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ABSTRACT: Photoinduced oxidation of secondary alcohols to
ketones was achieved by utilizing an equimolar amount of 4-
benzoylpyridine as an oxidant. This transformation proceeds at
ambient temperature and exhibits high compatibility with polar
functionalities including benzoyl, silyl, and methoxymethyl alcohol
protecting groups as well as tosyloxy, bromo, sulfonyl, carbamate,
ester, and carboxylic acid units. The present oxidation is solely
promoted by the action of organic molecules without the aid of
metallic reagents.

Oxidation is a fundamental transformation for functional
group interconversions in synthetic organic chemistry.1

Alcohol oxidation is especially important for preparation of
carbonyl compounds, which serve as versatile synthetic
intermediates due to their diverse reactivities.1,2 Despite a
myriad of precedents and recent advancements in alcohol
oxidation strategies, examples of photochemically induced
alcohol oxidations at synthetically useful levels have still been
mainly limited to benzyl alcohols.3 In the course of our studies
on methodology development involving functionalizations of
C−H bonds by the action of photoexcited benzophenone
(Ph2CO),

4 the photoinduced benzopinacol synthesis5 caught
our attention. The product, benzopinacol, is derived via
reductive dimerization of Ph2CO, and the reaction is usually
carried out in i-PrOH. Thus, we anticipated this transformation
could be applied for alcohol oxidation. The first report on the
photoinduced benzopinacol synthesis appeared more than a
century ago,5a although its application to alcohol oxidation has
been rarely investigated in the field of synthetic organic
chemistry. If such oxidative transformation is realized, we can
provide a new metal-free protocol for alcohol oxidation in
which two different organic molecules participate in the redox
process under photoirradiation conditions. We herein report a
photochemically induced oxidation of secondary alcohols using
4-benzoylpyridine as an oxidant under mild conditions.
To develop a photoinduced alcohol oxidation, we initially

investigated the fate of the alcohol that reduces Ph2CO during
the benzopinacol synthesis. We irradiated an acetone solution
of cyclododecanol 1a (0.4 mmol) and Ph2CO (0.48 mmol)
using a Hg lamp as shown in Scheme 1. As expected, formation
of cyclododecanone 2a (ca. 60% NMR yield) and benzopinacol
(ca. 0.18 mmol) was observed. This result clearly demonstrated
that Ph2CO acted as an excellent oxidant for the photoinduced
alcohol oxidation. However, two molecules of Ph2CO were
required to oxidize one molecule of alcohol.

Having a promising result in hand of photochemically
induced alcohol oxidation using an aryl ketone as an oxidant,
we then searched for a better oxidant while optimizing reaction
conditions (Table 1). Screening of aryl ketones revealed the
oxidation of 1a (0.5 mmol) with 4-benzoylpyridine (4-BzPy,
0.6 mmol) proceeded smoothly to give 2a in 78% isolated yield
with phenyl(pyridyl)methanol as a byproduct (0.49 mmol,
entry 1).6 Accordingly, employment of 4-BzPy reduced the
required amount of the oxidant to an amount equimolar to the
starting alcohol. 2-Benzoyl- and 3-benzoylpyridine were less
effective (entries 2 and 3),7 and neither an oxygen nor argon
atmosphere improved the product yield (entries 4 and 5).
Among the solvents examined, the oxidation was operative in a
variety of solvents, including aprotic acetone, MeCN, CH2Cl2,
PhCF3, benzene, and AcOEt, as well as protic t-BuOH (entries
1 and 6−11). We selected acetone as the solvent in this study
from the viewpoint of easy availability and cost.
With the optimized reaction conditions in hand, we

examined oxidation of two androsterone stereoisomers
(Scheme 2).8 Both epi-androsterone 1b and androsterone 1b′
were readily converted to diketone 2b in more than 90% yields.
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Scheme 1. Photoinduced Reaction between Cyclododecanol
and Benzophenone
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No apparent reactivity difference between these two stereo-
isomeric alcohols was observed.
We next carried out the oxidation of androstanediol

derivatives to clarify compatibilities of alcohol protecting
groups under the same reaction conditions (Table 2). The
benzoyl (1c), tert-butyldiphenylsilyl (1d), and methoxymethyl
(1e) groups were retained, and chemoselective oxidation of the
hydroxy group furnished the corresponding products 2c−e in
70−76% yields (entries 1−3).9 In addition to cyclohexanols
(1c−e), cyclopentanol (1f) was readily oxidized to give the
ketone 2f in 80% yield (entry 4). The diol 1g was fully oxidized
to diketone 2b when more than 2 equiv of 4-BzPy were
employed (44%, entry 5).
We then explored the generality of the photoinduced

oxidation by using diversely functionalized cyclohexanol
derivatives as substrates (Table 3). The compounds bearing
tosyloxy (1h), bromo (1i), and sulfonyl functionalities (1j)
were converted to the corresponding ketones 2h−j in 66−77%

yields (entries 1−3). The oxidation of the Boc-protected amine
1k furnished the product 2k in 56% yield (entry 4).10 The ester
functionality (1l) was completely inert, and near-quantitative
formation of the keto ester 2l was observed (entry 5). The
present photochemical oxidation was compatible with protic

Table 1. Optimization of Reaction Conditionsa

entry conditions solvent yield, %b

1 air acetone 80 (78)c,d

2 air, 2-benzoylpyridinee acetone tracef

3 air, 3-benzoylpyridineg acetone <66h

4 O2 acetone 72
5 Ar acetone 72
6 air MeCN 77i

7 air CH2Cl2 74i

8 air PhCF3 89 (83)c

9 air benzene 80i

10 air AcOEt 76i

11 air t-BuOH 74i

aConditions: cyclododecanol 1a (0.5 mmol, 1 equiv), 4-benzoylpyr-
idine (0.6 mmol, 1.2 equiv), solvent (5 mL, 0.1 M), photoirradiation
using a medium-pressure Hg lamp at rt for 48 h. bYield was calculated
based on NMR analysis of the crude mixture unless otherwise noted.
cIsolated yield is shown in parentheses. d1H NMR analysis revealed ca.
0.49 mmol of phenyl(pyridyl)methanol was formed after the reaction.
e2-Benzoylpyridine was employed instead of 4-benzoylpyridine.
fAlcohol 1a was recovered in ca. 97% NMR yield. g3-Benzoylpyridine
was employed instead of 4-benzoylpyridine. hAlcohol 1a was
recovered in ca. 34% NMR yield. iAlcohol 1a was recovered in ca.
3−20% NMR yields.

Scheme 2. Oxidation of Androsterones

Table 2. Oxidation of Androstanediol Derivativesa

aConditions: alcohol 1c−g (1 equiv), 4-benzoylpyridine (1.2 equiv),
acetone (0.04 M), photoirradiation using a medium-pressure Hg lamp
at rt. bIsolated yield. cThe reaction was conducted in acetone (0.1 M).
dThe reaction was conducted under Ar atmosphere. eDiol 1g (1
equiv) was treated with 2.4 equiv of 4-benzoylpyridine.

Table 3. Oxidation of Cyclohexanol Derivativesa

aConditions: alcohol 1h−n (1 equiv), 4-benzoylpyridine (1.2 equiv),
acetone (0.1 M), photoirradiation using a medium-pressure Hg lamp
at rt. bIsolated yield. cLED lamp (365 nm) was used for irradiation.
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conditions, and thus the carboxylic acid 1m could be employed
as a substrate for preparation of the keto acid 2m (entry 6).
Neomenthol 1n, a sterically more hindered secondary alcohol
with an isopropyl substituent at the vicinal position, was
oxidized to menthone 2n in 65% yield (entry 7).
We further investigated the applicability of the newly

developed method for oxidation of acyclic alcohols (Table 4).

The photoinduced oxidation of the secondary aliphatic alcohol
1o gave rise to 5-nonanone 2o in 82% yield (entry 1).11 The
diphenylmethanol derivatives 1p−s provided corresponding
products 2p−s in more than 94% yields (entries 2−5).
Retardation of the oxidation was generally observed as the
electron density on the aromatic ring of the starting alcohols
decreased (entries 2−4). The unsymmetrical diarylmethanol
was successfully oxidized to the corresponding ketone as well
(entry 5). The oxidation of phenylethanol 1t proceeded
smoothly to afford acetophenone 2t (entry 6). On the other
hand, the attachment of the strongly electron-withdrawing CF3
unit (1u) inhibited the formation of the ketone 2u (entry 7).
To obtain insight into the reaction mechanism, we conducted
the oxidation of cyclopropyl(phenyl)methanol 1v (entry 8).
The reaction resulted in the formation of cyclopropyl phenyl
ketone 2v in 98% yield without opening the cyclopropane ring.
We further treated a mixture of the alcohol 1v and its

deuterated analogue 1v-d under the oxidation conditions to
obtain kinetic information on the transformation (Scheme 3).
A kinetic isotope effect (KIE) was observed judging from the
recovered alcohols 1v and 1v-d.12 This outcome implied that
cleavage of the C−H bond adjacent to the hydroxy group of the
alcohol was the rate-determining step.
Consequently, we proposed a tentative reaction mechanism

as illustrated in Scheme 4. The reaction starts with hydrogen
abstraction of the starting alcohol 1 by photoexcited 4-BzPy

A.13 Two ketyl radicals B and C are then transiently formed.
This hydrogen abstraction step is supposed to be the rate-
determining step based on the observed KIE. This observation
accounts for the low reactivity of the CF3-substituted alcohol
1u having an electron-deficient C−H bond that is not readily
cleaved by the electrophilic oxyl radical of A.14 Once ketyl
radicals B and C are formed, facile radical coupling takes place
to generate the hemiacetal-type intermediate D.7b,15 The use of
4-BzPy instead of Ph2CO enables the rapid formation of the
intermediate D as mentioned by the Görner7b and Phillips15

groups and inhibits the pinacol-type homocoupling of the ketyl
radical C.16,17 This is why the requisite amount of oxidant can
be reduced to equimolar to the starting alcohol. Proton transfer
and liberation of phenyl(pyridyl)methanol furnishes ketone 2
as the product.
In conclusion, we have developed a photoinduced oxidation

of secondary alcohols by applying 4-benzoylpyridine (4-BzPy)
as the sole oxidant. The amount of required oxidant was
successfully reduced to an amount equimolar to the starting
alcohol by the employment of 4-BzPy. This is in marked
contrast to the case of Ph2CO, which requires two molecules to
oxidize one molecule of alcohol. Mechanistic investigations
suggested the present oxidation proceeded via the facile
formation of hemiacetal-type intermediate D and cleavage of
the C−H bond adjacent to the hydroxy group of the alcohol
was the rate-determining step. The present transformation
proceeds at ambient temperature and shows high tolerance to a
variety of polar functionalities including benzoyl, silyl, and
methoxymethyl alcohol protecting groups as well as tosyloxy,
bromo, sulfonyl, carbamate, ester, and carboxylic acid units.
Because of the mildness of the reaction conditions, the present
method should provide a unique tool for alcohol oxidation
without the aid of metallic reagents.

Table 4. Oxidation of Acyclic Aliphatic and Benzylic
Alcoholsa

aConditions: alcohol 1o−v (1 equiv), 4-benzoylpyridine (1.2 equiv),
acetone (0.1 M), photoirradiation using a medium-pressure Hg lamp
at rt. bIsolated yield. cAlcohol 1u was recovered in 88% NMR yield.

Scheme 3. Kinetic Isotope Effect of the Photochemical
Alcohol Oxidation

Scheme 4. Proposed Reaction Mechanism for Photoinduced
Alcohol Oxidation
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