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A magnetically recoverable catalyst [Fe3O4@SiO2-AEAPTMS-Pd(II)] was prepared, fully 
characterized and had its catalytic activity evaluated on the Suzuki cross-coupling reaction under 
microwave irradiation. The reaction conditions for the synthesis of biaryl compounds was
optimized in two stages - an initial fractional design 24, in which the parameters reaction time, 
temperature, solvent and catalyst loading were evaluated, followed by a Doehlert design. The
factorial design proved to be a viable approach for obtaining the optimal reaction conditions
based on a relatively small number of experiments. Additionally, the biaryl derivatives
synthesized by this method were obtained with good to excellent yields (71 to 96%) and the
recovery and reuse of the palladium catalyst was also evaluated. 
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1. Introduction 

Catalytic reactions play an important key role in organic 
synthesis, since they allow the improvement of methods that are 
used to prepare highly-valuable organic compounds.1 Following 
this lead, several research groups have dedicated their efforts to 
develop more environmentally-benign catalysts for a wide range 
of organic transformations.2 Literature surveys show that 
heterogeneous catalysts take a prominent place in this field, 
mainly due to some particular features such as easy recoverability 
and reusability.3 In this sense, iron oxide magnetic nanoparticles 
(MNPs) have emerged as an important class of materials for the 
immobilization of new catalysts owing to their large surface area, 
high chemical stability, high saturation magnetization values, and 
both low cost and toxicity.4 More importantly, MNPs fill the gap 
between homogeneous and heterogeneous catalysis5 in terms of 
activity, selectivity and removal from the reaction medium, since 
the separation of these types of materials can be easily achieved 
by using an external magnetic field. Consequently, the generation 
of residue is minimized, thereby contributing to the development 
of greener synthetic protocols.6 Magnetite (Fe3O4) is  among the 
most studied MNPs as supports, mainly due to its super-
paramagnetic properties, biological compatibility7 and a wide 
variety of synthetic methods for its preparation which leads to 
different morphologies and size distributions.8 The palladium-
catalyzed Suzuki cross-coupling reaction constitutes a very 
powerful approach for the formation of new C-C bonds.9 This 
methodology is used to synthesize a wide range of products, 
namely biaryl moieties, which can be found in a great number of 
biologically active compounds, such as valsartan, felbinac and 
imatinib, among others.10 

Considering that the Suzuki-Miyaura reaction has been widely 
applied as an important tool in organic synthesis, there has been a 
growing interest in and accordingly the development of greener, 
more sustainable approaches to chemistry.11 In this way, several 
new magnetically recoverable palladium-based catalysts have 
been developed in the last few years and extensively applied in 
batch,12 and more recently, in flow processes.13 

It is well known that most organic reactions are optimized in a 
univariate approach, being performed one variable at a time. 
However, according to Leardi,14 “…this approach would be valid 
only if the variables to be optimized would be totally independent 
from each other”, which is certainly not the case for most 
reactions. In this way, it can be assumed that during the 
optimization of the reaction conditions, the interaction among the 
different factors being evaluated is highly relevant and can 
contribute to the obtainment of the best conditions with fewer 
experiments. Thus, the optimization in a multivariate approach 
enables the development of mathematical models that can be 
used to predict the response for any possible setting, even 
untested regions. Although the experimental design15 can reduce 
the number of reactions, thereby reducing the generation of waste 
and increasing the quality of information that can be obtained, 
and this approach being already very common in industry, only a 
few reports from academic groups on this sort of chemistry have 
been disclosed using this tool.16 

Bearing these factors in mind, and continuing our ongoing 
research into the development of greener methodologies,17 in this 
paper we report the synthesis of a novel magnetically recoverable 
Fe3O4@SiO2-AEAPTMS-Pd(II) catalyst for the Suzuki cross-
coupling reaction under microwave irradiation via a multivariate 
approach using factorial design (Scheme 1). 

 
Scheme 1. General design of experiments. 

The catalyst Fe3O4@SiO2-AEAPTMS-Pd(II) 1 was prepared 
following the steps described in Scheme 2. Initially, the 
magnetite microspheres were prepared through a solvothermal 
method,18 followed by a silica-coating step using the well-known 
Stöber method.19. Next, the amino ligand N-[3-
(trimethoxysilyl)propyl]ethylenediamine (AEAPTMS) was 
anchored onto the surface of Fe3O4@SiO2 in anhydrous toluene 
under reflux for 24 h. The obtained Fe3O4@SiO2-AEAPTMS 
powder was then treated with palladium acetate in 
tetrahydrofuran (THF) under N2 atmosphere, at room temperature 
for 5 h, to generate the Fe3O4@SiO2-AEAPTMS-Pd(II) catalyst 
1. The catalyst was fully characterized by a variety of analytical 
techniques e.g. x-ray diffraction (XRD), transmission electron 
microscopy with energy-dispersive x-ray spectroscopy (TEM-
EDX), scanning electron microscopy (SEM), X-ray 
photoelectron spectroscopy (XPS), elemental analysis (EA), 
inductively coupled plasma optical emission spectrometry (ICP-
OES) and vibrating sample magnetometer (VSM). 

 

 
Scheme 2. Preparation of catalyst Fe3O4@SiO2- AEAPTMS-Pd(II). 

We have started our characterization studies by evaluating the 
crystalline structure of the Fe3O4 microspheres and the 
Fe3O4@SiO2-AEAPTMS-Pd(II) catalyst 1 by X-ray diffraction 
(XRD). The high angle X-ray diffraction pattern of Fe3O4 
microspheres (black line in Figure S1 in the ESI) showed the 
typical peaks of the spinel structure of magnetite (2� = 30.1, 
35.4, 43.1, 53.5, 57.0, 62.6), while the diffractogram of the final 
catalyst showed an additional broad peak around (2�=23.3), 
related to the presence of amorphous silica in the sample. In 
addition, no characteristic peaks of the palladium nanoparticles 
were observed, which may be a result of the presence of well-
dispersed small particles of the palladium species, or to the 
presence of a non-crystalline palladium phase.20 However, the 
presence of Pd on the catalyst was confirmed by TEM-EDX (see 
Figure S2 in the ESI). Additionally, the exact concentration of Pd 
was determined by ICP-OES and the obtained valued was 1.3 
wt%. 

Aiming to investigate the morphology and size distribution of 
both the support and the final catalyst, TEM and SEM analyses 
were conducted (see Figure S3 in the ESI). The SEM images 
show that the obtained Fe3O4 microspheres (Figure S3a) are 
spherically shaped and a detailed statistical particle count 
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revealed an average size of 227±28 nm (Figure S3b). The TEM 
image of Fe3O4@SiO2 (Figure S3c) confirms the formation of 
core/shell-structured magnetic silica microspheres with a shell 
thicknesses of approximately 51,4±5,9 nm. As for the final 
catalyst, it was possible to notice the presence non-uniformly 
distributed Pd nanoparticles, with a mean diameter range 
9.03±1,23 nm in the surface of the catalyst (Figure S3e) (See the 
ESI for further details).  

In addition, the catalyst 1 was also analysed by XPS in order 
to determine the oxidation state of the palladium species present 
in the material. The XPS elemental survey scans of the surface of 
the fresh catalyst 1 (see Figure S4a in the ESI) showed peaks 
ascribed to silicon (Si), carbon (C), palladium (Pd), nitrogen (N) 
and oxygen (O). A closer look at the Pd3d region reveals the 
presence of two peaks at 337.43 (3d5/2) and 342.62 (3d3/2), 
attributed to Pd(II), and other two peaks at 335.84 (3d5/2) and 
339.97 (3d3/2), assigned to Pd(0). The intensities of the peaks 
clearly indicate that the palladium species are present 
predominantly in +2 oxidation state (88%) with a lower content 
of Pd(0). Then, magnetic properties of the synthesized materials 
were evaluated by VSM at room temperature. The magnetization 
curves for Fe3O4 and Fe3O4@SiO2-AEAPTMS-Pd(II) are 
presented in Figure S5 in the ESI; the values of saturation 
magnetization for the Fe3O4 microspheres and the Fe3O4@SiO2-
AEAPTMS-Pd(II) were 29.2 and 7.85 emu/g respectively. The 
significant decrease in the saturation magnetization is due to the 
formation of the thick silica layer over the surface of the 
magnetic microspheres, with its further functionalization with the 
organic ligand and the Pd salt. It is worth mentioning that the 
magnetic curves show no hysteresis for both two samples, 
suggesting that both Fe3O4 and Fe3O4@SiO2-AEAPTMS-Pd(II) 
catalyst exhibit superparamagnetic behavior, thus being easily 
dispersed and recovered from reaction medium with the aid of a 
magnetic field. 

Having the catalyst fully characterized in hand, we moved to 
evaluate its catalytic activity in the Suzuki reaction and study 
how different parameters could affect its outcome by using 
factorial design. In that way, the reaction between phenyl boronic 
acid 2a and 4-iodoanisol 3a was chosen as a model reaction for 
the optimization studies (Scheme 3) and a series of experiments 
were performed using a multivariate approach. 

 

 
Scheme 3. Suzuki cross-coupling reaction between phenyl boronic acid 

and 4-iodoanisol. 

The first stage of the optimization involved an experimental 
design, which can be used as a powerful tool for identifying the 
most important variables among many others. Based on literature 
survey, four experimental factors (solvent, time, temperature and 
catalyst loading), were selected for testing (Table 1).21 

Table 1. Full factorial design and results for the optimization of Suzuki cross-
coupling reactions. Coded levels (-1 and +1) are in parenthesis.[a] 

 
Entry 

Catalyst loading 

(mol%)[b] 
T (oC) Time Solvent 

Yield 

(%)[c] 

1 0.06 (-1) 25 (-1) 30 (-1) H2O (-1) 0 

2 0.6 (+1) 25 (-1) 30 (-1) H2O (-1) 0 

3 0.06 (-1) 100 (+1) 30 (-1) H2O (-1) 32 

4 0.6 (+1) 100 (+1) 30 (-1) H2O (-1) 51 

5 0.06 (-1) 25 (-1) 120 (+1) H2O (-1) 0 

6 0.6 (+1) 25 (-1) 120 (+1) H2O (-1) 0 

7 0.06 (-1) 100 (+1) 120 (+1) H2O (-1) 83 

8 0.6 (+1) 100 (+1) 120 (+1) H2O (-1) 69 

9 0.06 (-1) 25 (-1) 30 (-1) EtOH (+1) 0 

10 0.6 (+1) 25 (-1) 30 (-1) EtOH (+1) 0 

11 0.06 (-1) 100 (+1) 30 (-1) EtOH (+1) 52 

12 0.6 (+1) 100 (+1) 30 (-1) EtOH (+1) 68 

13 0.06 (-1) 25 (-1) 120 (+1) EtOH (+1) 0 

14 0.6 (+1) 25 (-1) 120 (+1) EtOH (+1) 5 

15 0.06 (-1) 100 (+1) 120 (+1) EtOH (+1) 81 

16 0.6 (+1) 100 (+1) 120 (+1) EtOH (+1) 81 
[a] Unless otherwise specified, all the reactions were performed with phenylboronic acid (1,5 mmol) 2a, 
4-iodoanisol (1.0 mmol) 3a, Fe3O4@SiO2-AEAPTMS-Pd(II) 1 and K2CO3 (1.5 mmol) in the presence 
of solvent (10 mL) in a 2 necked round bottom flask. [b] (-1 low and +1 high levels). [c] Yields were 
determined through CG-MS. 

These preliminaries experiments, which were performed using a 
full factorial design (24), indicated that the most important 
variables were temperature, time and their interaction. The other 
variables presented negligible effects in the studied range. 
Posteriorly, a Doehlert design22 was performed to further study 
the variables that showed to exert important effects, as well as 
variables that are known to influence the Suzuki Cross-coupling 
reaction. 
Table 2. Doehlert design results for the optimization of Suzuki cross-
coupling reactions. Coded levels (-1 and +1) are in parenthesis.[a] 

 

Entry Time (min) Base Power (W) Yield (%)[b] 

1 6.0 (0) KOH (-0.12) 40 (0) 92 

2 6.0 (0) KOH (-0.12) 40 (0) 90 

3 6.0 (0) KOH (-0.12) 40 (0) 94 

4 11.0 (1.0) KOH (-0.12) 40 (0) 83 

5 8.5 (0.5) Na2CO3 (1.0) 40 (0) 51 

6 8.5 (0.5) K2CO3 (0.6) 70 (0.817) 88 

7 1.0 (-1.0) KOH (-0.12) 40 (0) 69 

8 3.5 (-0.5) Et3N (-1.0) 40 (0) 0 

9 3.5 (-0.5) Cs2CO3 (-0.52) 10 (-0.817) 38 

10 8.5 (0.5) Et3N (-1.0) 40 (0) 2 

11 8.5 (0.5) Cs2CO3 (-0.52) 10 (-0.817) 90 

12 8.5 (0.5) Cs2CO3 (-0.52) 10 (-0.817) 87 

13 3.5 (-0.5) Na2CO3 (1.0) 40 (0) 23 

14 6.0 (0) Na3PO4 (0.68) 10 (-0.817) 2 

15 3.5 (-0.5) K2CO3 (0.6) 70 (0.817) 90 

16 6.0 (0) K3PO4 (-0.84) 70 (0.817) 86 

17 11.0 (1.0) Na2CO3 (1.0) 70 (0.817) 80 

[a] Unless otherwise specified, all the reactions were performed with phenylboronic acid (1,5 mmol) 
2a, 4-iodoanisol (1.0 mmol) 3a, Fe3O4@SiO2-AEAPTMS -Pd(II) (0.06 mol%) 1 and base (1.5 mmol) in 
the presence of solvent (1,5 mL) under microwave irradiation. [b] Yields for isolated products. 

In this context, microwave irradiation has been pointed in the 
last decades as one of the most efficient and sustainable energy 
sources, since it allows to reduce the reaction time, to improve 
the reaction yields and the product purity, when compared to 
experiments involving conventional heating.23 Despite of the 
controversy surrounding microwave-induced reactions, they have 
been widely used in organic synthesis.24 Therefore, we have 
decided to use a microwave reactor in this stage of the study, and 
the microwave power was considered a factor, rather than 
temperature. Time and type of base were the other evaluated 
experimental factors (Table 2). With the factorial design 
performed (second stage), 10 coefficients were calculated: b0 
(intercept or constant), b1, b2 and b3 (linear coefficients for 
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variables 1, 2 and 3), b11, b22 and 33 (quadratic coefficient for 

variables 1, 2 and 3) and its interactions b12, b13 and b23.  

The significance of these coefficients was verified using 
analysis of variance (Anova) and only two coefficients were 
significant at a 95% of confidence level. The proposed model 
was expressed by eqn (1). 

 ……………(1)

As can be observed in this equation, only the quadratic 
coefficient for the type of base was significant (b22). A surface 
response was generated and the best conditions (for high yields) 
were obtained when KOH was used as a base (Figure 1). 

 
Figure 1. Response surface plot of the yield vs the two independent factors 

time and base. 

As may be seen from Figure 1, the factors time and power 
were not significant and, therefore, can be fixed in a more 
economic condition (at lower the levels, for instance). With the 
optimal conditions in hands, that is, catalyst loading (0.06 
mol%), base (KOH) solvent (EtOH), time (6 min.) and 
microwave irradiation power (40 W), we have extended the 
protocol to a broader range of aryl iodides and boronic acids, in 
order to evaluate the scope and limitations of this approach 
(Table 3). Initially, a set of reactions was performed with phenyl 
boronic acid and different aryl iodides (entries 1–10). In most 
cases, excellent yields were achieved. However, it could be 
observed that steric effects exerted some influence during the 
cross-coupling reactions; substituents attached to the para and 
meta-positions of the aryl iodides furnished better yields (Table 
3, entries 1 and 5) than the same substituents in the ortho position 
(entries 4 and 6). On the other hand, the electron-donating (Table 
3, entries 1, 5 and 7) and electron-withdrawing (entries 9 and 10) 
nature of the groups attached to the para and meta positions or 
the aromatic ring did not exert any influence on the yield. 
Additionally, 4-bromoanisol could also be used to generate the 
product, albeit with a lower yield when compared with 4-
iodoanisol (entries 3 vs 1). In another set of experiments, we 
promoted the coupling changing the boronic acid component and, 
once again, the products were formed with high yields (entries 
11–18). Moreover, our protocol also allowed the Suzuki cross-
coupling of a heteroaromatic boronic acid, providing the 
corresponding product in excellent yield (entry 17).

Table 3. Suzuki cross-coupling reaction catalyzed by Fe3O4@SiO2-APPTS-Pd(II) under microwave irradiation.[a] 

 
Entry RB(OH)2 R1 Product Yield (%)[b] 

 
Entry RB(OH)2 R1 Product Yield (%)[b] 

1 H 4-OMe 

 

94 

 

10 H 4-NO2 

 
96 

2[c] H 4-OMe 

 

ND[e] 

 

11 4-OMe H 
 

92 

3[d] H 4-OMe 

 

74 

 

12 2-OMe H 

 

92 

4 H 2-OMe 

 

71 

 

13 4-Me H 
 

91 

5 H 3-Me 

 

87 

 

14 4-COMe H 

 

93 

6 H 2-Me 

 

80 

 

15 4-NO2 H 
 

95 
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Electronic Supplementary Information (ESI) available can be 
found, in the online version, at XXX. 
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Highlights: 

 

 

• A magnetically recoverable Pd(II) catalyst was 

prepared and fully characterized. 

• The reaction conditions were optimized 

through a Factorial Design. 

• The products were obtained with yields ranging 

from 71 to 96%. 

• The catalyst was easily recovered and reused 

for three times. 

 
 

 

 

 

 


