

- 1 R = R'' = H, R' = Glc
- $2 \quad R = R^{\prime\prime} = Me, R^{\prime} = H$
- 3 R=Me, R'= R $^{\prime\prime}$ = H
- $4 \quad \mathbf{R} = \mathbf{R}' = \mathbf{R}'' = \mathbf{H}$

aglycone with acetobromoglucose and potassium hydroxide in acetone [5]. The second constituent isolated from *S. portulacastrum* was established as eupalitin from its physical and spectral behaviour [4].

EXPERIMENTAL

The plant material was identified by Miss Vir Bala Shah of Hoechst, Bombay and a voucher specimen has been deposited in the Herbarium of R. R. L. Jammu under accession No. 16091. A concd MeOH extract of dried whole plant material was successively triturated with petrol, CHCl₃, EtOAc and *n*-BuOH. The *n*-BuOH extract residue was charged on a Si gel column and graded elution with CHCl₃-MeOH mixtures yielded eupalitin (4) followed by the glycoside (1). The constituents were purified by crystallization from MeOH-EtOAc.

UV data for 1, 4 and 2. UV λ_{max}^{MeOH} nm: 1 265, 360, 380 sh; + AlCl₃ 270, 300 sh, 418; + AlCl₃-HCl 270, 300 sh, 418; + NaOMe 272, 415; + NaOAc 265, 360, 380 sh. 4 265, 360; + AlCl₃270, 368 sh, 415; + AlCl₃-HCl 270, 368 sh, 415; + NaOMe 272, 415. 2 252, 362; + AlCl₃ 262, 421; + AlCl₃-HCl 260, 420, + NaOMe 263, 400.

Acknowledgement—We thank Mr. Inderpaul Singh for technical assistance.

REFERENCES

- 1. Banerji, A. and Chintalwar, G. J. (1971) Indian J. Chem. 9, 1029.
- 2. Wagner, H. (1966) Methods in Polyphenol Chemistry p. 309. Academic Press, London.
- 3. Schmidt, R. D. (1972) Tetrahedron 28, 3259.
- 4. Qui Jano, L., Malarico, F. and Rios Tirso (1970) Tetrahedron 2851.
- 5. Zemplen, G. and Farkas, L. (1943) Chem. Ber. 76, 1110.

Phytochemistry, Vol. 21, No. 5, pp. 1180-1182, 1982. Printed in Great Britain. 0031-9422/82/051180-03\$03.00/0 © 1982 Pergamon Press Ltd.

BERGENIN DERIVATIVES FROM MALLOTUS JAPONICUS*

TAKASHI YOSHIDA, KAORU SENO, YUKIKO TAKAMA and TAKUO OKUDA

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700, Japan

(Received 31 July 1981)

Key Word Index—Mallotus japonicus; Euphorbiaceae; polyphenols; 11-O-galloylbergenin; 4-O-galloylbergenin; 11-O-galloyldemethylbergenin; geraniin; methylellagic acid; ¹³C NMR.

Abstract—Three new bergenin derivatives were isolated from the bark of *Mallotus japonicus* and determined to be 11-O-galloylbergenin, 4-O-galloylbergenin and 11-O-galloyldemethylbergenin. The ¹³C resonances of bergenin were fully assigned.

The polyphenol-rich bark and leaf of *Mallotus japonicus* have been used in Japan as remedies for gastric ulcer. Although we isolated two new tannins, mallotusinic acid and mallotinic acid [1], along with geraniin [2], from the leaf extract, bergenin has been the only compound isolated from the bark of this tree [3, 4]. The present investigation on the aqueous acetone extract of bark afforded three new bergenin

derivatives 1-3. Five known polyphenols, 3,3',4-tri-O-methylellagic acid, ellagic acid, geraniin, corilagin, and (-)-epigallocatechin gallate, in addition to bergenin (4), were also isolated.

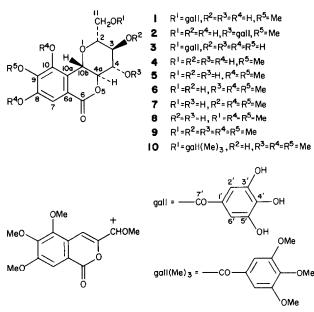
Compounds 1 and 2 analysed as $C_{21}H_{20}O_{13}$ were shown to be monogalloyl esters of bergenin by their ¹H, ¹³C NMR and mass spectral data, and also by acid hydrolysis, which gave bergenin and gallic acid. The position of the galloyl group in 1 and 2 was elucidated by ¹³C NMR. The carbon signals other than that of C-11 in the glucose moiety of bergenin, which have not been previously assigned [5], have now been assign-

^{*}Part 2 in the series "Studies on Tannins and Polyphenols of *M. japonicus*". For Part 1 see ref.[1].

Table 1. ¹³C NMR spectral data of bergenin and its derivatives (22.6 MHz, TMS as int. standard)

	Solvent A*			Solvent B [†]		
	4‡	5	6	1	2	4
C-2	81.7	81.5	81.6	81.0	83.3	83.5
C-3	70.7	70.9	70.1	72.3	70.3	72.4
C-4	73.9	74.3	84.1	75.8	76.6	76.1
C-4a	79.8	80.3	80.0	81.7	79.3	81.8
C-6	163.4	163.7	163.4	166.6	166.1	166.6
C-6a	117.9	126.5	126.4	120.1	119.7	120.1
C-7	109.8	109.4	109.4	112.1	111.9	111.8
C-8	150.9	153.2	153.2	153.2	152.9	153.2
C-9	140.6	148.2	148.3	143.2	143.1	143.1
C-10	148.0	151.1	151.3	150.0	150.0	150.3
C-10a	115.6	119.1	119.0	117.8	117.5	118.1
C-10b	72.6	71.7	71.6	74.8	74.5	74.7
C-11	61.3	61.2	61.3	65.2	62.6	63.2
OMe	59.9	60.7	60.7	61.4	61.4	61.3
_	_	61.3	61.3		_	_
	_	56.0	56.1		_	—
_	_		60.4		—	_
C-1′	_	—		121.9	121.9	_
C-2', C-6'	_		_	111.2	111.2	
C-3', C-5'	_	_		147.4	147.2	_
C-4'	_	_		140.8	140.7	_
C-7′	_	—	—	169.3	168.6	_

*Solvent A, CDCl₃-DMSO-d₆ (1:1). †Solvent B, MeOH-d₄-DMSO-d₆ (15:1).


‡Data from ref. [5].

ed as follows. The carbons carrying free hydroxyl groups (C-3, C-4 and C-11) were unequivocally distinguished from the others (C-2, C-4a and C-10b) by the deuterium-induced differential isotope shift (DIS) measurement [6] of 4. The former showed dual peaks of definite DIS (0.16 ppm), while the latter appeared as single peaks. Distinction of C-3 and C-4 and assignment of C-4a were based on the methylation shift [7] in the ¹³C NMR spectra of 8, 10-di-O-methylber-(5) and tri-O-methylbergenin (6), genin which were obtained by methylation of 4 with diazomethane. Physical and spectral data of 6 were different from those of 3,8,10-tri-O-methylbergenin (7) and 8,10,11-tri-O-methylbergenin (8) [5]. Structure 6 was supported by the mass spectrum, in which a m/z 279 peak due to the fragment ion A [5] was exhibited. Confirmation of this structure was also made by the diagnostic chemical shift (δ 3.79) of the methoxyl signal on the glucose moiety in the ¹H NMR spectrum, as the C-3 and C-11 methoxyl signals in the ¹H NMR spectra of 7, 8 and permethylated bergenin (9) [5] appear at δ 3.57 and 3.41, respectively, while the C-4 methoxyl signal resonates at δ 3.73. Assignment of C-2 was made referring to the reported ¹³C NMR data of 8 [5]. Comparison of the ¹³C NMR spectra of 1 and 2 with that of 4 based on these assignments (Table 1), with consideration of the acylation shift[8], has led to the formation of 1 and 2 as 11-O-galloylbergenin and 4-O-galloylbergenin respectively.

Compound 3, $C_{20}H_{18}O_{13}$, was isolated as a minor component. The ¹H NMR spectrum of 3, which is similar to that of 1 except for the absence of the methoxyl signal, indicates that 3 could be the demethyl derivative of 1. Upon methylation with diazomethane, 3 gave a heptamethyl derivative (10), which was identified with the specimen obtained by methylation of 1. The structure of 3 was thus elucidated as 11-O-galloyldemethylbergenin.

EXPERIMENTAL

Extraction and isolation. Fresh bark (1.6 kg) of M. japonicus Muell. Arg. collected in Okayama.in June 1980 was homogenized in aq. Me₂CO (11 l.). The homogenate was filtered through Celite, the Me₂CO evaporated and the resulting aq. soln extracted with Et₂O (11 l. \times 6). Evaporation of the Et₂O

🗛 (*m/z* 279)

extract, followed by crystallization from Me₂CO gave 3,3',4tri-O-methylellagic acid (115 mg). Analyses by TLC (Si gel, C₆H₆-HOAc-dioxane, 18:1:5) and GC (TMSi ether, 1.5% SE-30, column temp. 170°, 240°) revealed the presence of gallic acid and 3,3'-di-O-methylellagic acid in the Et₂O extract. The aq. layer was extracted with EtOAc (11×8) . The combined EtOAc layers were evaporated to give a brown residue (28 g), from which bergenin (5.3 g) was deposited on addition of MeOH. A portion (2g) of the MeOH-soluble fraction was submitted to droplet countercurrent chromatography (ascending method, n-BuOH-HOAc- H_2O , 4:1:5). Fractions (10 ml) were collected and every fifth fraction was monitored by A_{280} and by TLC (cellulose, 7% HOAc). Fractions 1-25 (0.16g) gave crude ellagic acid. Fractions 26-50 (0.57 g) contained 1, 2 and (-)-epigallocatechin gallate, amongst which 1 was crystallized from aq. MeOH and the others were separated by Sephadex LH-20 CC eluting with EtOH. Sephadex LH-20 CC of fractions 51-77 (0.42 g) gave geraniin. Fractions 78-120 (0.76 g) yielded bergenin. Evaporation of the stationary phase afforded crude corilagin. Yields of polyphenols from the EtOAc extract were 1, 4.3%; 2, 1.9%; ellagic acid, 3%; geraniin, 4.8%; bergenin, 33.7%; corilagin, 0.7%; (-)-epigallocatechin gallate, 1.3%. The air-dried bark (1 kg) was also treated in the same manner to give an Et₂O and an EtOAc extract (2.4 and 36.8 g respectively). Yields of polyphenols from the EtOAc extract of the dried bark were 1, 5.2%; 2, 4.7%; 3, 0.4%; ellagic acid, 5%; geraniin, 1.9%; bergenin, 23.9%; corilagin, 4.5%.

1. Mp 179° (dec.) (from aq. MeOH), $[\alpha]_{15}^{15}$ + 37.6° (EtOH; c 1.2), $R_f 0.15$ (TLC, cellulose, 7% HOAc) (Found: C, 48.55; H, 4.39. $C_{21}H_{20}O_{13} \cdot 2H_2O$ requires: C, 48.84; H, 4.68%.) UV $\lambda_{max}^{EiOH} nm$ (log ϵ): 277 (4.22); IR $\nu_{max}^{EET} cm^{-1}$: 3300, 1710, 1630, 1610, 1510, 1230; ¹H NMR (90 MHz, Me₂CO-d₆): δ 7.22 (2H, s, gall-H), 7.12 (1H, s, H-7), 3.92 (3H, s, OMe); MS m/z (rel. int.): 328 (34), 208 (100), 237 (7), 170 (30).

2. Amorphous powder, $[\alpha]_{15}^{15} - 51^{\circ}$ (MeOH; c 1.0), R_f 0.36 (TLC, cellulose, 7% HOAc) (Found: C, 50.41; H, 4.31. $C_{21}H_{20}O_{13} \cdot H_2O$ requires: C, 50.61; H, 4.45%.) UV λ_{max}^{BEOH} nm (log ϵ): 277 (4.17); IR ν_{max}^{KBT} cm⁻¹: 3300, 1710, 1610, 1530, 1510, 1210; ¹H NMR (90 MHz, Me₂CO-d₆): δ 7.22 (2H, s, gall-H), 7.10 (1H, s, H-7), 3.95 (3H, s, OMe); MS m/z (rel. int.): 328 (43), 237 (10), 208 (100), 170 (12).

3. Mp 217° (dec.) (from aq. MeOH), $[\alpha]_{5}^{15} + 63°$ (EtOH; c 0.7), R_f 0.04 (TLC, cellulose, 7% HOAc) (Found: C, 47.57; H, 4.04. $C_{20}H_{18}O_{13} \cdot 2H_2O$ requires: C, 47.81; H, 4.41%.) UV λ_{\max}^{EiOH} nm (log ϵ): 283 (4.24); IR ν_{\max}^{KBT} cm⁻¹: 3300, 1690, 1610, 1535, 1230; ¹H NMR (90 MHz, Me₂CO-d₆): δ 7.21 (2H, s, gall-H), 7.15 (1H, s, H-7); MS m/z (rel. int.): 314 (33), 223 (7), 194 (100), 170 (40).

All of the known polyphenols were identified by direct comparison with authentic samples.

Preparation of 4,8,10-tri-O-methylbergenin (6). A soln of 4 (200 mg) in MeOH (20 ml) was treated with CH₂N₂-Et₂O for 4 hr at room temp. Evaporation of solvent, followed by repeated crystallization from Me₂CO-ligroin, gave colourless needles of 4,8,10-tri-O-methylbergenin (6) (140 mg), mp 154-155°, $[\alpha]_D^{15} - 75°$ (CHCl₃; c 1.0) (Found: C, 55.06; H, 5.82. C₁₇H₂₂O₉ requires: C, 55.13; H, 5.99%.) UV $\lambda \stackrel{\text{EOH}}{\text{max}}$ nm (log ϵ): 221 (4.44), 270 (3.88); ¹H NMR (90 MHz, CDCl₃): δ 7.45 (1H, s, H-7), 3.96, 3.93, 3.87, 3.79 (3H each, s, 4 OMe); MS m/z (rel. int.): 370 [M]⁺ (100), 279 (11), 236 (43). This compound was also prepared in high yield (90%) by methylation with CH₂N₂ in the presence of catalytic amount of SnCl₂[9].

Methylation of 3. To a soln of 3 (18 mg) in MeOH (1 ml) was added an excess of CH₂N₂-Et₂O and the mixture kept at 4° for 15 min. The resulting residue after evaporation of solvent was purified by prep. TLC (Si gel, C₆H₆-Me₂CO, 1:1) to give colourless needles of 10 (10 mg), mp 204-206°, $[\alpha]_{15}^{15} - 21^{\circ}$ (CHCl₃; c 1.0) (Found: C, 55.86; H, 5.95. C₂₇H₃₂O₁₃ · H₂O requires: C, 55.67; H, 5.88%.) UV $\lambda_{\text{max}}^{\text{ErOH}}$ nm (log ϵ): 217 (4.69), 268 (4.18); ¹H NMR (90 MHz, CDCl₃): δ 7.33 (2H, s, gall-H), 7.45 (1H, s, H-7), 3.92 (9H, s), 3.90 (6H, s) 3.80 (6H, s); MS m/z (rel. int.): 564 [M]⁺ (85), 279 (11), 236 (24), 212 (64), 195 (100). This product was identified with a sample prepared by treating 1 (20 mg) in Me₂CO (1 ml) with CH₂N₇-Et₂O at 4° for 15 min.

REFERENCES

- 1. Okuda, T. and Seno, K. (1981) J. Chem. Soc. Jpn. 671.
- 2. Okuda, T., Yoshida, T. and Hatano, T. (1980) Tetrahedron Letters 21, 2561.
- 3. Homma, K. (1939) J. Agric. Chem. Soc. Jpn. 15, 394.
- 4. Hasegawa, C. (1941) Yakugaku Zasshi 61, 307, 313, 318.
- Ramaiah, P. A., Row, L. R., Reddy, D. S., Anjaneyulu, A. S. R., Ward, R. S. and Pelter, A. (1979) J. Chem. Soc. Perkin Trans. 1, 2313.
- 6. Pfeffer, P. E., Vanentine, K. M. and Parrish, F. W. (1979) J. Am. Chem. Soc. 101, 1265.
- 7. Dorman, D. E., Angyal, S. J. and Roberts, J. D. (1970) J. Am. Chem. Soc. 92, 1351.
- 8. Terui, Y., Tori, K. and Tsuji, N. (1976) Tetrahedron Letters 621.
- Aritomi, M. and Kawasaki, T. (1970) Chem. Pharm. Bull. 18, 677.