Tetrahedron Letters 52 (2011) 3527-3531

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Organostannoxane-supported Pd(0) nanoparticles as efficient catalysts for Heck-coupling reactions

Vadapalli Chandrasekhar*, Ramakirushnan Suriya Narayanan

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India

ARTICLE INFO

ABSTRACT

Article history: Received 1 April 2011 Revised 1 May 2011 Accepted 3 May 2011 Available online 8 May 2011

Keywords: Organostannoxane Cage Nanoparticles Palladium Catalysis

Palladium nanoparticles (PdNPs) are increasingly being used as catalysts in various organic transformations and their advantages stem from the fact they can be dispersed in an organic solvent and can be reused.¹ In general, prevention of agglomeration of $\ensuremath{\text{PdNPs}}$ is achieved by the use of stabilizers that include micelles,² microemulsions,³ surfactants,⁴ polymers,⁵ dendrimers,⁶ solid supports (SiO₂, Al₂O₃, zeolites, etc.),⁷ polyoxo-metallates⁸, and ionic liquids.9 Surprisingly, there has been less attention to the stabilization of **PdNP**s by phosphine ligands, particularly since the latter are very effective in molecular catalysis involving Pd(0).¹⁰ Although Hyeon and co-workers have reported the stabilization of nearly monodisperse PdNPs using various phosphine ligands these have not been tested for their effectiveness as catalysts.¹¹ On the other hand, recently, the research groups of Chaudret¹² and Fujihara¹³ have reported the asymmetric catalytic applications of chiral phosphorous ligand-stabilized PdNPs. More recently, Fan and co-workers have reported the preparation and use of **PdNP**s that were stabilized by a phosphine-containing dendron.¹⁴ In a search for alternative stabilizers for NPs we were intrigued by the possibility of using inorganic rings and were encouraged by some preliminary reports in the literature.15

Our experience in organostannoxane chemistry suggested to us that we can utilize inorganic-cored star-type ligands for effective encapsulation of **PdNPs** and recently we had successfully demonstrated this strategy.¹⁶ Considering the importance of the Heck reaction in organic synthesis¹⁷ we were interested in testing the effectiveness of **SnPPd**, the Pd(0) nanoparticles stabilized by **SnP**. These aspects are discussed herein.

A new functional organostannoxane cage, SnP, that contains phosphine ligands in its periphery has been

structurally utilized as support palladium(0) nanoparticles **SnPPd**. The latter was shown to catalyze the

As reported recently the reaction of $[n-BuSn(O)OH]_n$ with $[n-BuSn(O)OC(O)-C_6H_4-p-PPh_2]_6$ 4-PPh₂-C₆H₄-COOH afforded (SnP) (Supplementary data). The phosphine unit in SnP undergoes a slow oxidation in solution (chlorinated solvents) to the phosphine oxide as confirmed by the presence of two signals at -4.6(-PPh₂) and 29.5 (-P(O)Ph₂) ppm. However, the shelf life of **SnP**, in the solid-state, in air, is quite high. A fresh solution of an aged sample does not reveal oxidation. Also, oxidation does not seem to occur rapidly in solvents such as toluene. PdNPs prepared using SnPPd possess an average size of 3 nm as revealed by HRTEM experiments.¹⁶ The palladium content was estimated to be 19.9 wt %.¹⁸ The unique advantage of the **SnP** ligand is that it not only is a spherical bulky ligand but also possesses additional phosphine appendages; these two factors are responsible to stabilize PdNPs.

PdNPs stabilized by **SnP, SnPPd**, were used in the Heck reaction. The reaction of iodobenzene with styrene was optimized (100 °C, K_2CO_3 , 4 h, 1,4-dioxane, Tables S1 and S2, Supplementary data). A variety of substrates could be used in the Heck coupling reaction with good yields and high TON and TOF were observed (Table 1 and Figure S1). Substrates such as vinyl pyridines (entries 2 and 3, Table 1) could be readily used. A variety of acrylates could

Heck coupling reactions of wide variety of functionalities efficiently.
© 2011 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +91 512 259 7259; fax: +91 512 259 0007/7436. *E-mail address:* vc@iitk.ac.in (V. Chandrasekhar).

^{0040-4039/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.05.006

Table 1
Heck-coupling reaction of different alkenes with iodobenzene under optimized conditions

Entry	R	R Ph	Time (h)	Yeild (%)	TON 10^4 mol^{-1}	TOF $10^4 \text{ mol}^{-1} \text{ h}^{-1}$
1			4	99	10.06	2.65
2			7	74	7.91	1.13
3	N		7	89	9.52	1.36
4	₩ 0 -		6	99	10.6	1.76
5			5	99	10.6	2.12
6	⊘_n-butyl	o 1f	4	99	10.6	2.65
7	NH ₂ O		7	88	9.41	1.34
8 ^a	<i>∲</i> CN		8	55 (69)	0.74	0.74
9 ^b	∕~0^		6	30 (70)	0.54	0.54

Reactions and Conditions: (a) PhI (1 equiv), alkene (1.25 equiv), K_2CO_3 (2 equiv), **PdNPs** (9.6 × 10⁻⁴mol %) and solvent (5 mL) at 100 °C. (b) Yields reported are the isolated yields and progress of the reaction was monitored by TLC. (c) The values in brackets of the column of yields of entries 8 and 9 are the overall yield of the reaction ^a F·7 is 79-21

^b E:Z is 42:58

also be used successfully. Although in most cases only *E* isomers are formed (entries 1–8, Table 1) in the case of ethylvinylether the E/Z ratio is nearly 1 presumably because of the unhindered nature of the substrate.

The Heck-coupling reaction involving arylbromides was more effective in DMF (Tables S3–S4, Supplementary data). A large variety of arylbromides, including those that are sterically hindered as well as those containing electron-releasing substituents could be used (Table 2 entries 2–4, 9). Difficult substrates such as 1-bromonaphthalene could also be used. Similarly the versatility of **SnPPd** can be gauged by the fact that substrates such as 2-bromopyridine 2,6-dibromopyridine, as well as bromo-substituted benzaldeydes could be used.

Aryl chlorides were also tested as substrates with mixed results. Firstly, the reactions required longer times and higher temperatures (Table 3). Secondly, using 4-chloro-1-nitrobenzene as the substrate resulted in only 35% of the Heck-coupled product (entry 9, Table 3). The major product was the Buchwald product involving dimethylamination of the substrate, 4-dimethylamino-1-nitrobenzene.¹⁹ However, in spite of this, a number arylchlorides do undergo Heck reaction under these conditions (entries 1–11, Table 3). For example, coupling of 2-chlorobenzaldehyde reacts with styrene to give the Heck-coupled product in about 90% yield (entry 5, Table 3). **SnPPds** were tested in recycling experiments involving the coupling of 4-bromotoluene and styrene as a representative example (entry 4, Table 2) by adopting the in situ recycling methodology (Table S5, Supplementary data).¹³ It was found that the reaction could be recycled up to 8 cycles, beyond which the recyclability was not tested. The fate of the catalyst was examined after the catalysis. The catalyst particles showed virtually no change in the dimension of the nanoparticles except for a slight increase from 3.0 to 3.6 nm even after 8 consecutive cycles (Fig. 1).

During this whole process formation of the palladium black was not observed indicating the efficacy of the sterically bulky dendrimer-like organostannoxane, **SnP** in stabilizing PdNPs.

The nature of **SnPPd** was further examined to rule out any molecular species. The ³¹P NMR of **SnPPd** was flat (Supplementary data) consistent with the absence of molecular complexes. A negative mercury²⁰ and -thiophene poisoning effect²¹ was observed indicating that the nanoparticles are encapsulated effectively by the organostannoxane ligand. Finally, the solutions of the nanoparticles in many solvents including dimethylformamide and dioxane were always clear and no indication of any palladium black formation was observed. Prevention of formation of the latter is one of the challenges in this area.

3529

Table 2 Heck-coupling reaction of different aryl bromides with styrene under optimized conditions

Entry	ArX	ArPh	Time (h)	Yeild (%)	TON 10^4 mol^{-1}	TOF $10^3 \text{ mol}^{-1} \text{ h}^{-1}$
1	── Br	2a	4	99	10.6	2.65
2	Br	2b	8	84	8.98	1.12
3	Br	20	8	89	9.52	1.19
4	————Br	2d	6	99	10.6	1.76
5	СНО	СНО ^{2е}	5	90	10.6	1.93
6	онс	OHC 2f	4	99	10.6	2.65
7	OHCBr	онс-22	4	99	9.63	2.65
8	°↓−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	° 2h	5	99	10.6	2.12
9	0Br	p	8	90	9.63	1.2
10	Br	2j	9	99	10.6	1.18
11	Br	2k	12	90	9.63	0.80
12	Br	21	14	87	9.3	0.66
13	Br	2m	7	95	10.2	1.45
14	N Br	2n	9	85	9.09	1.01
15	BrNBr		14	70	7.49	0.53

Reactions and Conditions: (a) ArX (1 equiv), Styrene (1.25 equiv), K_2CO_3 (2 equiv), PdNPs (9.6 × 10⁻⁴mol %) and solvent (5 mL) at 100 °C. (b) Yields reported are the isolated yields and progress of the reaction was monitored by TLC.

Table 3

Heck-coupling reaction of different aryl chlorides with styrene under optimized conditions

Entry	ArX	ArPh	Time (h)	Yeild (%)	TON 10^4 mol^{-1}	TOF $10^3 \text{ mol}^{-1} \text{ h}^{-1}$
1	<−ci	⟨	15	87	9.3	6.203
2	CI-CI		24	33	3.53	1.47
3	∽	Sc − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 −	20	52	5.58	2.78
4			24	70	7.49	3.12
5	Сно	СНО Зе	12	90	9.63	8.02
6	онс	OHC 3f	22	45	4.81	2.18
7	онс-	онс-	15	76	8.13	5.41
8	o-√−cı	ρ-√	32	15	1.6	0.5
9	O ₂ N-CI	0 ₂ N	10	35	3.74	3.74
10	() N CI	∑	48	75	8.02	1.67
11			36	30	3.21	8.91

Reactiona and Conditions: (a) ArX (1 equiv), Styrene (1.25 equiv), K_2CO_3 (2 equiv), PdNPs (9.6 × 10⁻⁴mol %) and solvent (5 mL) at 100 °C. (b) Yields reported are the isolated yields and progress of the reaction was monitored by TLC.

Figure 1. TEM of PdNPs after the 8 cycles of the Heck-coupling reaction along with the particle size distribution.

Acknowledgments

We are thankful to the Department of Science and Technology (DST), New Delhi, for the financial support. R.S.N. thanks the Council of Scientific and Industrial Research, India for Senior Research Fellowship. V.C. is thankful to the DST for a J.C. Bose National fellowship. We thank the electron micro- scopy facility of the Department of Metallurgical Engineering and Materials Science, IIT Kanpur, for TEM measurements.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2011.05.006.

References and notes

- (a) Srimani, D.; Sawoo, S.; Sarkar, A. Org. Lett. 2007, 9, 3639; (b) Ranu, B. C.; Chattopadhyay, K.; Adak, L. Org. Lett. 2007, 9, 4595; (c) Adak, L.; Chattopadhyay, K.; Ranu, B. C. J. Org. Chem. 2009, 74, 3982; (d) Srimani, D.; Bej, A.; Sarkar, A. J. Org. Chem. 2010, 75, 4296.
- (a) Beletskaya, I. P.; Kashin, A. N.; Litvinov, A. E.; Tyurin, V. S.; Valetsky, P. M.; van Koten, G. Organometallics **2006**, 25, 154; Astruc, D. Organometallic Chemistry and Catalysis; Springer-Verlag: Berlin, 2007; Astruc, D. Nanoparticles and Catalysis; WILEY, GmbH & Co: Weinheim, 2008.
- (a) Yoon, B.; Wai, C. M. J. Am. Chem. Soc. 2005, 127, 17174; (b) Baruch, A. R.-B.; Tvelikhovsky, D.; Schwarze, M.; Schomäcker, R.; Fanun, M.; Blum, J. J. Mol. Catal. A: Chem. 2010, 323, 65; (c) Zhang, G.; Zhou, H.; Hu, J.; Liu, M.; Kuang, Y. Green Chem. 2009, 11, 1428.
- (a) Luo, C.; Zhang, Y.; Wang, Y. J. Mol. Catal. A: Chem. 2005, 229, 7; (b) Meier, M.
 A. R.; Filali, M.; Gohy, J.-F.; Schubert, U. S. J. Mater. Chem. 2006, 16, 3001; (c) Ranu, B. C.; Dey, R.; Chattopadhyay, K. Tetrahedron Lett. 2008, 49, 3430.
- (a) Okamoto, K.; Akiyama, R.; Yoshida, H.; Yoshida, T.; Kobayashi, S. J. Am. Chem. Soc. 2005, 127, 2125; (b) Ornelas, C.; Diallo, A. K.; Ruiz, J.; Astruc, D. Adv. Synth. Catal. 2009, 351, 2147; (c) Evangelisti, C.; Panziera, N.; D'Alessio, A.; Bertinetti,

L.; Botavina, M.; Vitulli, G. J. Catal. **2010**, 272, 246; (d) Bandari, R.; Höche, T.; Prager, A.; Dirnberger, K.; Buchmeiser, M. R. *Chem. Eur. J.* **2010**, *16*, 4650.

- (a) Črooks, R. M.; Zhao, M.; Sun, L.; Chechic, V.; Yeung, L. K. Acc. Chem. Res. 2001, 34, 181; (b) Rahim, E. H.; Kamounah, F. S.; Frederiksen, J.; Christensen, J. B. Nano Lett. 2001, 1, 499; (c) Diallo, A. K.; Ornelas, C.; Salmon, L.; Aranzaes, J. R.; Astruc, D. Angew. Chem., Int. Ed. 2007, 46, 8644; (d) Ornelas, C.; Aranzaes, J. R.; Salmon, L.; Astruc, D. Chem. Eur. J. 2008, 14, 50.
- (a) Richardson, J. M.; Jones, C. W. J. Catal. 2007, 251, 80; (b) Budroni, G.; Corma, A.; Garcia, H.; Primo, A. J. Catal. 2007, 251, 345; (c) Demel, J.; Čejka, J.; Štěpnička, P. J. Mol. Catal. A: Chem. 2007, 274, 127; (d) Köhler, K.; Heidenreich, R. G.; Soomro, S. S.; Pröckl, S. S. Avd. Synth. Catal. 2008, 350, 2930.
- (a) Kogan, V.; Aizenshtat, Z.; Popovitz-Biro, R.; Neumann, R. Org. Lett. 2002, 4, 3529; (b) De Bruyn, M.; Neumann, R. Adv. Synth. Catal. 2007, 349, 1624.
- (a) Dupont, J.; de Souza, R. F. Z. Suarez, P. A. Chem. Rev. 2002, 102, 3667; (b) Migowski, P.; Dupont, J. Chem. Eur. J. 2007, 13, 32; (c) Dupont, J.; Scholten, J. D. Chem.Soc. Rev. 2010, 39, 1780.
- (a) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 6989; (b) Zapf, A.; Beller, M. Chem. Eur. J. 2001, 7, 2908; (c) Fu, G. C. Acc. Chem. Res. 2008, 41, 1555.
- 11. Son, S. U.; Jang, Y.; Yoon, K. Y.; Kang, E.; Hyeon, T. *Nano Lett.* **2004**, *4*, 1147.
- (a) Jansat, S.; Gómez, M.; Philippot, K.; Muller, G.; Guiu, E.; Claver, C.; Castillón, S.; Chaudret, B. J. Am. Chem. Soc. 2004, 126, 1592; (b) Favier, I.; Gómez, M.;

Muller, G.; Axet, R.; Castillón, S.; Claver, C.; Jansat, S.; Chaudret, B. Adv. Synth. Catal. 2007, 349, 2459.

- (a) Tamura, M.; Fujihara, H. J. Am. Chem. Soc. 2003, 125, 15742; (b) Sawai, K.; Tatumi, R.; Nakahodo, T.; Fujihara, H. Angew. Chem., Int. Ed. 2008, 47, 6917.
- (a) Wu, L.; Li, B.-L.; Huang, Y.-Y.; Zhou, H.-F.; He, Y.-M.; Fan, Q.-H. Org. Lett.
 2006, 8, 3605; (b) Wu, L.; Li, Z.-W.; Zhang, F.; He, Y.-M.; Fan, Q.-H. Adv. Synth. Catal. 2008, 350, 846.
- (a) Badetti, E.; Caminade, A.-M.; Majoral, J.-P.; Moreno-Maňas, M.; Sebastián, R. M. Langmuir 2008, 24, 2090; (b) Naka, K.; Itoh, H.; Chujo, Y. Nano Lett. 2002, 2, 1183; (c) Li, X.; Du, Y.; Dai, J.; Wang, X.; Yang, P. Catal. Lett. 2007, 118, 151.
- Chandrasekhar, V.; Narayanan, R. S.; Thilagar, P. Organometallics 2009, 28, 5883.
- (a) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009; de Meijere, A.; Diederich, F. Metal.-Catalyzed.Cross.-Coupling Reactions; WILEY GmbH & Co. KGaA: Weinheim, Germany, 2004.
- 18. Pd content was determined spectrophotometrically using newfuchsine dye at λ = 374 nm; (b) West, P. W.; Amis, E. S. *Ind. Engg. Chem.* **1946**, *18*, 400.
- 19. Agarwal, A.; Chauhan, P. M. S. Synth. Commun. 2004, 34, 2925.
- 20. Phan, N. T. S.; Van der Sluys, M.; Jones, C. W. Adv. Synth. Catal. 2006, 348, 609.
- 21. Eberhard, M. R. Org. Lett. 2004, 6, 2125.