SYNTHESE DE DILACTONES NACROCYCLIQUES ASSISTÉE PAR LES ORGANOSTANNIQUES APPLICATION AUX NACROCYCLES SOUFRES (SULFURES, SULFOXYDES, DISULFURES) COMPLEXATION SÉLECTIVE DE L'ION CA^{2+}

C. PICARD, L. CAIAUX et P. TISNES

Synthèse et Physicochimie organique, Unité Associée au CNRS n° 471 Université Paul Sabatier - 118, route de Narbonne, 31062 TOULOUSE CEDEX (FRANCE)

(Received in France 3 April 1986)

ABSTRACT : In "template driven" condensation of diacid fluorides with triphenyltin derivatives of diols affords macrocyclic dilactones in good yields. The reaction proceeds at moderate dilution conditions from diacids and diols without isolation of the intermediate activated species. The dilution, temperature and ring-size effects on this reaction are detailed. This method is applied to the preparation of sulfur-, disulfide- and sulfoxide-containing macrocyclic dilactones, as well as to the preparation of chiral macrocycles derived from α-aminoacids. The binding abilities of these twelve new ligands (12- to 21-membered rings) are estimated by picrate extraction from water to chloroform. Selective complexation for calcium is found in some cases.

INTRODUCTION

Les dilactones macrocycliques ont été employées très tôt dans la préparation de parfums¹. Bien que leur utilisation dans ce domaine soit toujours d'actualité ², de nouveaux champs d'ap_ plication de ces composés ont été explorés. En particulier leurs propriétés complexantes vis-àvis de cations métalliques et ammonium ont été largement décrites par J.S. Bradshaw ³; leur utilisation comme moyens d'accès à des enzymes artificiels tels que des modèles synthétiques du NADH a été rapportée d'autre part par R.M. Kellogg ⁴.

Leur synthèse recoupe les problèmes plus généraux liés à la formation de structures ma_ crocycliques ; la difficulté pour orienter des réactions de condensation vers l'obtention de composés cycliques de préférence à des composés polymériques représente en effet un obstacle majeur pour obtenir une synthèse efficiente de macrocycles.

Si l'obtention de monolactones macrocycliques par réaction de condensation intramoléculaire a fait l'objet de nombreux travaux 5 , par contre relativement peu de méthodes de condensation intermoléculaire conduisant à des dilactones ont été développées. Les voies d'accès aux dilactones macrocycliques reposent principalement sur deux méthodes : la dépolymérisation de polyesters linéaires 6 et la condensation de dérivés de diacides avec des glycols ou des dihalogénures 7 . Celles-ci présentent de nombreux inconvénients : grande influence de la taille du cycle sur les rendements, formation non sélective de dilactones, emploi de technique de haute dilution, présence d'hétéroatomes basiques sur les deux substrats à condenser afin de pouvoir dans ce cas exploiter un effet de matrice générée par un ion métallique.

Au cours d'une étude sur les macrocycles complexants sélectivement les métaux divalents nous nous sommes proposés de rechercher une nouvelle voie d'accès aux dilactones macrocycliques; la réaction de lactonisation à définir devait présenter les caractéristiques suivantes : 1) for_ mer spécifiquement les dilactones 2) utiliser des réactifs, dérivés de diacides et de diols, d'un accès facile et rapide 3) éviter les techniques de haute dilution ; la méthode doit être performante pour des concentrations en substrats de l'ordre de $10^{-2}M$ 4) être indépendante de la présence d'hétéroatomes sur les chaînes des substrats à condenser.

Le recours à un effet de matrice covalent nous a paru devoir apporter une réponse aux deux derniers objectifs cités. Ainsi les propriétés acide de Lewis de l'atome d'étain dans les composés organostanniques ont déjà été mises à profit par K. Steliou ⁸ pour la formation intra_ moléculaire de monolactones macrocycliques, ainsi que par A. Shanzer ⁹ qui rapporte la formation exclusive de tétralactones par réaction intermoléculaire de chlorures de diacide et de dialcoxy_ dialkylétains cycliques ; ce dernier type de réaction étant privilégié par l'état d'association sous forme dimère des composés organostanniques utilisés.

Ces deux exemples, ainsi que la facilité de préparation des dérivés alcoxyétains, la plus grande nucléophilie des atomes d'oxygène liés à un étain ¹⁰ et les propriétés acide de Le_ wis de cet atome plus marquées que pour le silicium et le germanium ont orienté nos recherches vers l'utilisation de dérivés organostanniques. Le problème de la sélectivité de formation de dilactones macrocycliques restait toutefois posé.

Nos travaux antérieurs ¹¹ nous ont permis de sélectionner comme méthode de synthèse de dilactones macrocycliques, celle consistant à opposer des fluorures de diacide à des dérivés bistriphénylalcoxyétains de diols. Dans le présent article nous mentionnons tout d'abord les différents paramètres influant sur la sélectivité en dilactones lors de la réaction entre un halogénure de diacide et un dérivé stannique de diol. Nous rapportons, ensuite, les résultats d'une étude détaillée sur cette réaction de lactonisation, à savoir la facilité de mise en œu_ vre de la réaction, la détermination des domaines de taille de cycle, de concentration et de température pour lesquels la sélectivité en dilactone monomère est conservée, et son extension à la préparation de dilactones chirales dérivées d'a-aminoacides. Nous montrons également les pos_ sibilités de généralisation de cette réaction en l'appliquant à la synthèse de dilactones inté_ grant des atomes de soufre. Les macrocycles soufrés présentent un large spectre d'intérêts. Leurs applications potentielles sont nombreuses et, malgré tout, ce domaine reste encore très peu exploré ¹². Enfin une dernière partie sera consacrée à l'étude des propriétés complexantes des dilactones préparées.

RESULTATS ET DISCUSSION

SYNTHESE ASSISTEE PAR LES ORGANOSTANNIQUES

FORMATION SELECTIVE DE DILACTONES

La méthode de synthèse que nous proposons s'appuie sur une étude systématique ¹¹ de la réaction de quatre halogénures de diacide $XOC(CH_2)_nCOX$ (X = Cl, F - n = 3, 6) avec quatre types de composés stanniques dérivés soit de l'éthylène glycol (<u>1</u>, <u>2</u> figure 1), soit de la bis(hydroxyméthyl)-2,6 pyridine (<u>1</u>, <u>4</u> figure 1) ; ces réactions conduisant aux dilactones monomères à 12 chaînons <u>5</u> et <u>6</u> (figure 2). Les résultats de cette étude nous ont permis de mettre en évidence et d'interpréter les facteurs permettant d'orienter la réaction entre un halogénure de diacide et un alcoxyétain vers la formation préférentielle de dilactones macrocycliques ainsi que d'en estimer leur importance relative. Ce sont :

L'effet de la nature de l'alcoxyétain : la sélectivité en dilactone augmente dans le sens dial_ coxyétain cyclique dimère <u>1</u> < dialcoxyétain cyclique monomère <u>3</u> < bisalcoxyétains linéaires <u>2</u> et <u>4</u>. Cette sélectivité est également augmentée lorsque le caractère acide de Lewis de l'étain est renforcé (utilisation de composés triphénylétain à la place de tributylétain).

L'effet de la nature de l'halogénure : C'est le paramètre qui a le plus d'influence sur la sé_ lectivité de la réaction en dilactone. Cette meilleure sélectivité lorsqu'un fluorure de diacide est utilisé est reliée à la meilleure affinité de l'atome d'étain pour le fluor vis-à-vis du chlore ¹³. La liaison Sn-F formée intermédiairement est fortement polarisée et peut induire une modification à la fois de l'effet de matrice de l'étain et de la nucléophilie de l'atome d'oxy_ gène dans l'enchaînement O--Sn--F.

L'effet de la structure du diol : Les meilleurs rendements en dilactone sont observés dans le cas de l'enchainement pyridine diméthanol-2,6. Ces résultats peuvent être reliés à la présence d'un groupe rigide (noyau pyridine).

OSnR₃ OsnR₅ R = Bu,CgH₅ 2

Au vu de ces résultats nous avons donc proposé comme nouveau mode de synthèse de dilac. tones macrocycliques la condensation intermoléculaire d'un fluorure de diacide sur un dérivé bisalcoxytriphénylétain de diol (eq. 1).

L'intermédiaire supposé présente les propriétés caractéristiques (double activation et effet de matrice) requises pour la formation de macrocycles. La nucléophilie du groupe alcoxy est accentuée par sa liaison avec l'atome d'étain tandis que l'activation du groupe carbonyle est accrue par l'aptitude au départ de $FSn\phi_3$. L'effet de matrice résulte de l'interaction de l'étain et du fluor.

Cette réaction nous a permis d'obtenir des rendements particulièrement élevés en macro_ cycles monomères (52% pour 5 et 71% pour 6 en produits isolés) en regard de la dilution utilisée (10⁻²H) et de la taille des cycles formés (12 chaïnons).

AVANTAGES ET EXTENSION DE CE MODE DE SYNTHESE

Comparaison avec les méthodes de la littérature : ce nouveau mode de synthèse est bien supérieur à la méthode aux sels de césium ¹⁴ quand le diol de départ est l'éthylèneglycol (suppression de la formation d'espèces non cycliques) et plus encore la bis(hydroxyméthyl)-2,6 pyridine (le ren_ dement en produit brut passant-de 4 à 80%)¹¹. Il conduit également à de meilleurs résultats que la méthode classique faisant intervenir un chlorure de diacide et un diol ⁷. En effet lors de la réaction impliquant le chlorure d'acide glutarique et la bis(hydroxyméthyl)-2,6 pyridine un ren_ dement brut en dilactone <u>6</u> de seulement 5% a été obtenu lorsqu'on utilise les mêmes conditions expérimentales (dilution, agitation, mode et durée d'addition) que celles utilisées lors de la réaction de fluorure de diacide et d'alcoxyétain (80%).

On peut également mesurer l'efficacité de ce mode de synthèse si l'on établit un paral_ lèle entre cette méthode de lactonisation et celles permettant d'accéder aux monolactones. En effet le rendement de 64% en produit brut que nous avons obtenu en dilactone 5 dérivée de l'éthylène glycol peut se comparer avantageusement à ceux décrits pour la monolactone à 12 chai_ nons correspondante, l'oxa-1 cyclododécane one-2 lorsqu'une technique de haute dilution est uti_ lisée (rendements de 61 à 89% ¹⁵) et encore plus lorsqu'une telle technique n'est pas employée (rendements de 5 à 47%) pour des concentrations de 3.10^{-2} à 3.10^{-3} M ¹⁶).

Facilités d'obtention des intermédiaires stanniques et fluorures

<u>Préparation des alcoxyétains</u> : Les dérivés bisalcoxyétains ont été préparés à partir des diols par déplacement nucléophile d'oxyde de bistriphénylétain et élimination de l'eau formée par en_ trainement azéotropique avec du benzène ¹⁷.

Les rendements sont quantitatifs. Ces dérivés, très sensibles à l'hydrolyse atmosphéri_ que n'ont pas été isolés; ils ont été utilisés sans purification pour les réactions ultérieures.

<u>Préparation des fluorures de diacide</u> : l'utilisation de sels de fluoro-2 pyridinium, commerciaux et très aisément manipulables, permet d'obtenir les fluorures d'acides dans des conditions dou_ ces et avec des rendements quantitatifs ¹⁸.

L'utilisation sans purification des fluorures de diacide ainsi préparés permet en outre de simplifier la mise en œuvre de la synthèse, leur formation étant seulement contrôlée en spec_ troscopie infrarouge par l'apparition de la bande vC=0 à 1840-1850 cm⁻¹. Les rendements de cyclisation ultérieure ne sont pas en effet affectés par la présence dans le milieu réactionnel de produits secondaires formés lors de la préparation des fluorures de diacide (tosylate de tri_ ethylamine et méthyl-1 pyridone-2, cf. eq. 2).

Effet de la taille de cycle

En s'appuyant sur les travaux de L. Mandolini et de G. Illuminati ¹⁹ on peut énoncer que l'efficacité d'une réaction de macrocyclisation est surtout mesurable lors de la synthèse de macrocycles de petite taille. Les résultats précédents, obtenus pour des cycles à 12 chaînons, sont donc représentatifs de la validité de la méthode. L'accès aux dilactones à 10 chaînons a été également étudiée afin d'apporter une preuve supplémentaire de l'efficience de ce mode de synthèse et de déterminer l'effet de taille de cycle sur la distribution des produits cycliques.

Afin d'éviter tout facteur structural susceptible de faciliter la réaction de cyclisa_ tion notre étude a porté sur l'accès à la dilactone à 10 chainons <u>7</u> qui contient seulement des chaines aliphatiques. La réaction étudiée est représentée ci-dessous (eq. 3).

Le rendement de 42% (35% en produit isolé) obtenu pour la dilactone χ est particulièrement sa_ tisfaisant pour un cycle à 10 chainons en regard de la dilution utilisée. Ceci permet de confir_ mer le concept d'effet de matrice et de double activation que nous avons invoqué précèdemment. Il est à noter que jusqu'à présent seules quelques dilactones à 10 chainons avaient pu être syn_ thétisés: ainsi S.E. Drewes ²⁰ décrit l'obtention de quatre dilactones de cette taille intégrant un ou deux groupes rigides dans le cycle par la réaction dihalogénure/dicarboxylate de potassium et avec un rendement de 12 à 14%; la dioxa-1,7 cyclodecane dione-2,6 étant obtenue d'autre part par dépolymérisation du polyester linéaire correspondant avec un rendement de 17% ²¹.

Lors de cette réaction (eq.3) nous avons mis en évidence outre la formation de la dilactome monomère $\underline{7}$ la formation concomittante de la tétralactone dimère et d'oligomères cycliques de plus grande taille. Une analyse du milieu réactionnel brut par RMN ¹H et ¹³C a permis de met_ tre en évidence un taux de cyclisation de 100%: 42% en espèce monomère (dilactone à 10 chaînons $\underline{2}$), 40% en espèce dimère (tétralactone à 20 chaînons) et 18% en oligomères cycliques d'ordre supérieur. La comparaison de ces résultats avec ceux obtenus pour la réaction conduisant à la dilactone à 12 chaînons $\underline{5}$ (tableau 1) fait apparaître que le taux de sélectivité monomère/dimère est sensible à la taille du cycle. Ainsi ce taux, défini comme le rapport des rendements en di_ lactone et en tétralactone est de 3,6 dans le cas de la synthèse de $\underline{5}$ et de 1,05 pour $\underline{7}$. Le pas_ sage de la dilactone à 12 chaînons à celle à 10 chaînons s'accompagne donc d'une diminution de sélectivité en monomère d'un facteur de 3,4. Cette évolution peut être reliée à la stabilité du cycle à former. La dilactone à 10 chaînons $\underline{7}$ entre en effet dans la catégorie des cycles moyens qui sont le siège de tensions importantes et qui sont parmi les plus difficiles à obtenir ²².

Nous avons également reporté dans le tableau 1 les résultats obtenus dans le cas des réactions conduisant aux dilactones <u>6</u> et <u>8</u> respectivement à 12 et 15 chainons. Ces résultats ont été déterminés à partir du milieu réactionnel brut par HPLC, RMN ¹H et ¹³C ; les caractéristi<u></u> ques physicochimiques des différentes espèces formées lors de cette réaction ayant été déjà éta<u>blies</u> ¹¹. Dans le cas des dilactones intégrant un noyau pyridine l'effet de taille de cycle ne joue pas un rôle prépondérant ainsi que le suggèrent les rendements voisins de 70% en dilactones isolées lorsque l'on passe du cycle de 12 à 15 chainons. Ce résultat pourrait être lié à la pré<u>sence</u> d'un groupe rigide dans le cycle.

 Tableau 1
 : Rendements (%) en lactones monomère, dimère et oligomères cycliques

 Rendements (%) en produits isolés (entre parenthèses) - Rapport Monomère/Dimère (M/D)

(CH ₂) COF	+ Ø ₃ Sn0 ^A OSnØ ₃	Monomère	Dimère	Oligomères	M/D
n = 4	$A = -(CH_2)_2^{-1}$	42 (35) 10 ^a <u>7</u> ^b	40 (34)	18 ^C	1,05
n = 6		64 (52) ^d 12 ^a <u>5</u> ^b	18 (12) ^đ	18 ^{d, e}	3,6 ^d
n = 3	A = CH ₃ CH ₃	80 (71) $12^{a} \underline{6}^{b}$	4 (3)	16 ^f	18,8
n = 6		77 (67) $15^{a} \underline{8}^{b}$	5 (4)	18 ^c	15,4

a) taille du cycle monomère b) numéro du composé c) la nature cyclique de ces oligomères a été déterminée par RMN 1 R et 13 C, cependant aucune détermination de masse n'a été effectuée sur ces produits d) selon ref. e) trimère f) tri et tétramère

Effets de la température et de la dilution

Les résultats précédents relatifs à la réaction entre un fluorure de diacide et un bis_ alcoxytriphénylétain ont été acquis pour une dilution de $10^{-2}M$ et une température de réaction de +80°C. Afin de déterminer les domaines de température et de concentration en réactifs pour les_ quels cette réaction présente une sélectivité en dilactone satisfaisante, nous avons étudié l'influence de ces deux paramètres sur la réaction mettant en jeu le fluorure de glutaryle et le dérivé bisalcoxytriphénylétain de la bis(hydroxyméthyl)-2,6 pyridine (eq. 4) :

L'examen du tableau 2 qui regroupe les résultats de ces expériences appelle les remar_ ques suivantes :

- On observe des résultats nettement différents lorsque la température du mílieu réactionnel est portée de +80 à +140°C (entrées 1 et 3). Le rendement en dilactone chute à 15%,-les 85% restant étant représentés par des formes polymériques linéaires. À la température de 140°C les réactions

intermoléculaires sont donc largement favorisées au détriment des réactions de cyclisation in_ tramoléculaire. Cela indiquerait que l'effet de matrice n'est plus opérant à cette température, l'interaction intramoléculaire entre l'atome d'étain et le fluor ne subsisterait donc plus à partir d'un certain seuil de température. Cette hypothèse trouve un appui dans l'observation faite par H.H. Freedman ²³ qui rapporte la rupture d'une liaison intramoléculaire Sn + Br par chauffage. La comparaison des rendements de 80% à 80° et 15% à 140° permet alors de mesurer l'effet de matrice de l'atome d'étain.

On conserve une bonne sélectivité en dilactone lorsque la réaction est effectuée à température ambiante. La distribution des di et tétralactones est en effet comparable à celle observée à ébullition du benzème pour la même dilution (entrées 2 et 3). Cette caractéristique permet d'é_largir ce mode de synthèse aux dilactones macrocycliques présentant des fonctions thermolabiles.
Bien que l'on crée une situation qui favorise statistiquement la réaction intermoléculaire par rapport à la réaction intramoléculaire, lorsqu'on opère dans un milieu plus concentré les rende_ments en dilactone demeurent satisfaisants. Lorsque la réaction est effectuée dans un miljeu dix fois plus concentré (entrées 3 et 6), le rapport di/tétralactone est divisé par un facteur 2 et le rendement en dilactone par seulement un facteur 1,3. Ce mode de synthèse demeure donc efficient à une dilution de 10⁻¹H.

entrée	conditions de réaction (*) solvant T °C dilution(M)			Rendem dilactone	ents ⁺ (%) tétralactone	Rapport di/tétralactone	
1	xylène	+140	0,01	15	n.d. [‡]	• · · · · · · · · · · · · · · · · · · ·	
2	benzène	+ 20	0,01	73	3	24,3	
3	benzène	+ 80	0,01	80	4	20	
4	benzène	+ 80	0,02	78	4	19,5	
5	benzène	+ 80	0,05	72	6	12	
6	benzène	+ 80	0,1	63	6	10,5	

<u>Tableau 2</u> : Influence de	la température et d	e la dilution sur	le rendement en di
et tétralactones	lors de la réaction	représentée par l	'équation 4

* conditions identiques d'addition du fluorure (1 heure) et d'agitation du mélange réactionnel (2 heures) + rendements en produits bruts + n.d. non détectable

Extension à la synthèse de dilactones comportant des motifs chiraux

Le mode de synthèse décrit précédemment peut être appliqué à la préparation de dilacto_ nes macrocycliques chirales incorporant dans leur cycle un résidu aminoacide. Le recours à l'acide L-glutamique 2 protégé comme diacide précurseur nous a permis d'accéder à la dilactone <u>9</u> optiquement active avec un rendement en produit isolé de 66%. Des macrocycles dérivés de la Lcystime ont été également synthétisés (voir ci-après).

Les fluorures d'a-aminoacides N protégés préparés n'ont pas été isolés. Le contrôle par spectroscopie infrarouge du milieu réactionnel montre que ces dérivés ne se dégradent pas lors_ qu'on les conserve à température ambiante pendant 24 heures. De plus, leur manipulation ne né_ cessite aucune précaution particulière. Les fluorures d'a-sminoscides N protégés, dont à notre connaissance sucun exemple n'est connu, sont donc particulièrement stables.

L'absence d'épimérisation au cours de la préparation d'un fluorure d'a-aminoacide Z protégé et de sa condensation avec un dérivé stannique de diol a été démontré par l'emploi du réac. tif de déplacement chimique optiquement actif $Eu(hfc)_3$ sur la dilactone <u>9</u> dérivée de l'acide Lglutamique et sur son homologue <u>10</u> dérivé de l'acide D.L-glutamique ainsi que nous l'avons rapporté dans une note préliminaire ²⁴. Cette absence d'épimérisation a été par ailleurs confirmée grâce à une étude analogue de l'ester benzylique de la N-carbobenzoxy L-alanine préparé en utilisant les mêmes étapes réactionnelles ²⁵.

La déprotection quantitative de la fonction amine par l'acide bromhydrique dans l'acide acétique ($9 \rightarrow 11$) permet d'autre part d'envisager le greffage de chaînes latérales sur un carbo_ ne asymétrique de ces macrocycles.

APPLICATION & LA SYNTHESE DE MACROCYCLES SOUFRES

Les dilactones synthétisées intégrant soit un atome de soufre soit une fonction sulfoxy_ de sont représentées sur la figure 3 et celles incorporant une liaison disulfure sur la figure 4. Les réactions de cyclisation ont été effectuées en additionnant le fluorure de diacide non purifié sur une solution du dérivé bisalcoxytriphénylétain du diol 10^{-2} M dans le benzène préparé in situ et à une température de +80°C. Les dilactones ont été purifiées par chromatographie sur colonne de silice.

Sulfures et sulfoxydes

L'action des fluorures de l'acide thiodiacétique et de l'acide thio-3,3' dipropionique sur le dérivé stannique de la bis(hydroxyméthyl)-2,6 pyridine conduit aux dilactones <u>12</u> (12 chainons) et <u>13</u> (14 chainons) avec des rendements respectivement de 37 et 56%.

Le rendement plus faible obtenu en dilactone <u>12</u> par rapport à ses homologues <u>6</u> et <u>9</u> ré_ sulte de la formation d'anhydride thiodiacétique parallèlement à celle du fluorure d'acide thio_ diacétique lors de la préparation de ce dernier. L'oxydation de l'atome de soufre de ces deux dilactones par l'acide m-chloroperbenzoïque, utilisé en quantité stoechiométrique, nous a permis d'autre part d'accéder aux composés <u>14</u> et <u>15</u> incorporant une fonction sulfoxyde dans le cycle. Les rendements non optimisés de cette étape d'oxydation sont de 54% (<u>14</u>) et 49% (<u>15</u>).

Disulfures

Les dilactones de 12 à 21 chainons, <u>16-20</u> et <u>22</u> ont été obtenues à partir des dérivés stanniques de l'éthylèneglycol, de la bis(hydroxyméthyl)-2,6 pyridine ou de la bis((hydroxy-2 éthoxy)méthyl)-2,6 pyridine et du fluorure de diacide approprié.

En ce qui concerne les diols utilisés la bis((hydroxy-2 éthoxy)méthyl)-2,6 pyridine a été préparée en s'inspirant des travaux de M.A. Mc Kervey ²⁶ et de S. David ²⁷ selon l'eq. 5 :

Cette réaction met à profit la différence de réactivité des atomes d'oxygène du stanna_ dioxolane de l'éthylèneglycol vis-à-vis d'une attaque électrophile : cette différence de réact1_ vité étant due à l'existence du dérivé stannique sous forme d'un dimère d'association ²⁸. Ce diol a déjà été préparé par D.J. Cram ²⁹ suivant une voie différente (action du bromacétate de méthyle sur le dérivé sodé de la bis(hydroxyméthyl)-2,6 pyridine, suivie d'une réduction de l'ester obte_ nu par NaBH₄) et avec un rendement comparable.

Les rendements en dilactones isolées <u>16-20</u>, <u>22</u>, déterminés par rapport au diacide de dé_ part sont satisfaisants(42 à 58%). Dans le cas de <u>22</u> (R = 42%) il semble d'ores et déjà possible d'accroître le résultat par des améliorations dans les techniques de purification.

Le clivage des groupements protecteurs Z ou pNO_2Z des dilactones <u>19</u> ou <u>20</u> et <u>22</u> (HBr/_ ACOH), suivi d'un traitement par la triéthylamine conduit respectivement aux composés <u>21</u> et <u>23</u> présentant deux fonctions amines libres péricycliques. Ces deux composés ne sont pas stables ;les tentatives effectuées pour les isoler ont conduit à la formation de produits insolubles dont la nature n'a pas été déterminée. Ces composés doivent être conservés sous forme de bromhydrates (ces derniers bien que très hygroscopiques sont en effet stables) ; la libération des fonctions amines ne devant intervenir qu'au moment de leur utilisation pour des réactions ultérieures.

Les dilactones <u>18-20</u> et <u>22</u> sont optiquement actives. Des indices supplémentaires propres à ces macrocycles permettent de confirmer que ce mode de synthèse n'induit pas d'épimérisation (voir plus haut). On remarquera tout d'abord que ces macrocycles, dérivés de la L-cystine, présentent deux carbones asymétriques ; l'épimérisation sur l'un de ces carbones devrait donc conduire à un dérivé méso, optiquement inactif. La présence de deux formes diastéréoisomères

thréo et méso, susceptibles d'être observable en RMN, n'a pas été constatée pour ces composés. Un dernier élément de réponse a pu être acquis en constatant l'identité des valeurs du pouvoir rotatoire de la dilactone 20 préparée soit à partir du fluorure de la N,N'-di-p-nitrocarbobenzoxy-L-cystine soit à partir de son analogue chlorure. En effet l'absence de racémisation lors de synthèses de peptides mettant en jeu le chlorure de L-cystine 2 protégée est bien établie ³⁰ et est reliée à la présence d'une fonction uréthane ³¹. La substitution du groupement 2 par un groupement pNO₂Z ne doit pas modifier ce résultat. On peut donc en conclure que l'étape de formation du fluorure de la L-cystine 2 ou pNO₂Z protégée n'induit pas de processus de racémisation.

CARACTERISATION STRUCTURALE DES DILACTONES MACROCYCLIQUES

Les caractéristiques spectrales (SM, IR, RMN ¹H et ¹³C) des macrocycles synthétisés dans cette étude (<u>7</u>, <u>9-23</u>) sont décrites dans la partie expérimentale et ne laissent subsister aucune ambiguîté quant à la structure dilactone des composés obtenus. Celles des dilactones <u>5</u>, <u>6</u> et <u>8</u> ont été déjà décrites ¹¹.

Les spectres infrarouge montrent pour ces composés une forte absorption $v_{C=0}$ entre 1720 et 1758 cm⁻¹ compatible avec celle des dilactones macrocycliques déjà décrites.

En RMN ¹H les signaux correspondants aux protons méthyléniques en α des atomes d'oxygène des fonctions lactones se présentent sous la forme d'un signal unique dans le cas des composés 1, 12, 13, 16 et 17, tandis que la dissymétrie moléculaire engendrée par la présence d'atomes de carbone ou de soufre asymétriques dans les dilactones 9-11, 14, 15, 18-20 et 22 permet de diffé_ rencier les déplacements chimiques de ces protons. Ainsi par exemple la non équivalence de ces protons se traduit pour <u>14</u> par la présence d'un système AB caractérisé par un écart $v_A - v_B$ de 0,23 ppm et une constante de couplage J_{AR} de 13,6 Hz, pour <u>18</u> par la présence d'un système AA'BB' et dans le cas de <u>9-11</u> qui ne présentent pas d'axe de symétrie C₂ par l'existence de deux systèmes AB. Le déplacement vers les champs faibles de ces protons par rapport aux protons correspondants des diols de départ (A5 > + 0,5 ppm) constitue d'autre part une caractéristique de la formation des lactones lors des réactions étudiées. On notera enfin que les positions relatives des signaux de résonance de ces protons permettent de distinguer entre les produits d'addition 1:1, 2:2 et les produits de plus haut poids moléculaire dans le cas des réactions où les cycles monomères engagés sont des cycles à 10 chainons ($\underline{1}$, $\Delta\delta_{MONOMère}^{Dimère} = 0,14 ppm), ou à 12 chainons (<math>\underline{5}$ $\Delta\delta_{MONOMère}^{D}$ = 0,08 ppm, $\underline{6}$ $\delta\delta D = 0,19$ ppm, $\underline{12}$ $\delta D = 0,22$ ppm). Dans tous ces cas l'absorption à champ plus faible correspond à la forme dilactone monomère. Au delà des cycles à 12 chainons il y a recouvrement de ces signaux pour les différentes espèces cycliques.

Les spectres RMN 13_{C} (avec découplage de protons) nous ont permis de confirmer la struc_ ture cyclique des produits obtenus. Pour les dilactones dérivées de la L-cystine on observe sui_ vant le composé de 10 à 14 signaux résonnant dans une plage comprise entre 39 et 171 ppm. La dis_ symétrie présente dans 9 se concrétise par l'existence de 17 signaux ; les carbones des deux groupes carbonyles, ceux du noyau pyridine et les deux carbones en a des atomes d'oxygène étant tous différenciés entre eux. Les déplacements chimiques observés pour les carbones des groupe_ ments fonctionnels lactone (169,3 ppm < δ < 174,7 ppm) et uréthane (155,6 ppm < δ < 155,9 ppm) sont caractéristiques. L'attribution des autres signaux a été effectuée principalement par analo_ gie avec les valeurs observées dans le cas des précurseurs linéaires et par comparaison des dif_ férentes structures macrocycliques entre elles. D'autre part dans le cas de la préparation de 7, l'étude RMN 13_{C} montre que tous les signaux propres à cette dilactone se distinguent de leurs homologues dans la tétralactone dimère correspondante (0,5 ppm < $\Delta\delta$ < 1,1 ppm). Les carbones adjacents aux atomes d'oxygène résonnent à champ plus fort dans le cas de la dilactone ($\Delta\delta$ = 1,1 ppm). Cette caractéristique des dilactones monomères par rapport aux tétralactones dimères avait déjà été observée dans le cas des cycles 5, 6 et 6 11.

La spectrométrie de masse (DCI/NH_3) a permis de confirmer la structure monomère de ces composés. En effet, les spectres présentent tous le pic quasi-moléculaire $[M+H]^+$ ou l'association

 $[M+NB_4]^+$ (cas de <u>7</u> et <u>16</u>). Ces ions constituent le pic de base du spectre hormis pour les deux dilactones <u>19</u> et <u>20</u>. Dans ce cas, l'enregistrement du spectre a été rendu délicat en raison des difficultés rencontrées pour désorber et vaporiser ces composés. Ce problème est à mettre en parallèle avec la faible solubilité de ces deux dilactones. La nécessité de travailler à des courants de désorption élevés explique ainsi la plus faible intensité de l'ion $[M+B]^+$ (68,5% pour <u>19</u>, 4% pour <u>20</u>), de même que la fragmentation plus abondante rencontrée pour ces deux dilactones. Des mesures en impact électronique (70 eV) ont également été réalisées sur les dilactones <u>7</u>, <u>12</u>, <u>13</u>, <u>16</u> et <u>17</u>. Dans ces cas, à l'exception de <u>7</u>, la présence de l'ion moléculaire est également observée (l'intensité relative de cet ion variant entre 41 et 100 %) ; l'ion $[M+1]^+$ correspondant à une fragmentation caractéristique des tétralactones macrocycliques ³² n'étant pas observé.

Ces résultats de spectrométrie de masse sont d'autre part en accord avec les mesures de masse moléculaire effectuées par osmométrie (mesures effectuées pour <u>13</u> et <u>17</u>).

PROPRIETES COMPLEXANTES DES DILACTONES MACROCYCLIQUES

Afin d'évaluer les propriétés complexantes des ligands macrocycliques préparés vis-à-vis de cations métalliques nous avons utilisé la technique d'extraction de picrates dans laquelle le cation est transféré de l'eau à une phase organique (chloroforme dans notre étude). Cette méthode a été largement utilisée dans le cas d'éthers couronnes ³³. Une telle méthode permet le "cribla_ ge" rapide d'une série de composés. Elle doit être avant tout considérée comme un moyen de les classer les uns par rapport aux autres et non comme méthode de détermination absolue de leur pou_ voir complexant envers un ion donné. Nous l'avons appliquée aux dilactones soufrées <u>12-18</u> et <u>22</u>. Les composés soufrés <u>19</u> et <u>20</u> n'ont pas été étudiés en raison de leur insolubilité dans le chlo_ roforme, ainsi que <u>21</u> et <u>23</u> du fait de leur instabilité. A des fins de comparaison nous avons également appliqué cette méthode aux dilactones <u>8</u>, <u>9</u> et <u>11</u>.

Leur pouvoir complexant a été étudié vis-à-vis de cations métalliques d'intérêt biologi_ que reconnu, qu'ils soient monovalents (Na⁺, K⁺) ou divalents (Mg²⁺, Ca²⁺ et Zn²⁺). Avec les macrocycles optiquement actifs <u>9</u>, <u>11</u> et <u>22</u> dérivés de l'acide L-glutamique et de la L-cystine, la complexation énantiosélective de picrates de l'a-méthylbenzylamine (BMA⁺(+) et BMA⁺(-)) a été également envisagée.

Nous nous sommes au préalable assurés que les ligands macrocycliques étudiés sont suffi_ samment lipophiles pour que leur partition entre les phases chloroformique et aqueuse soit consi_ dérée comme négligeable. De même l'extraction des picrates par le chloroforme en l'absence de ligands est pratiquement nulle à l'exception de celle du picrate de l'ion α -méthyl benzylammonium (E = 6,5%). Nous avons donc tenu compte de cette valeur dans l'expression des résultats concer_ nant ce cation.

La stoechiométrie 1:1 des complexes a été déterminée d'après leurs caractéristiques spec_ troscopiques UV (voir partie expérimentale).

Les valeurs des pourcentages (E) et des constantes d'extraction (K_e) sont rassemblées dans le tableau 3. Elles ont été déterminées pour un rapport [ligand]/[picrate] de 1. Les mesures ont été effectuées au bout de 15 heures, durée suffisante pour atteindre l'équilibre et chacune des valeurs a été déterminée en faisant la moyenne de trois expériences.

Bien que notre étude n'ait pas porté sur l'ensemble des couples ligand-cations, quelques grandes lignes peuvent être dégagées des résultats obtenus.

Vis-à-vis de l'ion α -méthylbenzylammonium nous n'observons pas de complexation énantiosé_ lective de la part du ligand 22. L'approche de la cavité par le cation pourrait être génée par les effets stériques induits par les chaînes latérales. En effet 22 présente une constante d'ex_ traction plus faible pour BMA⁺ que 9 ou <u>11</u> malgré une structure (taille du cycle et plus grand nombre d'hétéroatomes autour de la cavité) plus favorable à la complexation de BMA⁺. Dans le cas des cycles à 12 chaînons 9, <u>11</u>, la complexation de BMA⁺ doit intervenir sur le noyau pyridine

Tableau 3: Pourcentages d'extraction E en \ (précision ± 5\) et constantes d'extraction K_e $[M^{-3} (M^{-2} entre parenthèses)]$ des ligands étudiés.L'abréviation BMA⁺ représente l'ion α-méthyl bensyl ammonium optiquement actif

ligand		x ⁺	Na ⁺	Ca ²⁺	Zn ²⁺	Mg ²⁺	BHA ⁺ (+)	BMA ⁺ (-)
<u>8</u>	E K _e	0	0 0	8,5 8 980	7,2 7 190	0 0		
<u>9</u>	E K _e	0 0	2,7 (130)	5,6 5 200	13,1 17 000	6,1 5 800	13,6 (2 100)	13,6 (2 100)
<u>11</u>	E K _e	14,7 (1 050)	15,2 (1 110)	17 ,4 27 700	16,0 23 800	11,7 14 300	10,3 (1 400)	10,1 (1 4 00)
12	E Ke			11 13 000		4,3 3 800		
<u>13</u>	E K _e			25 58 500		4,9 4 440		
<u>14</u>	E X _e			9,4 10 330		3,3 2 800		
<u>15</u>	E Ke			13,0 16 800		3,3 2 800		
<u>16</u>	e Ke	1,6 (75)	0 0	12,0 14 800	4,0 3 500	1,0 770		
<u>17</u>	Ë K _e			17 26 540		4,9 4 440		
<u>18</u>	E Ke	0 0	0	19,3 33 700		0 0		
<u>22</u>	E Ke	1, 1 (50)	1,6 (75)	39 208 600	21 39 900	7,0 6 900	6,6 (800)	6,6 (800)

dans une disposition extracyclique en raison de la petite taille de la cavité de ces cycles, ceci expliquant la non reconnaissance chirale observée pour ces deux ligands.

Au niveau des cations métalliques, nous observons d'une façon générale une plus faible valeur des paramètres d'extraction des cations monovalents comparativement aux ions divalents. Parmi ces derniers, l'ion Mg^{2+} est le moins complexé par les ligands étudiés. On constate en revanche une certaine sélectivité de nos macrocycles pour les ions Zn^{2+} et Ca^{2+} .

La présence d'un motif pyridinique dans une structure macrocyclique est souvent associée à son aptitude à complexer l'ion $2n^{2+}$ ³³. L'introduction d'une liaison disulfure dans le cycle se traduit par contre par une diminution de la constante d'extraction, ainsi K_e est diminuée par un facteur 2 lorsqu'on passe du cycle à 15 chaînons <u>8</u> au ligand <u>16</u> de taille analogue. Les va_ leurs plus élevées des paramètres de complexation du cation $2n^{2+}$ observées dans le cas du composé à 21 chaînons <u>22</u> peuvent s'expliquer par l'introduction de sites de coordination supplémentaires autour de la cavité (fonctions éther), ce qui semble atténuer l'effet de la liaison disulfure.

Pour des composés homologues 12, 13 ; 14, 15 ; 16, 17 ; 18, 22 on remarque par ailleurs un accroîssement de la constante d'extraction de l'ion Ca^{2+} avec la taille du cycle (cf. fig. 5). On observe une meilleure affinité vis-à-vis de l'ion Ca^{2+} des macrocycles intégrant un atome de soufre (12, 13), que ceux intégrant une fonction sulfoxyde (14, 15) ou une liaison disulfure (16, 17). L'introduction de sites de complexation potentiels tels que des fonctions éthers (22) et des chaînes latérales (groupements carbobenzoxy 18, 22) semble également contribuer à la stabilisa_ tion des complexes ainsi formés. Ces deux facteurs additionnels, purement liés à la structure du ligand, peuvent être proposés pour expliquer le pouvoir de complexation élevé de 22 vis-à-vis de l'ion Ca^{2+} et ceci bien que la structure exacte du complexe formé n'ait pas été déterminée. Enfin dans la série des ligands étudiés nous avons observé une sélectivité de complexa_ tion pour Ca²⁺ par rapport à Mg²⁺. Une telle sélectivité Ca²⁺/Mg²⁺ est importante dans les systèmes biologiques calcium-dépendants.

Figure 5 : Représentation des constantes d'extraction Ke des dilactones macrocycliques étudiées vis-à-vis de l'ion Ca²⁺ en fonction de la taille du cycle.

CONCLUSION

De nos résultats expérimentaux nous pouvons donc conclure que la réaction entre un fluo_ rure de diacide et un dérivé bis(alcoxytriphénylétain) de diol peut être utilisée avantageusement comme voie d'accès aux dilactones macrocycliques par rapport aux méthodes de la littérature ⁷.

L'orientation de cette réaction vers les dilactones s'observe encore pour des cycles à 10 chainons dont la difficulté d'obtention est bien connue. D'autres avantages caractérisent cette méthode : elle est douce (elle peut être effectuée à température ambiante), ne nécessite pas la purification des produits intermédiaires et conduit aux dilactones recherchées avec de bons ren_ dements en produits isolés et en peu d'étapes. De plus, elle évite l'emploi d'une technique de haute dilution. En effet les rendements sont encore très acceptables à des concentrations de 0,1M ce qui peut s'expliquer par un effet de matrice lié à l'atome d'étain. Cette méthode peut être étendue sans qu'aucune épimérisation n'ait été observée, à la préparation de dilactones macrocy_ cliques chirales dérivées d'a-aminoacides. De plus cette fonctionalisation extracyclique par un groupe amine primaire est une source potentielle de chaînes latérales pour la synthèse de dilac_ tones de type "lariat" 3^4 , c'est à dire de dilactones possédant des ramifications fonctionnelles.

Ce mode de synthèse a été appliqué avec des résultats satisfaisants à la préparation d'une douzaine de dilactones macrocycliques soufrées (sulfures, sulfoxydes, disulfures). Parmi les composés préparés des dilactones de 12 à 21 chaînons dérivées de la L-cystine ont été obte_ nues. Il est à noter que seul un petit nombre de macrocycles incorporant un résidu aminoacide dans le cycle a été décrit dans la littérature ³⁵ et dont aucun n'intègre le motif cystine.

La technique d'extraction des picrates de cations métalliques (Na⁺, K⁺, Ca²⁺, Zn²⁺, et Mg²⁺) vers une phase chloroformique a permis d'évaluer les propriétés complexantes des dilactones synthétisées. C'est ainsi qu'une sélectivité importante de complexation de Ca²⁺ vis-à-vis des alcalins et de Mg²⁺ a été observée pour plusieurs cycles notamment pour le macrocycle à 12 chai_ nons <u>18</u>, une optimisation du pouvoir et de la sélectivité d'extraction de l'ion Ca²⁺ pouvant être recherchée dans des dilactones de type "lariat".

PARTIE EXPERIMENTALE

Les points de fusion (F) ont été mesurés au banc chauffant Kofler. Les spectres IR ont été obte_ nus sur un spectrophotomètre Perkin-Elmer 783. Les fréquences d'absorption caractéristiques des structures sont exprimées en cm⁻¹. Les spectres de RMN⁻¹H ont été enregistrés à 90 MHz sauf structures sont exprimees en Cm . Les spectres de RMN n ont ete enregistres a 30 Mnz sau spécification sur un appareil Bruker WH-90. Les déplacements chimiques sont portés en ppm, le tétraméthylsilane (TMS) servant de référence. Les données sont fournies dans l'ordre suivant déplacement, (multiplicité, intégration, détermination). Pour la description des spectres nous utiliserons les abréviations suivantes : (s) singulet, (d) doublet, (t) triplet, (m) multiplet, (M) massif. Les spectres de RMN du ¹³C ont été enregistrés sur un appareil Bruker WH-90 à 22,63 Why et les déplacements chimiques à sont exprimés en ppm par rapport au TMS. Les spectres de masse (SN) ont été effectués avec un appareil Nermag R10-10C et sont rapportés comme m/z (inten_sité relative en %). Les modes d'ionisation utilisés sont la désorption ionique chimique avec l'ammoniac comme gaz réactant (DCI/NH₃) (T' source = 200°C, P source = 10^{-1} Torr, courant dé_sorption 50 mA \Rightarrow 500 mA a 5 mA/s) et l'impact électronique a 70 eV (T' source = 200°C, P source = 10^{-1} Torr, les mesures de masse moléculaire par osmométrie ont été effectuées dans l'éthanol # 10⁻⁶ Torr). Les mesures de masse moléculaire par osmométrie ont été effectuées dans l'éthanol sur un osmomètre à pression de vapeur Mechrolab modèle 301A. Les analyses élémentaires ont été effectuées au service commun de microanalyse élémentaire UPS-INP à Toulouse. Les pouvoirs rota_ toires ont été déterminés sur un polarimètre Perkin-Elmer 141. La concentration (c) est exprimée en g de soluté pour 100 ml de solution. Les spectres UV ont été effectués soit sur un spectro_ photomètre Cary 15 UV-Vis, soit sur un appareil Beckman DK-2A. La HPLC analytique a été réalisée sur un appareil Varian 8005 (colonne Si 60 Merck 5 μ - 25 cm) et les séparations HPLC préparati ve à l'aide d'un appareil Miniprep Jobin et Yvon couplé à un spectrophotomètre UV Beckman DB-G en utilisant de la silice Merck 20-45 µm. Les séparations par chromatographie liquide (CPL) sont réalisées sur colonne de silice Merck Kieselgel 60 (70-230 mesh ASTM). La chromatographie sur couche mince (CCM) est effectuée sur plaque de gel de silice Merck 60 F254 prête à l'emploi : les chromatogrammes étant révélés par extinction de la fluorescence en UV ou par coloration à l'iode.

bis bromométhyl-2,6 pyridine et stannadioxolane de l'éthyléneglycol : ils ont été préparés respectivement selon 36 et 37 .

bis[[hydroxy-2_ethoxy]methy1]-2,6 pyridine :

une solution de 0,03 mole de Bu_0 Sn(OCH_)2 et de 0,03 mole d'iodure de tétrabutylammonium dans 250 ml de benzène est portée à reflux. On introduit ensuite goutte à goutte 0,0075 mole de bis bromométhyl-2,6 pyridine dissout dans 50 ml de benzène. Le chauffage est poursuivi pendant 20 heures. Après refroidissement et évaporation du benzène, le milieu réactionnel est traité à l'éther de président du de tétrabutylamente de parts de tétrabutylamente de parts d l'éther afin de précipiter l'iodure de tétrabutylammonium. Après élimination de ce dernier, le résidu huileux est purifié par chromatographie liquide haute pression préparative (éluant : 3.5% de méthanol dans un mélange éther/chlorure de méthylène 50/50). On obtient ainsi 1,2g de diol (R = 70%) sous forme d'une huile :

 $\begin{array}{l} \textbf{R}_{p} = 0,38(\texttt{ither}/\texttt{methanol} 80/20) ; \texttt{RMN} \stackrel{1}{\texttt{H}} (\texttt{CDCl}_{3}) : 3,70(\texttt{s}, \texttt{8H}, \texttt{CH}_{2}\texttt{CH}_{2}), 4,43(\texttt{s}, \texttt{2H}, \texttt{OH}), 4,62 \\ (\texttt{s}, \texttt{4H}, \texttt{CH}_{2}\texttt{Ar}), 7,30(\texttt{m}, \texttt{2H}, \texttt{H}_{3,5} \texttt{pyridine}), 7,70(\texttt{m}, \texttt{1H}, \texttt{H}_{4} \texttt{pyridine}) ; \texttt{RNN} \stackrel{1}{\texttt{3C}} (\texttt{CDcl}_{3}) : 60,7 \\ (\texttt{CH}_{2}\texttt{OH}), 72,3(\texttt{OCH}_{2} \texttt{ ou } \texttt{OCH}_{2}\texttt{Ar}), 72,5(\texttt{OCH}_{2}\texttt{Ar} \texttt{ ou } \texttt{OCH}_{2}), 120,3(\texttt{C}_{3,5} \texttt{ pyridine}), 137,5(\texttt{C}_{4} \texttt{ pyridine}), \\ \texttt{TT} \texttt{Ar}(\texttt{S}, \texttt{S}, \texttt{S}) \\ \texttt{CH}_{2}\texttt{OH}, \texttt{CH}_{2}\texttt{CH}, \texttt{CH}_{2}\texttt{CH$ 157,0(C2,6 pyridine).

ecide N carbobenzoxy glutamique

Ce composé a été préparé selon ³⁸. Dérivé L : R = 81% ; F = 120-121°C ; $[\alpha]_D^{20} = -7,8°(c = 10, acide acétique)$; RMN ¹³C (dmsod₆) : 26,1(<u>CH₂CH</u>), 30,0(<u>CH₂CO</u>), 53,0(CH), 65,4(<u>CHØ</u>), 127,6 et 128,3(C₂-C₆ phényle), 136,9(C₁ phényle), 156,2(CO uréthane), 173,6 et 173,8(COOH).

N.N^{*}-dicarbobenzoxy-L-cystine: il a été préparé selon ³⁹. R = 90%; F = 119-120°C; $[\alpha]_D^{20} = -92,0^*$ (c = 10, acide acétique); RMN ¹³C (dmsod₆) : 39,1(CH₂S), 53,0(CH), 65,6(<u>C</u>H₂Ø), 127,7 et 128,3 (C₂-C₆ phényle), 136,9(C₁ phényle), 156,0(C0 uréthane), 172,2(COOH).

$$\begin{split} \textbf{W,N'-di-p-nitrocarbobenzexy-L-cysting}: & \\ \textbf{i1 a \acute{e}t\acute{e} préparé selon} & \overset{40}{}. R = 77\texttt{k}; F = 110-115\texttt{C}; [\texttt{\alpha}]_D^{20} = -128,5\texttt{(c} = 1, \acute{e}thanol); RMN & ^{13}C \\ (\texttt{dmsod}_6): 39,3(CH_2S), 53,1(CH), 64,4(\underline{C}H_2\emptyset), 123,5(C_2, \texttt{c} phényle), 128,0(C_{3,5}, phényle), 144,9(C_4, phényle), 155,8(CO uréthane), 172,1(COOH). \end{split}$$

fluorures de diacide ;

Les fluorures d'acide glutarique, adipique et subérique ont été préparés selon la méthode de Mukaiyama 8 : 7,5 mmoles de diacide et 18 mmoles (20% en excès) de tosylate de fluoro-2 N-mé_ thyl pyridinium sont mis en suspension dans 10 ml de dichlorométhane. On ajoute ensuite lente ment à température ambiante sous atmosphère d'argon une solution de triéthylamine (18 mmoles, 20% en excès) dans du dichlorométhane (3 ml). A la fin de l'addition le milieu réactionnel, lim_ pide, est laissé sous agitation une demi-heure supplémentaire. Après élimination du solvant, le résidu est soit directement distillé soit élué sur une colonne de silice.

acide glutarique : distillé (T_{eb} = 76°C/26 mm Hg) ; R = 91% ; acide adipique et subérique : chromatographiés (éther/éther de pétrole 50/50), R = 87 et 94% respectivement. Les fluorures des acides thiodiacétique, thio-3,3' dipropionique, dithio-3,3' dipropionique,

dithio-4,4' dibutyrique, de l'acide L ou DL-glutamique et de la L-cystime Z protégés ont été préparés suivant le même mode expérimental. Dans le cas de la L-cystime $p-NO_2$ 2 protégée, la réaction a été conduite dans un mélange dichlorométhane/acétate d'éthyle (50/50). Leur formation a été contrôlée en spectroscopie infrarouge par l'apparition de la bande vC=0 à 1840-1850 cm⁻¹. Ces difluorures ont été utilisés sans purification lors des condensations ultérieures.

Réactions de cyclisation

Mode opératoire type : le diol (3 mmoles) et l'oxyde de bistriphénylétain sont introduits dans 300 ml de benzène anhydre. Ce mélange hétérogène est porté à reflux. L'eau formée au cours de la réaction est éliminée par entraînement azéotropique à l'aide d'un appareil de Dean et Stark. Le Chauffage est prolongé 1 heure après le début de l'élimination d'eau : on obtient alors une so lution limpide. Une solution de fluorure de diacide purifié (3 mmoles) ou brut (obtenu à partir de 3 mmoles de diacide correspondant) dans 20 ml de chloroforme est ensuite introduite goutte à goutte, sous agitation magnétique, pendant une heure au reflux. Le reflux est poursuivi pendant une heure. Après avoir laissé le milieu réactionnel revenir à température ambiante, celui-ci est filtré. Le précipité est soigneusement lavé avec du chloroforme. Les parois du ballon réaction_ nel sont aussi rincées au chloroforme. Les solutions benzénique et chloroformique sont rassem_ blées et évaporées. Le résidu d'évaporation est ensuite chromatographié sur colonne de silice.

dioxa-3,9 aze-15 bicyclo[9.3.1] pentadécatriène-1(15),11,13 dione-4,8 (<u>f</u>) : chromatographie : éluant gradient éther de pétrole/éther (20/80 \rightarrow 0/100) ; R = 71% ; F = 116-118°C; $R_{\rm p} = 0.34$ (éther). Les caractéristiques spectroscopiques et le dosage du brut réactionnel sont déjà décrits

dioxs-1,8 cyclodécene dione-2,7 (<u>7</u>) :

Chromatographie : éluant gradient éther de pétrole/éther (80/20 + 40/60) ; R = 35% ; F = 31-32°C ; R_F = 0,63 (éther) ; IR : (KBR) 1738(C=0), (CCl₄) 1745(C=0) ; RHN ¹H (CDCl₃) : 1,87(m, 4H, CH₂ en β de C=0), 2,41(m, 4H, CH₂CO), 4,46(s, 4H, CH₂O) ; RHN ¹³C (CDCl₃) : 23,7(CH₂ β), 34,8(CH₂CO), 61,0(CH₂O), 174,0(CO) ; SM : (DCI/NH₃) 190(100% - [M+NH₄]⁺), EI 172 (non détectable - [M]⁺) ; (Anal. calc. pour C_BH₁₂O₄ : C, 55,81 ; H, 7,02 %. Trouvé : C, 55,71 ; H, 6,97 %). - tétralactone correspondante formée au cours de cette réaction : tétraoxa-1,8,11,18 cycloe1_ Corane tétraora-2,7,12,17 (C H O M = 244) ; R = 56°C (R = -047 (éther) · IB

Le dosage du brut réactionnel a été effectué en RMN¹H et ¹³C comme dans le cas de <u>6</u>.

dioxa-3,12 aza-18 bicyclo[12.3.1] octadécatriène-1(18),16,16 diene-6,11 {<u>8</u>} : chromatographie : éluant gradient éther de pétrole/éther (40/60 \rightarrow 0/100) - R = 67% ; F = 91°C ; $R_{\rm F}$ = 0,44 (éther); Les caractéristiques spectroscopiques et le dosage du brut réactionnel sont déjà décrits

(S)-(+) N carbobenzoxyamino-5 dioxa-3,9 aza-15 bicyclo[9.3.1] pentadécatriène-1(15),11,13 dione-4.0 (9) :

Le résidu d'évaporation est chromatographié une première fois sur colonne de silice en éluant rapidement avec un mélange dichlorométhane/acétone (40/60) afin d'éliminer le tosylate de trié_ thylamine (produit secondaire formé lors de la préparation du fluorure). Une seconde chromato_ graphie sur colonne (éther/acétone, 95/5) permet d'isoler la dilactone - R = 66% ; huile qui se solidifie sous forme vitreuse :

solidifie sous forme vitreuse : $R_{\rm F} = 0.59$ (CH₂Cl₂/acétone 90/10) ; $[\alpha]_{20}^{20} = +22.0^{\circ}$ (c = 3,6, chloroforme) ; IR (KBr) : 3350(NH), 1755 (C0 ester), 1715 (C0 uréthane) ; RMN ¹H (CDCl₃) : 2,45 à 2,75(M, 4H, CH₂CH et CH₂CO), 4,77 (m, 1H, CH), 5,13(s, 2H, CH₂Ø), 4,99 à 5,70(m, 4H, CH₂ en α du noyau pyridine - 2 systèmes AB, J = 14,7 Hz), 5,94(d, 1H, NH, J = 8,2 Hz), 6,95 à 7,68(système AB₂, 3H, pyridine -7,00(H_{3,5}) et 7,59(H₄), J = 7,6 Hz), 7,35(s, 5H, phényle) ; RMN ¹³C (CDCl₃) : 27,0(<u>CH₂CH</u>), 29,1(<u>CH₂CO</u>), 52,6 (CH), 64,4 et 64,9(CH₂ en α du noyau pyridine), 67,2(<u>CH₂Ø</u>), 118,2 et 118,4(C₃ = pyridine), 128,2 et 128,7(C₂-C₆ phényle), 136,6(C₁ phényle), 137,0(C₄ pyridine), 152,9 et 153¹₂5(C₂ = pyri_ dine), 155,9(C0 uréthane), 171,3 et 173,2(C0 ester) ; SM (DCI/NH₃) : 385(100 - [M+H]⁺), 277(17,6 -[M-OCH₂Ø]⁺), 107(17,6 -[ØCH₂O]⁺). (Anal. calc. pour C₂₀H₂₀N₂O₆ : C, 62,49 ; H, 5,24 ; N, 7,29 V. Trouvé : C, 62,29 ; H, 5,30 ; N, 7,20 %).

(S)-(+) amino-5 dioxa-3,9 aza-15 bicyclo[9.].1]pentadécatriène-1(15),11,13 dione-4,8 (<u>11</u>) : À 3 mmoles de 2 dans 3 ml d'acide acétique glacial, on ajoute à température ambiante, 4g d'une solution d'acide bromhydrique à 33% dans CH3COOH (soit 2,8 ml), le milieu réactionnel étant pla_ cé sous atmosphère d'argon. Très rapidement, se forme un précipité blanc. On poursuit l'agita_ anhydre afin de faire précipiter tout le bromhydrate d'amine formé. Le sel de bromhydrate est ensuite filtré sous atmosphère d'argon et lavé plusieurs fois avec l'éther anhydre. On obtient ainsi 1,11g d'une poudre fine blanche, très hygroscopique (R = 90). Libération de la fonction amine : le sel de bromhydrate obtenu précédemment (1,11g ; 2,7 mmoles) est mis en suspension dans 20 ml de THF anhydre. Le milieu réactionnel placé sous atmosphère d'argon est refroidi à 0°C et on additionne goutte à goutte 6 mmoles de triéthylamine (10% excès) diluée dans 10 ml de THF anhydre. Après 2 heures d'agitation, on ajoute 30 ml d'éther anhydre afin de précipiter tout le bromhydrate de triéthylamine formé. Celui-ci est ensuite éliminé par filtration et les sol_ vants évaporés sous vide. On obtient ainsi 0,610g de dilactone <u>11</u> sous forme d'une huile, R 901 :

 $R_{\rm F} = 0.02({\rm CH_2Cl_2/actione}\ 90/10)$; IR(liquide entre lames de KBr) : 3370 et 3300(NH₂), 1747(CO ester); RMN²H²(CDCl₃) : 2,33 à 2,77(M, 6H, OCCH₂CH₂ et NH₂), 3,85(m, 1H, CH), 5,0 à 5,74(m, 4H, CH₂O - 2 systèmes AB₁ J = 14,7 Hz), 6,98 à 7,59(système AB₂, 3H, pyridine -7,01(H_{3,5}), 7,53 (H₄), J = 7,4 Hz); RMN¹³C (CDCl₃) : 29,1(OCCH₂CH₂), 53,1(CH), 64,4(CH₂O), 118,1(C_{3,5}) pyridi_

ne), 136,8(C₄ pyridine), 153,1 et 153,3(C_{2.6} pyridine), 173,2 et 174,7(CO lactone) ; SM (DCI/NH₃) : 251(100 -[M+H]⁺).

dioxa-3,9 thia-6 aza-15 bicyclo[9.3.1]pentadécatriène-1(15),11,13 dione-4,8 (12) :

deux chromatographies comme $\underline{9}$: 1) éluant éther/acétone (40/60), 2) éluant CH₂Cl₂/acétone (97,5/2,5) ; R = 37%; F = 167-168°C ; R_F = 0,36 (éther) ; IR : (KBr) 1746(C=0), (HCCl₃) 1750 (C=0) ; RMN ¹H (CDCl₃) : 3,54(s, 4H, CH₂S), 5,38(s, 4H, CH₂O), 6,99 à 7,71(système ÅB₂, 3H, pyridine -7,03(H_{3,5}), 7,62(H₄), J = 7,7 Hz) ; RMN ¹³C (CDCl₃) : 35,7(CH₂S), 64,9(CH₂O), 118,5 (C_{3,5} pyridine), 136,8(C₄ pyridine), 153,4(C_{2,6} pyridine), 169,3(CO) ; SH : (DCI/NH₃) 254(100 - [M+H⁺) - (EI) 253(100 - [M]⁺), 208(35,2), 105(37,6), 78(39,3), 65(40,7). (Anal. Calc. pour C₁₁H₁₁NO₄S : C, 52,16 ; H, 4,38 ; N, 5,53 %. Trouvé : C, 51,92 ; H, 4,29 ; N, 5,64 %).

dioxa-3,11 this-7 aza-17 bicyclo[11.3.1]heptadécatriène-1(17),13,15 dione-4,10 (12): Deux chromatographies comme 9: 1) éluant éther/acétone (50/50), 2) éluant $CH_2Cl_2/acétone$ (95/05); R = 563; F = 143-144°C; R_F = 0,21 (éther); IR: (KBr) 1722 et 1740 (C=0), (HCCl_3) 1740(C=0); RMN ¹H (CDCl_3): 2,74(m, 4H, CH_2S), 2,93(m, 4H, CH_2CO), 5,27(s, 4H, CH_2O), 7,16 ³a 7,74(système AB₂, 3H, pyridine - 7,20(H₃, 5), 7,65(H₄), J = 7,6 Hz); RMN ¹³C (CDCl_3): 27,6(CH₂S ou CH₂CO), 34,8(CH₂CO ou CH₂S), 65,6(CH₂O), 121,2(C₃ pyridine), 136,9(C₄ pyridine), 155,5(C₂ 6 pyridine), 171,4(CO); SM ² (DCI/NH₃) 282(100, (M+H)²) - (EI) 281(56,7 - [M]²), 192(56,7), 138 (49,5), 105(81,9), 104(51,3), 91(36,9), 79(34,2), 78(100), 77(38,7), 65(81,0). Masse moléculaire (osmométrie): Trouvée 273 pour 281 théorique. (Anal. Calc. pour C₂H₄-No.5: C. 55.50 ± H. 5.37 (osmométrie) : Trouvée 273 pour 281 théorique. (Anal. Calc. pour $C_{13}H_{15}NO_4S$: C, 55,50 ; H, 5,37 ; N, 4,98%. Trouvé : C, 55,59 ; H, 5,35 ; N, 4,92 %).

oxo-6 dioxa-3,9 thia-6 aza-15 bicyclo[9.3.1]pentadécatriène-1(15),11,13 dione-4,8 (<u>14</u>) : A une solution de dilactone 12 dans le dichlorométhane refroidie à 0°C, on additionne ensuite goutte à goutte et sous agitation l'acide métachloroperbenzoïque en quantité stoechiométrique. Le mélange est laissé sous agitation 24 heures à 0°C puis 6 heures à température ambiante. Après neutralisation du milieu réactionnel à l'aide de bicarbonate de sodium, le dichlorométhane est évaporé et le résidu d'évaporation est chromatographié en éluant avec un mélange CH_2Cl_2/CH_3OH (99/1) ; R = 54% :

 $\begin{array}{l} (75)^{(1)}; \ K = 54C: \\ F = 182 - 184^{\circ}C, \ R_{F} = 0,53(\acute{e}ther/m\acute{e}thanol 80/20) ; \ IR (KBr) : 1750(CO), \ 1053(SO) ; \ RMN \quad ^{1}H \quad (CDCl_{3}) : \\ 4,05 - 4,38(système AB, 4H, CH_{2}S - 4,15(H_{B}), \ 4,38(H_{A}), \ J = 13,6 \ Hz), \ 5,10 \quad -5,74(système AB, 4H, CH_{2}O - 5,20(H_{B}), \ 5,55(H_{A}), \ J = 14,5 \ Hz), \ 7,01 - 7,74(système AB_{2}, \ 3H, \ pyridine \ - \ 7,07(H_{3} \ 5), \ 7,65(H_{4}), \ J = 7,7 \ Hz) ; \ SM \quad (DCI/NH_{3}) : \ 270(100, \ [M+H]^{\circ}). \ (Anal.Calc. \ pour \ C_{11}H_{11}NO_{5}S : \ C, \ 49,07 ; \ H, \ 4,12 ; \ N, \ 5,20 \ \ Trouvé : \ C, \ 49,33 ; \ H, \ 4,20 ; \ N, \ 4,97 \ \). \end{array}$

oxo-7 dioxa-3,11 thia-7 aza-17 bicyclo[11.3.1] heptadécatriène-1(17),13,15 dione-4,10 (15) : Même mode opératoire que <u>14</u>. Chromatographie : éluant éther/méthanol (90/10) puis CH₂Cl₂/CH₃OH (60/40) - R = 49 ; F = 185-187°C ; R_F = 0,14 (éther/méthanol 80/20) ; IR (KBr) 1747 et 1726 (CO), 1029(SO) ; RMN ¹H (CDCl₃) : 3,02(m, 8H, CH₂CH₂S), 5,02-5,55(système AB, 4H, CH₂O -5,09 (H_B), 5,47(H_A), J = 13,0 Hz), 7,15-7,77{système AB₂, 3H, pyridine - 7,16(H_{3,5}), 7,68(H₄), J = 7,6 Hz) ; SM (DCI/NH₃) : 298(100, [M+H]⁺). (Anal. calc. pour C₁₃H₁₅NO₅S : C, 52,52 ; H, 5,09 ; N, 4,71 %. Trouvé : C, 52,71 ; H, 5,15 ; N, 4,60 %). Ŧ

dioxa-3,12 dithia-7,8 aza-18 bicyclo[12.3.1]octadécatriène-1[18],14,16 dione-4,11 (<u>16</u>): Deux chromatographies comme <u>9</u>: 1) éluant éther/acétone (40/60), 2) éluant éther de pétrole/ éther (20/80); R = 58%; F = 147-148°C; R_F = 0,46 (éther); IR : (KBr) : 1731(CO), (HCCl₃) 1739(CO); RMN ¹H (CDCl₃): 2,89(m, 4H, CH₂CO), 3,11(m, 4H, CH₂S), 5,27(s, 4H, CH₂O), 7,12-7,75 (système AB₂, 3H, pyridine - 7,16(H₃, 5), 7,66(H₄), J = 7,6 Hz); RMN ¹³C (CDCl₃): 34,3(<u>C</u>H₂CO ou CH₂S), 35,7(CH₂S ou <u>C</u>H₂CO), 65,8(CH₂O), 121,0(C₃, pyridine), 137,1(C₄, pyridine), 155,1(C₂, 6 pyridine), 171,4(CO); SM : (DCI/NH₃) 314(100, [M+H]⁺) - (EI) 313(75,9 -[M]²), 280(100,0), 138 (29,7). (Anal. Calc. pour C₁₃H₁₅NO₄S₂ : C, 49,82 : H, 4,82 ; N, 4,47 %. Trouvé : C, 50,01 ; H, 4,85 , N, 4,37 %).

dioxa-3,14 dithia-8,9 zza-20 bicyclo[14.3.1] eicosatriène-1(20),16,18 dione-4,13 (<u>17</u>): Deux chromatographies comme <u>9</u>: 1) éluant éther/acétone (50/50), 2) éluant CH₂Cl₂/acétone (96/Q4); R = 55,6%; F = 79-80°C; R_F = 0,43 (éther); IR: (KBr) 1738(CO), (HCCl₃) 1737(CO); RMN ¹H (CDCl₃): 2,08(m, 4H, CH₂CH₂S), 2,53(m, 4H, CH₂CO), 2,73(m, 4H, CH₂S), 5,21[s, 4H, CH₂O), 7,24-7,79(système AB₂, 3H, pyridine - 7,28(H₃, 5), 7,69(H₄), J = 7,5 Hz); RMN ¹³C (CDCl₃): 25,1(CH₂CH₂S), 33,2(CH₂CO ou CH₂S), 38,5(CH₂'S ou CH₂CO), 66,5(CH₂O), 122,5(C₃, 5 pyridine), 137,3(C₄ pyridine), 155,3(C_{2,6} pyridine), 172,4(CO); SM : (DCI/NH₃) 342(100 - [M+H]⁺) - (EI) 341(41,0 - [M]⁺), 308(73,8); 137(37,7), 121(34,8), 106(35,6), 105(54,7), 104(53,9), 79(42,7), 78(100,0), 77(35,2), 73(34,0), 69(38,1), 65(51,8). Masse moléculaire (Osnométrie): Trouvée 324 pour 341 théorique, (Ana), Calc pour C₄CH₄NO₅Sa : (52,77 + H, 5,61 + N, 4,10 + Trouvée 324 pour 341 théorique. (Anal. Calc. pour $C_{15}H_{19}NO_4S_2$: C, 52,77 ; H, 5,61 ; N, 4,10 %. Trouvé : C, 53,03 ; H, 5,62 ; N, 3,98 %).

 $\begin{array}{l} (R)(R) - (+) \ N, N' \ dicarbobenzoxy diamino-3, 8 \ dioxa-1, 10 \ dithia-5, 6 \ cyclododécane \ dione-2, 9 \ (12) : \\ Deux chromatographies comme 9 : 1) \ éluant \ CH_2Cl_2/acétone \ (40/60), 2) \ éluant \ CH_2Cl_2/acétone \ (98/2) ; R = 45%; F = 124-128°C ; R_F = 0,62 \ (CH_2Cl_2/acétone \ 90/10) ; \ [\alpha]_D^{0} = +166,5° \ (c = 1,5, chloroforme) ; IR (KBr) : 3340(NH), 1742(CO \ ester), 1685(CO \ uréthane) ; RMN \ H (CDCl_3) : 3,27(m, 4H, CH_2S), 3,94-5,02(m, 4H, OCH_2CH_2O - système AA'BB', 4,00(H_B), 4,97(H_A)), 4,58(m, 2H, CH), 5,10(s, 4H, CH_2Ø), 5,64(d, 2H, NH, J = 7,9 \ Hz), 7,34(s, 10H, phényles) ; RMN \ ^{1}C \ (CDCl_3) : 41,4(CH_2S), 52,8(CH), 62,8(OCH_2CH_2O), 67,3(CH_2Ø), 128,2, 128,3 \ et \ 128,6(c_2-c_6 \ phényles), 136,0(c_1 \ phényles), 155,3(CO \ uréthane), 170,5(CO \ ester) ; SM \ (DCI/NH_3) : 552(100 \ -[M+NH_4]^+). (Anal. Calc. pour C_{24}H_26N_2^{0}_8S_2 : C, 53,92 ; H, 4,90 ; N, 5,24 \%. Trouvé : C, 54,03 ; H, 4,85 ; N, 5,23 \%). \end{array}$ (Anal. Ćaic N, 5,23 %).

(R)(R)-(-) N.M^{*} dicarbobenzoxydiamino-5,10 dioxa-3,12 dithia-7,8 aza-18 bicyclo[12.3.1] octadécatriène-1(18),14,16 dione-4,11 (<u>19</u>) :

Après filtration du milieu réactionnel, le précipité est traité plusieurs fois avec de l'acétone. Les solutions benzénique et acétonique sont rassemblées et évaporées. Le résidu d'évaporation est chromatographié deux fois avec un mélange $CH_2Cl_2/acétone$ (1) 40/60, 2) 60/40). On collecte ainsi deux types de fractions contenant <u>19</u> pur d'une part et <u>19</u> + impuretés d'autre part (contrôle CCM). Ces dernières sont rechromatographiées sur silice avec $CH_2Cl_2/acétone$ (90/10); R = 57% :

 $\begin{array}{l} (90/10) ; R = 57\% : \\ F = 205-208 ^{\circ}C; R_{p} = 0,45(CH_{2}Cl_{2}/acétone 90/10) ; [a]_{D}^{20} = -179,50 (c = 0,87, diméthylsulfoxyde) \\ ; IR (KBr) : 3343(NH), 1757(CO ester), 1685(CO uréthane) ; RMN ¹H (dmsod_g) : 3,12(m, 4H,CH_{2}S), \\ 4,55(m, 2H, CH), 5,06(s, 4H, CH_{2}Ø), 4,97 - 5,58(système AB, 4H, CH_{2} en a du noyau pyridine : \\ 5,06(H_{B}), 5,49(H_{3}), J = 13,5 Hz], 7,36(s, 10H, phényles), 7,36-7,90(système AB_{2}, 3H, pyridine - \\ 7,39(H_{3},5), 7,81(H_{4}), J = 7,6 Hz], 8,06(d, 2H, NH, J = 7,3 Hz] ; RMN ¹³C (dmsod_g) : 37,0(CH_{2}S), \\ 52,3(CH], 65,7(CH_{2}Ø et CH_{2} en a du noyau pyridine), 121,6(C_{3},5 pyridine), 127,8 et 128,3(C_{2}-C_{6} phényles), 136,5(C_{1} phényles), 137,5(C_{4} pyridine), 154,7(C_{2},6 pyridine), 156,0(CO uréthane), \\ 170,9(CO ester) ; SM (DCI/NH_{3}) : 612(68,5 - [M+H]^{-1}), 580(24 - [M-31]), 472(24), 343(24), 192 \\ (24), 178(40) et 169(100). (Anal. Calc. pour C_{29}H_{29}N_{3}O_{8}S_{2} : C, 56,94 ; H, 4,78 ; N, 6,87 \%. \\ \end{array}$

(R)(R)-(-)N,N' di-p-nitrocarbobenzoxydiamino-5,10 dioxa-3,12 dithia-7,8 aza-18 bicyclo[12.3.1]
octadecatriene-1(18),14,18 diona-4,11 (20) :

octadécatrième-1[18], 14, 16 dione-4, 11 (20) : Purification identique à 19 ; R = 48% ; F = 145-148°C ; $R_F = 0.37$ (CH₂Cl₂/acétone 90/10) ; [a]₀^O = -147,6° (c = 0.83, diméthylsulfoxydę) ; IR (KBr) : 3346(NH), 1758 et 1727(CO ester), 1697(CO uréthane), 1525 et 1350(NO₂) ; RMN ¹H (dmsod₆) : 3,20(m, 4H, CH₂S), 4,58(m, 2H, CH), 5,21(s, 4H, CH₂Ø), 4,99-5,58(système AB, 4H, CH₂ en a du noyau pyridine - 5,07(H_B), 5,49(H_A), J = 13,5 Hz), 7,35-7,90(système AB₂, 3H, pyridine - 7,39(H₃,5), 7,81(H₄), J = 7,5 Hz), 7,57-8,30 (m, 10H, phényles + NH) ; RMN ¹³C (dmsod₆) : 37,0(CH₂S), 52,3(CH), 64,5(CH₂Ø), 65,5(CH₂ en a du noyau pyridine), 121,6(C₃,5 pyridine), 123,4, 128,1, 144,5 et 146,9 (phényles), 137,5(C₄ pyridi_ne), 154,7(C₂,6 pyridine), 155,6(CO uréthane), 170,8(CO ester) ; SM (DCI/NH₃) : enregistrement 300-880 uma : 702(4 - [M+H]⁺), 636(20), 517(75), 483(24), 398(61), 388(72,5) et 364(100). (Anal. Calc. pour C₂₉H₂₇N₅O₁₂S₂ : C, 49,64 ; H, 3,88 ; N, 9,98 %. Trouvé : C, 49,35 ; H, 3,80 ; N, 10,19).

N.B. Cette dilactone a été également préparée à partir du chlorure de la L-cystine pNO₂Z proté, gée en utilisant les mêmes conditions opératoires qu'avec le fluorure. R = 30%; $[\alpha]_{0}^{20}=-147,5^{*}$ (c = 0,83, diméthylsulfoxyde).

(R)(R) diamino-5.10 dioxa-3.12 dithia-7.8 aza-18 bicyclo[12.3.1] octadécatriène-1(18).14.16 diona-4.11 (21) : mode opératoire identique à <u>11</u> ; obtenu sous forme d'huile ; en raison de son instabilité, seule une caractérisation infrarouge a été effectuée. IR (entre lames de KBr) : 3370 et 3300(NH₂), 1740(CO ester).

(R)(R)-(+) N.N. dicarbobenzoxydiamino-8,13 tétraoxa-3,6,15,18 dithia-10,11 aza-24 bicyclo[18.3.1] tétracosatriène-1(24),20,22 dione-7,14 (<u>22</u>) :

Deux chromatographies comme 2 : 1) éluant $CH_{2Cl_{2}/acétone}$ (40/60), 2) éluant éther/ $CH_{2Cl_{2}/métha_nol}$ nol (55/42/3) ; R = 42% ; F = 70-75°C ; R_F = 0,20($CH_{2Cl_{2}/acétone 90/10$) ; $[u]_{D}^{20}$ = +29,5° (c = 1,5, chloroforme) ; IR (KBr) : 3340(NH), bande large entre 1750 et 1700(Co ester et CO uréthane) ; RNN ¹H (CDCl_{3}) : 3,0(m, 4H, CH_{2} S), 3,80(m, 4H, $OCH_{2}CH_{2}OCO$), 4,15-4,60(m, 6H, CH et OCH₂CH₂OCO), 4,62(s, 4H, CH₂ en a du noyau pyridine), 5,10(s, 4H, CH_{20}), 5,98(d, 2H, NH, J = 7,9 Hz], 7,26-7,78(système ÅB₂, 3H, pyridine -7,29(H₃ s), 7,69(H₄), J = 7,5 Hz), 7,33(s, 10H, phényles) ; RNN ¹³C (CDCl_{3}) : 40,7(CH₂S), 53,4(CH), 65,3(OCH₂CH₂OCO), 67,1(CH₂0), 68,4 (OCH₂CH₂OCO), 74,2(CH₂ en a du noyau pyridine), 121,4(C₃ s pyridine), 128,2 et 128,5(C₂-C₆ phé_ nyleš), 136,2(C₄ phénýle), 137,3(C₄ pyridine), 155,8(CO úréthane), 157,3(C₂, pyridine), 170,3 (CO ester) ; SM (DCI/MH₃) : 700(100 - [M+H]⁺), 668(26), 656(36) et 592(30 - [M - OCH₂0]⁻. (Anal. Calc. pour C₃₃H₃₇N₃O₁₀S₂ : C, 56,64 ; H, 5,33 ; N, 6,00 %. Trouvé : C, 56,63 ; H, 5,33 ; N, 5,85 %).

(R)(R) diamino-8.13 tétraoxa-3.5.15.18 dithia-10.11 aza-24 bicyclo[18.3.1] tétracosatriène-1
(24).20.22 dione-7.14 (23) :
mode opératoire identique à <u>11</u> ; mêmes remarques que pour <u>21</u> ; IR (entre lames de KBr) : 3370 et
3300(NH₂), 1735(CO ester).

Etude de complexation avec des picrates métalliques et d'a-méthyl benryl annonium

Constante d'extraction : Dans le cas général d'un cation de charge Z^+ et d'un complexe de stoe_ chiométrie n/1 (ligand/sel), l'extraction peut être représentée par l'équilibre hétérogène sui_ vant :

 $M_{aq}^{Z^+} + z \operatorname{Pic}_{aq}^{-} + nL_{org} \xrightarrow{K_{e}} (ML_{n}^{Z^+} \operatorname{Pic}_{z}^{-})_{org} \quad avec \quad K_{e} = \frac{[NL_{n} \operatorname{Pic}_{z}^{-}]_{org}}{[N^{Z^+}]_{aq} [\operatorname{Pic}_{aq}^{-}]_{aq}^{Z} [L]_{org}^{n}}$

M = cation, L = ligand, Pic = ion picrate, aq = phase aqueuse, org = phase organique

<u>mode opératoire</u> : Les procédures établies par Cram et collaborateurs ⁴ ont été adaptées afin d'opérer sur de faibles quantités d'échantillons. Les expériences ont été effectuées avec un rapport molaire de picrate sur ligand de 1. Les concentrations en picrate et en ligand sont de 0,015M pour les extractions menées pour les picrates de Na⁺, K⁺, Mg²⁺, Ca²⁺ et $2n^{2+}$ et 0,010M pour les extractions des sels de BHA⁺(+) et BHA⁺(-). Trois expériences d'extraction sont menées simultanément pour un ligand donné : dans un tube à hémolyse de 4 ml, on introduit 250 μ l de solution chloroformique de ligand. On ajoute ensuite dans le tube un petit barreau aimanté puis le même volume, soit 250 µl de solution de picrate. Dans un quatrième tube, on introduit 250 µl de solution de ligand et 250 µl d'eau afin de servir de référence. Les tubes sont plongés dans un bain thermostaté à +25°C et les phases chloroformiques sont agitées magnétiquement pendant 15 heures. Les contenus de chaque tube sont ensuite séparés en deux phases limpides par centrifuga_ tion. Les concentrations en picrate dans chacune des phases sont alors déterminées par spectros copie UV : un aliguot de chacune des phases est mesuré à l'aide d'une seringue, dilué avec de l'acétonitrile et l'absorption UV de chacune des solutions obtenues est mesurée à 380 nm.

Stoechiométrie des complexes ligend-cation formés.

La stoechiométrie des complexes formés dans le chloroforme a été évaluée à partir de la mesure de la longueur d'onde d'absorption maximum du complexe dans la phase chloroformique et ceci par analogie avec ce qui est rapporté dans la littérature à propos des éthers couronnes ⁴². En effet la formation de paires d'ions en contact étroit donnera un maximum d'absorption proche de 350 nm (cas d'un complexe 1:1) ; à l'inverse, des paires d'ions plus ou moins éloignées du fait d'in_ teractions plus importantes avec le ligand conduira à un maximum d'absorption voisin de 380 nm (cas d'un complexe 2:1). Dans notre cas, les valeurs de λ_{max} obtenues se sont révélées comprises entre 335 et 345 nm et semblent donc compatibles avec une stoechiométrie de type 1:1.

Mode opératoire : on introduit 1 ml d'une solution chloroformique de ligand (0,010M ou 0,015M) et 1 ml de solution aqueuse de picrate de même concentration ainsi qu'un barreau aimanté dans un tube de 10 ml. La phase chloroformique est agitée dans un bain thermostaté à +25°C pendant 20 heures. Après centrifugation, la phase organique est prélevée soigneusement avec une seringue et diluée avec du chloroforme. Le spectre UV de cette solution est ensuite enregistré.

Solubilité des ligands : Les coefficients de partition des ligands entre le chloroforme et l'eau (Pe = [Lag]/[Lorg]) ont été déterminés par spectroscopie UV.

RÉFÉRENCES

- 1 E.W. Spanagel, Brevet français 796, 410(7 avril, 1936) ; Chem. Abs., <u>30, 6138¹ (1936)</u>
- E.W. Spanager, Dievet Hangars Job, 1007 artis, 1989, 6007 artis, 1989, 6007 (1980)
 B.H. Kingston, Pafai. J., 5, 11 (1983); A. Shozo, Koryo, <u>137</u>, 33 (1982); V.M. Andrev et al., Brevet USSR, SU 1, 077, 893 (7 mars 1984), Chem. Abs., <u>101</u>, 9093g (1984); K. Burzin, Brevet Allemand, D.E. 3,216, 084 (3 novembre 1983), Chem. Abs., <u>100</u>, 121124k (1984)
 J.S. Bradshaw, S.L. Baxter, J.D. Lamb, R.M. Izatt et J.J. Christensen, J. Amer. Chem. Soc., <u>103</u>, 1821 (1981); S.L. Baxter et J.S. Bradshaw, J. Heterocyclic Chem., <u>18</u>, 233 (1981); J.S. Bradshaw, B.A. Jones, R.B. Davidson, J.J. Christensen, J.D. Lamb, R.M. Izatt, F.G.
- Morin et D.M. Grant, J. Org. Chem., <u>47</u>, 3362 (1982) et références citées dans ces articles R.M. Kellogg, Angew. Chem. Int. Ed. Engl., <u>23</u>, 782 (1984) et références citées dans ces références citées dans cet article ; A.G. Talma, P. Jouin, J.G. De Vries, C.B. Troostwijk, G.H. Werumeus Buning,
- J.K. Waninge, J. Visscher et R.M. Kellogg, J. Amer. Chem. Soc., 107, 3981 (1985)
- T.G. Back, Tetrahedron, <u>33</u>, 3041 (1977) ; K.C. Nicolaou, Tetrahedron, <u>33</u>, 683 (1977) ; S. Masamume, G.S. Bates et J.W. Corcoran, Angew. Chem. Int. Ed. Engl., <u>16</u>, 585 (1977)
- J.W. Hill et W.H. Carothers, J. Amer. Chem. Soc., 55, 5023 (1933) ; E.W. Spanagel et W.H. 6
- Carothers, J. Amer. Chem. Soc., <u>57</u>, 929 (1935) J.S. Bradshaw, G.E. Maas, R.M. Izatt et J.J. Christensen, Chem. Rev., <u>79</u>, 37 (1979); G.W. Gokel et S.H. Korzeniowski, "Macrocyclic Polyether Syntheses", Springer Verlag (Berlin -1982), p 220
- K.Steliou, A.Szczygielska-Nowosielska, A.Favre, M.A.Poupart et S.Hannessian,
- J.Amer.Chem.Soc., 102,7578 (1980);K.Steliou et M.A.Poupart, J.Amer.Chem.Soc., 105, 7130(1983) A. Shanzer, N. Mayer-Shochet, F. Frolow et D. Rabinovich, J. Org. Chem., <u>46</u>, 4662 (1981); 9
- A. Shanzer, J. Libman, H. Gottlieb et F. Frolow, J. Amer. Chem. Soc., <u>104</u>, 4220 (1982)
 A.G. Davies, T.N. Mitchell et W.R. Symes, J. Chem. Soc. (C), 1311 (1966); K. Itoh, Y. Kato,
 Y. Ishii, J. Org. Chem., <u>34</u>, 459 (1969); P.J. Smith, Chem. Ind. (London), 1025 (1978); 10
- A.J. Bloodworth et A.G. Davis, Chem. Ind. (London), 490 (1972) P. Tisnes, L. Cazaux et C. Picard, J. Chem. Res., 2, 38(5) et 481(M) (1984) J. Buter et R.M. Kellogg, J. Org. Chem., <u>46</u>, 4481 (1981) : réf. citées dans cet article
- 11
- 12 13
- R.C. Poller, "The Chemistry of Organotin compounds", Logos Ed. (1970), p. 185 14 O. Piepers et R.M. Kellogg, J. Chem. Soc., Chem. Comm., 383 (1978) ; J.G. de Vries et R.M. Kellogg, J. Amer. Chem. Soc., 101, 2759 (1979)
- H. Hunsdiecker et H. Erlbach, Chem. Ber., <u>80</u>, 129 (1947) ; C. Galli etL. Mandolini, Gazzet ta, <u>105</u>, 367 (1975) ; T. Mukaiyama, M. Usui et K. Saigo, Chem. Lett., 49 (1976) ; E.J. Corey 15 et K.C. Nicolaou, J. Amer. Chem. Soc., <u>96</u>, 5614 (1974) ;W.H. Rastetter et D.P. Phillion, J. Org. Chem., <u>46</u> 3209 (1981)
- W.H. Kruizinga et R.M. Kellogg, J. Amer. Chem. Soc., 103, 5183 (1981) ; S.L. Regen et Y. Kimura, J. Amer. Chem. Soc., <u>104</u>, 2064 (1982) ; K. Steliou et M.A. Poupart, J. Amer. Chem. Soc., <u>105</u>, 7130 (1983)

- 17 A.J. Bloodworth et A.G. Davies dans "Organotin Compounds", A.K. Sawyer, vol. 1, Ed. M. Dek_ ker, New-York, 1971, p. 153
- 18 T. Mukaiyama et T. Tanaka, Chem. Lett., 303 (1976)
- G. Illuminati et L. Mandolini, Acct. Chem. Res., <u>14</u>, 95 (1981) S.E. Drewes et B.G. Riphagen, J. Chem. Soc., Perkin I, 323 (1974) ; S.E. Drewes et P.C. 19 20
- Coleman, J. Chem. Soc., Perkin I, 2148 (1972)
- 21 J. Dale, J. Chem. Soc., 72 (1965)
- M.A. Winnik, Chem. Rev., 81, 491 (1981) 22
- 23 F.P. Boer, J.J. Flynn, H.H. Freedman, S V. Mc Kinley et V.R. Sandel, J. Amer. Chem. Soc., 89, 5068 (1967)
- 24 C. Picard, L. Cazaux et P. Tisnes, Tetrahedron Lett., 25, 3809 (1984)
- 25 Résultats non publiés
- M.A. Mc Kervey et T. O'Connor, J. Chem. Soc., Chem. Comm., 655 (1982) 26
- 27 S. David, A. Thieffry et A. Veyrières, J. Chem. Soc., Perkin I, 1796 (1981)
- 28 5. David et A. Thieffry, Tetrahedron Lett., 22, 2647 et 2885 (1981)
- 29 T.W. Bell, P.C. Cheng, M. Newcomb et D.J. Cram, J. Amer. Chem. Soc., 104, 5185 (1982) 30
- M. Bergmann et L. Zervas, Chem. Ber., 65, 1192 (1932) ;F. Weygand et R. Geiger, Chem. Ber., 90, 634 (1957) ;C. King et F.H. Suydam, J. Amer. Chem. Soc., <u>74</u>, 5499 (1952) J.P. Greenstein et M. Winitz, "Chemistry of the Amino Acids", J. Wiley (New-York, London), vol. 2 (1961) ; E. Gross et J. Meienhofer, "The peptides : Analysis, synthesis, biology", 31
- Academic Press (New-York), vol. 1 (1979)
- 32 S.E. Drewes et P.C. Coleman, J. Chem. Soc., Perkin I, 2578 (1974) ; P. Traldi, U. Vettori, 33
- G. Podda, A. Maccioni et L. Corda, Org Mass Spectrometry, <u>18</u>, 69 (1983) R.M. Izatt et J.J. Christensen, "Progress in Macrocyclic Chemistry", vol. 1 (1979), J. Wiley, New-York ; G.A. Melson, "Coordination Chemistry of Macrocyclic Compounds" (1979), Plenum Press, New-York
- Pour la définition du terme "lariat" voir G.W. Gokel, D.M. Dishong et C.J. Diamond, J. Chem. 34 Soc., Chem. Commun., 1053 (1980)
- S.T. Jolley, J.S. Bradshaw et R.M. Izatt, J. Heterocyclic Chem., 19, 3 (1982) 35
- W. Baker, K.M. Buggle, J.F.W. Mc Omie et D A.M. Watkins, J. Chem. Soc., 3594 (1958) 36 37
- J. Bornstein, B.R. Laliberte, T.M. Andrews et J.C. Montermoso, J. Org. Chem., 24, 886 (1959)
- 38 S. Goldschmidt et C. Jutz, Chem. Ber., <u>86</u>, 1116 (1953)
 39 M. Bergmann et L. Zervas, Chem. Ber., <u>65</u>, 1192 (1932)
- 40
- 41
- D.T. Gish et F.H. Carpenter, J. Amer. Chem. Soc., <u>75</u>, 950 (1953) S.S. Moore, T.L. Tarnowski, N. Newcomb, D.J. Cram, J.Amer.Chem.Soc., <u>99</u>, 6398 (1977) ; K.E.Koenig, G.M. Lein, P. Stuckler, T. Kaneda, D.J. Cram, J.Amer.Chem.Soc., <u>101</u>, 3553 (1979) 42 K.H. Wong, K. Yagi et J. Smid, J. Membrane Biol, <u>18</u>, 379 (1974)