 7.74. Found: C, 61.71; H, 7.78

Ethyl Phenyl(phenylsulfonyl)acetate (1f):

Yield 72 %, white crystals (EtOH/ $\rm H_2O$), mp 100.3–101.1 °C (lit. 14 100–101 °C).

Ethyl (4-Methoxyphenyl)phenylsulfonylacetate (1g):

Yield 61 %, white crystals, mp 80.2-81.2 °C (EtOH/H₂O).

¹H NMR: δ = 1.22 (t, 3 H), 3.80 (s, 3 H), 4.16–4.26 (m, 2 H), 5.05 (s, 1 H), 6.79–7.65 (m, 4 H).

Anal. calc. for $C_{17}H_{18}O_5S$: C, 61.06; H, 5.43. Found: C, 60.88; H, 5.48.

Ethyl (4-Chlorophenyl)phenylsulfonylacetate (1h):

Yield 66%, white crystals (EtOH/H₂O) mp 87.6-88.9°C.

¹H NMR: $\delta = 1.22$ (t, 3 H), 4.09–4.32 (m, 2 H), 5.07 (s, 1 H), 7.25–7.68 (m, 4 H).

Analc. calc. for $C_{16}H_{15}O_4ClS$: C, 56.72; H, 4.46. Found: C, 56.82; H, 4.61

Ethyl (4-Nitrophenyl)phenylsulfonylacetate (1i):

Yield 71 %, white crystals (CH₂Cl₂ /hexane), mp 128.5–129.8 °C. ¹H NMR: δ = 1.23 (t, 3 H), 4.14–4.30 (m, 2 H), 5.20 (s, 1 H), 7.46–8.20 (m, 4 H).

Anal. calc. for C₁₆H₁₅O₆NS: C, 55.01; H, 4.33. Found: C, 55.11; H 4.45

Ethyl (4-Methylphenyl)phenylsulfonylacetate (1j):

Yield 69%, white crystals (EtOH/H₂O), mp 104.5-106.5°C.

¹H NMR: δ = 1.21 (t, 3 H), 2.33 (s, 3 H), 4.12–4.22 (m, 2 H), 5.07 (s, 1 H), 7.08–7.65 (m, 4 H).

Anal. calc. for $C_{17}H_{18}O_4S$: C, 64.13; H, 5.70. Found: C, 63.74; H, 5.61.

Ethyl 2-Phenylsulfonylbutanoate (1c); Typical Procedure:

To a suspension of NaH (1.05 g, 21.9 mmol, 50 % in mineral oil, washed twice with anhyd hexane) in anhyd DMSO (20 mL), a solution of 1a (5.00 g, 21.9 mmol) in anhyd DMSO (30 mL) was added dropwise via syringe, with stirring at r.t. After $\rm H_2$ evolution had ceased, a solution of 6.80 g (62.0 mmol) of EtBr in anhyd DMSO (20 mL) was added. After stirring for 4 h at 60 °C, the mixture was allowed to cool and poured into cold $\rm H_2O$ (100 mL) and extracted with $\rm CH_2Cl_2$ (4 × 35 mL). The combined extracts were washed with $\rm H_2O$ and dried (MgSO₄). After solvent removal, the crude product was recrystallized from EtOAc/hexane, affording 4.20 g (75 %) of white crystals; mp 61–63 °C (lit. ¹⁵ 62–63 °C).

¹H NMR: δ = 0.98 (t, J = 7 Hz, 3 H), 1.17 (t, 3 H), 1.85–2.19 (m, 2 H), 3.83–3.90 (dd, 1 H), 4.06–4.18 (q, J = 7 Hz, 2 H), 7.27–7.90 (m, 5 H).

Ethyl 3-Methyl-2-phenylsulfonylbutanoate (1 d):

Yield 42%, white crystals (EtOH/H $_2$ O), mp 58–60°C (lit. 16 59.5–60.5°C).

¹H NMR: δ = 0.97–1.25 (dd, 6 H), 1.06 (t, 3 H), 2.48–2.52 (m, 1 H), 3.76 (d, 1 H), 3.90–4.00 (m, 2 H), 7.49–7.91 (m, 5 H).

Sulfanylation by Phase Transfer Catalysis; General Procedure:

A mixture of the appropriate α -sulfonyl ester (1.70 mmol), finely powdered K_2CO_3 (3.6 mmol), TEBA (10 mol%) and anhyd benzene or CH_2Cl_2 (10 mL) was stirred at r.t. for 1 h. After this time, S-methyl methanethiosulfonate (2.10 mmol) dissolved in anhyd benzene or CH_2Cl_2 (3 mL) was added. The mixture was further stirred for the periods mentioned in the Table. The solid was removed by suction filtration and washed with CH_2Cl_2 (20 mL). The organic extract was washed with H_2O (2 × 20 mL) and dried (MgSO₄). After solvent removal, the crude product was purified by recrystallization or by column chromatography.

Ethyl (Methylsulfanyl)phenylsulfonylacetate (2a):

Yield 75%, white crystals (EtOH/H₂O), mp 80.7-82.2°C.

¹H NMR: δ = 1.19–1.26 (t, J = 7 Hz, 3 H), 2.37 (s, 3 H), 4.13–4.23 (q, J = 7 Hz, 2 H), 4.53 (s, 1 H), 7.56–7.98 (m, 5 H).

Anal. calc. for $C_{11}H_{14}O_4S_2$: C, 48.16; H, 5.14. Found: C, 48.09; H, 5.10.

Ethyl 2-Methylsulfanyl-(2-phenylsulfonyl)propanoate (2b):

Yield 96%, purified by column chromatography using hexane/acetone (4:1) as eluent.

¹H NMR: δ = 1.19–1.27 (t, 3 H), 1.84 (s, 3 H), 2.30 (s, 3 H), 4.13–4.26 (m, 2 H), 7.51–7.99 (m, 5 H).

Anal. calc. for $C_{12}H_{16}O_4S_2$: C, 49.98; H, 5.59. Found: C, 50.28; H, 5.51.

Ethyl 2-Methylsulfanyl-(2-phenylsulfonyl)butanoate (2c):

Yield 70%, purified by column chromatography using benzene/EtOAc (4:0.5) as eluent.

¹H NMR: δ = 1.02–1.09 (t, J = 7 Hz, 3 H), 1.16–1.23 (t, 3 H), 2.01–2.19 and 2.46–2.70 (m, 2 H), 2.27 (s, 3 H), 4.10–4.21 (q, J = 7 Hz, 2 H), 7.50–7.94 (m, 5 H).

Anal. calc. for $C_{13}H_{18}O_4S_2$: C, 51.63; H, 6.00. Found C, 51.42; 5.72. Ethyl 3-Methyl-2-methylsulfanyl-2-phenylsulfonylbutanoate (2d):

Yield 39%. Purified by column chromatography using toluene/ EtOAc (4:1) as eluent.

¹H NMR: δ = 1.08–1.23 (dd, 6 H), 1.21–1.30 (m, 3 H), 2.33–2.52 (m, 1 H), 2.38 (s, 3 H), 4.18–4.30 (m, 2 H), 7.47–7.97 (m, 5 H).

Anal. calc. for $C_{14}H_{20}O_4S_2$: C, 53.14; H, 6.37. Found: C, 53.04; H, 6.16.

Ethyl 2-Methylsulfanyl-(2-phenylsulfonyl)octanoate (2e):

Yield 86%, colorless liquid after washing the crude oily residue with hexane at -20 °C.

¹H NMR: $\delta = 0.88$ (t, 3 H), 1.20 (t, J = 7 Hz, 3 H), 1.26–1.58 (m, 8 H), 1.96–2.10 and 2.43–2.57 (m, 2 H), 2.27 (s, 3 H), 4.15 (q, J = 7 Hz, 2 H), 7.50–7.93 (m, 5 H).

Anal. calc. for $C_{17}H_{26}O_4S_2$: C, 56.95; H, 7.31. Found: C, 57.20; H, 7.02.

422 Short Papers SYNTHESIS

Ethyl Methylsulfanylphenyl(phenylsulfonyl)acetate (2f):

Yield 86%, white crystals (EtOH/H₂O), mp 113.7-114.7°C.

¹H NMR: δ = 1.31 (t, J = 7 Hz, 3 H), 2.46 (s, 3 H), 4.38 (q, J = 7 Hz, 2 H), 7.21–7.54 (m, 5 H).

Anal. calc. for $C_{17}H_{18}O_4S_2$: C, 58.26; H, 5.18. Found: C, 58.34; H, 5.02.

Ethyl (4-Methoxyphenyl)methylsulfanyl(phenylsulfonyl)acetate (2g):

Yield 56%, white crystals (EtOH/H2O), mp 89.4-91.2°C.

 $^{1}\text{H NMR: }\delta=1.33$ (t, 3 H), 2.45 (s, 3 H), 3.81 (s, 3 H), 4.30–4.45 (m, 2 H), 6.72–6.80 and 7.10–7.56 (m, 4 H).

Anal. calc. for $C_{18}H_{20}O_5S_2$: C, 56.82; H, 5.30. Found: C, 56.70; H, 5.30.

Ethyl (4-Chlorophenyl)methylsulfanyl(phenylsulfonyl)acetate (2h): Yield 72%, white crystals (EtOH/H₂O), mp 100.0-101.2°C.

¹H NMR: δ = 1.33 (t, J = 7 Hz, 3 H), 2.42 (s, 3 H), 4.38 (q, J = 7 Hz, 2 H), 7.20–7.56 (m, 4 H).

Anal. calc. for C₁₇H₁₇ClO₄S₂: C, 53.05; H, 4.45. Found: C, 52.87; H. 4.58.

Ethyl Methylsulfanyl(4-nitrophenyl)(phenylsulfonyl)acetate (2i):

Yield 75%, white crystals (EtOH/H₂O), mp 159.2–160.5°C.

 $^{1}\text{H NMR}$ (CD₂Cl₂ /TMS): $\delta = 1.31$ (t, J = 7 Hz, 3 H), 2.36 (s, 3 H), 4.36 (q, J = 7 Hz, 2 H), 7.33–7.63 and 8.06–8.13 (m, 4 H).

Anal. calc. for $C_{17}H_{17}NO_6S_2$: C, 51.63; H, 4.33. Found: C, 51.53; H, 4.14.

Ethyl (4-Methylphenyl)methylsulfanyl(phenylsulfonyl)acetate (2j): Yield 53 %, white crystals (EtOH/H₂O), mp 104.5–106.5 °C.

¹H NMR: δ = 1.33 (t, J = 7 Hz, 3 H), 2.43 (s, 3 H), 3.80 (s, 3 H), 4.37 (q, J = 7 Hz, 2 H), 6.74 (d, J = 9 Hz, 2 H), 7.13 (d, J = 9 Hz, 2 H), 7.26–7.51 (m, 5 H).

Anal. calc. for $C_{18}H_{20}O_4S_2$: C, 59.13; H, 5.53. Found: C, 59.13; H, 5.57.

Sulfanylation Using NaH/DMSO; Typical Procedure:

To a suspension of NaH (0.22 g, 4.6 mmol, 50% in mineral oil, washed twice with anhyd hexane), in anhyd DMSO (4 mL), 1b (1.0 g, 4.1 mmol) in anhyd DMSO (4 mL) was added via syringe, under N_2 . As soon as the gas evolution had ceased, 0.62 g (4.9 mmol) of S-methyl methanethiosulfonate in anhyd DMSO (2 mL) was added via syringe. The mixture was further stirred for 6 h at r.t., poured into sat. NH₄Cl, acidified with HCl to pH 3 and extracted with CH₂Cl₂ (4 × 20 mL). The organic extract was washed with H₂O (20 mL) and dried (Na₂SO₄). After removal of solvent, the orange oil (1.0 g) was purified by column chromatography using benzene/CHCl₃ (3:1) as eluent, affording 0.70 g (55%) of 2b.

The above procedure was applied to the sulfenylation of sulfonyl ester 1f and the reaction monitored by ¹H NMR spectroscopy. After 2 h the crude mixture consisted of 36% of 1f and 64% of 2f. The same result was observed after 4 h.

Thermal Decomposition of Ethyl (Methylsulfanyl)phenyl(phenylsulfonyl)acetate (2f):

A short-path distillation apparatus was charged with 0.50 g (1.4 mmol) of sulfonyl ester **2f**. Distillation under reduced pressure (7 Torr), mantaining the external bath at 150 °C, yielded 0.34 g of a yellow oil. The oil was dissolved in CH_2Cl_2 (5 mL) and dried (MgSO₄). After removal of the solvent, the crude product was purified by column chromatography using hexane/acetone (9.5:0.5) as eluent. The resulting colorless liquid (0.24 g, 95%) was characterized by 1H NMR as ethyl phenylglyoxylate. 17

We thank the CNPq and FAPESP for the scholarships and financial support.

- (1) Wladislaw, B.; Marzorate, L. Reviews on Heteroatom Chemistry 1993, 9, 47.
- (2) Ogura, K.; Suzuki, M.; Watanabe, Y.; Yamashita, M.; Iida, H.; Tsuchihashi, G. Chem. Lett. 1982. 815.
- (3) Ogura, K.; Ohtsuki, K.; Nakamura, M.; Yahata, N.; Takahashi, K.; Iida, M. Tetrahedron Lett. 1985, 2455.
- (4) Wladislaw, B.; Marzorati, L.; Uchôa, R. B. Synthesis 1986, 964.
- (5) Cooper, A.Y.L.; Ginos, Y.Z.; Meister, A. Chem. Rev. 1983, 83, 321.
- (6) Trost, B.M. Chem. Rev. 1978, 78, 36.
- (7) Makosza, M.; Fedorynski, M. Synthesis 1974, 274.
- (8) Joczyk, A. Angew. Chem., Int. Ed. Engl. 1979, 18, 217.
- (9) Wladislaw, B.; Marzorati, L.; Ebeling, G. Phosphorus Sulfur Silicon Relat. Elem. 1990, 48, 163.
- (10) Fedorynski, H.; Wojciechouski, I.; Matacz, Z.; Makosza, M. J. Org. Chem. 1978, 43, 4682.
- (11) Wladislaw, B.; Marzorati, L.; Biaggio, F. J. Org. Chem. 1993, 58, 6132
- (12) Wladislaw, B.; Marzorati, L.; Uchôa, R.B. Phosphorus Sulfur Relat. Elem. 1987, 32, 87.
- (13) Wladislaw, B.; Mazorati, L.; Donnici, C.L. J. Chem. Soc., Perkin Trans I 1993, 3167.
- (14) Lamm, B.; Ankner, K. Acta Chem. Scand. 1978, B32, 193.
- (15) Ashley, W.C.; Shriner, R.L. J. Am. Chem. Soc. 1932, 54, 4410.
- (16) Chodroff, S.; Whitmore, W.F. J. Am. Chem. Soc. 1950, 72, 1073.
- (17) Akiyama, Y.; Takebayashi, S.; Kawasaki, T.; Sakamoto, M. Chem. Pharm. Bull. 1984, 32, 1800.