Selenium-Containing Heterocycles from Isoselenocyanates: Use of Hydrazine for the Synthesis of 1,3,4-Selenadiazine Derivatives

by Geoffroy L. Sommen ${ }^{1}$), Anthony Linden, and Heinz Heimgartner*
Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (phone: + 41 4463542 82; fax: + 414463568 36; e-mail: heimgart@oci.unizh.ch)

Aryl isoselenocyanates $\mathbf{1}$ react with different phenacyl halides $\mathbf{2}$ in the presence of hydrazine hydrate in a one-pot reaction to give selenadiazines $\mathbf{3 a - 3 f}$ in good-to-excellent yields.

1. Introduction. - Selenium-containing heterocycles are of remarkable interest because of their antitumor, antibacterial, and other biological and pharmaceutical activities [1]. Among our efforts devoted to the chemistry of selenium in organic synthesis, we were also interested in the preparation of selenadiazines. Several articles deal with the synthesis of $1,3,4-[2-4], 1,3,5-[5][6]$, and $1,2,6$-selenadiazines [7] but, to the best of our knowledge, no synthesis has been described starting from isoselenocyanates. Some selenadiazines are of biological and physical interest, and are found to be cardiotonic [8] or spasmolytic agents [9], but they are also of importance as agrochemicals, dyes, and organic electric conductors [10].

In numerous articles, the synthesis of 1,3,4-selenadiazine derivatives by ring enlargement of other Se-containing heterocycles like selenadiazoles or selenazoles is described [11][12]. However, most of the reports showed the uses of selenoureas [13], selenosemicarbazides [14] [15], or phenyl acetyleneselenide as intermediates [16].

As a part of our program aimed at the development of simple new procedures for the synthesis of Se-containing heterocycles [17-24], we have recently reported on the utility of isoselenocyanates as building blocks for the synthesis of 1,3 -selenazetidines [25], 1,3-selenazolidines and perhydro-1,3-selenazines [26], 2-methylidene-1,3-selenazolidine derivatives [27], and 1,3-selenazepanes [28]. As an extension of this work, we report here on a novel and efficient synthesis of 1,3,4-selenadiazines.
2. Results and Discussion. - The used isoselenocyanates 1a-1e (see Table 1) have been prepared conveniently by a slightly modified procedure of Barton et al. [29] from the corresponding N-arylformamide by treatment with COCl_{2} and elemental Se. Then, hydrazine hydrate was added to a mixture of equimolar amounts of $\mathbf{1}$ and a phenacyl halide 2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. After stirring for $3-4 \mathrm{~h}$, the reaction was complete (TLC) and the solvent was evaporated. The product was purified by column chromatography on silica gel using a mixture of hexane and AcOEt (ratio from

[^0]1:0 to $1: 1$) and recrystallized from AcOEt. The IR spectra (KBr) of the pale-yellow solids showed two characteristic strong absorptions at $c a .1590$ and $1560 \mathrm{~cm}^{-1}$ but no $\mathrm{C}=\mathrm{O}$ absorption. The NMR spectra revealed the presence of an NH (11.3-11.8 $\mathrm{ppm})$ and a CH_{2} group ($3.8-3.95\left({ }^{1} \mathrm{H}\right)$ and $c a .15 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$), and the CI-MS and elemental analyses were in accordance with the structure of a 3,6-dihydro-2-imino-2H-1,3,4-selenadiazine $\mathbf{3}$ or its 2-amino tautomer (Scheme 1). Finally, the structure of 3a was established by X-ray crystallography (Figure).

Scheme 1

Figure. ORTEP Plot [30] of the molecular structure of 3a (arbitrary numbering of the atoms, 50\% probability ellipsoids)

In the heterocyclic ring, the unsubstituted C -atom is a CH_{2} group, and only one ring N -atom carries an H -atom. The other one is involved in a $\mathrm{C}=\mathrm{N}$ bond. The heterocyclic ring has a distorted boat conformation. The NH group forms an intermolecular H -bond with the exocyclic imine N -atom of a neighboring molecule. In turn, the acceptor molecule makes an identical H -bond to the original molecule so that pairs of molecules are linked into centrosymmetric dimeric units. The H-bonding can be described by a graph set motif [31] of R (8).

The described one-pot reaction of $\mathbf{1 , 2}$, and hydrazine led to the products $\mathbf{3 a} \mathbf{a} \mathbf{- 3 f}$ in $55-80 \%$ yield (Table 1). Several attempts have been made to carry out this three-component reaction in two consecutive steps. The treatment of $\mathbf{1}$ with hydrazine hydrate, followed by the addition of a phenacyl halide 2, did not yield the desired product, but the corresponding selenosemicarbazide was formed. On the other hand, the reaction of the hydrazone, which had been prepared from 2 and hydrazine, with 1 led quickly to decomposition products.

Based on the results described, we propose the reaction mechanism shown in Scheme 2 for the formation of $\mathbf{3}$. We have already demonstrated that isoselenocyanates $\mathbf{1}$ and bifunctional nucleophiles of type 4, bearing an electrophilic group, react to give 2iminoselenaheterocycles 6 . A likely intermediate is the adduct $\mathbf{5}$, which undergoes an

exo-trig cyclization [32] to yield five to seven-membered selenaheterocycles [26-28] or heterocyclic selones [33] [34]. In the present three-component reaction, the nucleophile (hydrazine) and the electrophile $\mathbf{2}$ are separated. Addition of hydrazine to $\mathbf{1}$ leads to the adduct $\mathbf{7}$, which immediately reacts with the third component $\mathbf{2}$ to give $\mathbf{8}$. Finally, an intramolecular condensation by elimination of $\mathrm{H}_{2} \mathrm{O}$, i.e., the formation of a hydrazone, leads to the selenaheterocycles 3 .

In conclusion, we have shown that the three-component reaction of isoselenocyanates $\mathbf{1}$, phenacyl halides $\mathbf{2}$, and hydrazine is a very convenient and useful procedure for the preparation of 1,3,4-selenadiazines $\mathbf{3}$.

Scheme 2

We thank the analytical units of our institute for spectra and elemental analyses. Financial support of this work by the Dr. Helmut Legerlotz Foundation and F. Hoffmann-La Roche AG, Basel, is gratefully acknowledged.

Experimental Part

1. General. TLC: Silica gel $60 F_{254}$ plates (0.25 mm ; Merck). Column chromatography (CC): silica gel 60 (0.040-0.063 mesh; Merck). M.p.: Büchi B-540 apparatus, in capillaries; uncorrected. IR Spectra: Per-kin-Elmer 1600-FT-IR spectrometer, in KBr ; absorptions in cm^{-1}. ${ }^{1} \mathrm{H}-(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.5 $\mathrm{MHz})$ spectra: Bruker $A R X$ - 300 instrument, in $\left(\mathrm{D}_{6}\right) \mathrm{DMSO}$; chemical shifts in ppm, J in Hz ; multiplicities of C-atoms from DEPT spectra. EI- and CI-MS: Finnigan SSQ-700 or MAT-90 instrument; EI mode: 70 eV ; CI mode: NH_{3} as carrier gas.
2. Starting Materials. α-Halogeno acetophenones and hydrazine hydrate are commercially available (Fluka). Isoselenocyanates 1a-1e were prepared according to a slightly modified procedure of Barton et al. [29] starting from a formamide. Formanilide is commercially available (Fluka and Aldrich). N-(4-Chlorophenyl)-, N-(4-bromophenyl)-, N-(4-methylphenyl)-, and N-(4-methoxyphenyl)formamide were prepared from the corresponding aniline and $95 \% \mathrm{HCOOH}$. The soln. was heated to reflux for 30 min and evaporated to dryness in vacuo. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and washed with diluted $\mathrm{AcOH}(5 \%), \mathrm{H}_{2} \mathrm{O}$, and aq. $\mathrm{NaHCO}_{3}(5 \%)$. The aq. layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined org. extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude products were purified by recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$.
3. General Procedure for the Preparation of Selenadiazines 3a-3f. A $25-\mathrm{ml}$ round-bottom flask equipped with a magnetic stirrer and condenser was charged with a mixture of an isoselenocyanate $(1.0 \mathrm{mmol})$ and a phenacyl halide $(1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. Then, $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{ml}, 1.0$ mmol) was added in one portion, and the mixture was stirred for 3 to 4 h at r.t. and concentrated to dryness i.v. The crude product was purified by CC (silica gel; hexane/AcOEt 100:0 to $50: 50$).
(3,6-Dihydro-5-phenyl-2H-[1,3,4]selenadiazin-2-ylidene) (phenyl) amine (3a). Yield: 226.3 mg (72%). Yellowish crystals. M.p. $186-188^{\circ}$ (AcOEt). IR: $3443 m$ (br.), $3150 w, 3060 w, 3034 w, 2921 m$ (br.), $1621 m$, $1580 s, 1556 v s, 1494 m, 1471 w, 1404 w, 1303 w, 1251 w, 1209 m, 1172 w, 1137 w, 1112 w, 1075 w, 1004 w, 899 w$, $845 w, 798 w, 766 w, 753 m, 687 m, 632 m .{ }^{1} \mathrm{H}-\mathrm{NMR}: 3.95\left(s, \mathrm{CH}_{2}\right) ; 6.95-7.25$ (br. m, t-like at $7.12, J=7.4$, 3 arom. H); 7.37 (t-like, $J=7.7,2$ arom. H); 7.45-7.55 ($\mathrm{m}, 3$ arom. H); 7.91 (d-like, $J=7.7$, 2 arom. H); 11.28 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}$-NMR: $15.1\left(t, \mathrm{CH}_{2}\right) ; 123.1$ ($d, 1$ arom. CH$) ; 126.1$ (d, 2 arom. CH$) ; 128.4$ (d, 3 arom. CH$) ; 128.5(d, 2$ arom. CH$) ; 129.2(d, 2$ arom. CH$) ; 135.4,149.0,155.2$ ($3 s, 2$ arom. $\mathrm{C}, \mathrm{C}(5)$); $163.5(s, C(2))$. CI-MS: 318 (19), 317 (17), $316\left(100,\left[M\left({ }^{80} \mathrm{Se}\right)+1\right]^{+}\right), 315$ (10), 314 (48), 313 (19), 312 (18), 239 (7), 238 (41, $[M-\mathrm{Ph}]^{+}$), 236 (20), 225 (7). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{Se}$ (314.24): C 57.33, H 4.17, N 13.37; found: C 57.34, H 4.03, N 13.09.

Crystals suitable for the X-ray crystal-structure determination were grown from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ by slow evaporation of the solvent.
(4-Bromophenyl)-(3,6-dihydro-5-phenyl-2H-[1,3,4]selenadiazin-2-yliden)amine (3b). Yield: 267.3 $\mathrm{mg}(68 \%)$. Yellowish crystals. M.p. $179-181^{\circ}$ (AcOEt). IR: $3443 m$ (br.), $3133 w, 3056 w, 2917 m$ (br.), $1623 m, 1587 \mathrm{vs}, 1567 \mathrm{~s}, 1490 \mathrm{~m}, 1472 \mathrm{~m}, 1444 \mathrm{~m}, 1403 \mathrm{~m}, 1297 \mathrm{w}, 1276 \mathrm{w}, 1214 \mathrm{~s}, 1173 \mathrm{~m}, 1105 \mathrm{w}, 1072 \mathrm{~m}$, $1003 w, 889 m, 841 m, 827 s, 759 s, 693 s, 658 m, 632 w .{ }^{1} \mathrm{H}-\mathrm{NMR}: 3.93\left(s, \mathrm{CH}_{2}\right) ; 6.70-7.00$ (br. $m, 2$ arom. $\mathrm{H}) ; 7.45-7.60\left(m, 5\right.$ arom. H); 7.85-8.00 ($m, 2$ arom. H); 11.71 (br. s, NH). ${ }^{13} \mathrm{C}$-NMR: $15.3\left(t, \mathrm{CH}_{2}\right)$; 121.6 ($s, 1$ arom. C); 126.2 ($d, 2$ arom. CH$) ; 128.5$ ($d, 3$ arom. CH$) ; 129.3$ (d, 2 arom. CH); 131.3 (d, 2 arom. CH); 135.3, 148.0, 154.3 ($3 \mathrm{~s}, 2$ arom. C, C(5)); 166.2 ($s, \mathrm{C}(2)$). CI-MS: 398 (13), 397 (14), 396 (77), 395 (21), 394 (100, $\left.\left[M\left({ }^{80} \mathrm{Se},{ }^{79} \mathrm{Br}\right)+1\right]^{+}\right), 393$ (21), 392 (47), 391 (14), 390 (14). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{Se}$ (393.15): C 45.83, H 3.08, N 10.69; found: C 45.46, H 3.21, N 10.42.
(4-Chlorophenyl)-(3,6-dihydro-5-phenyl-2H-[1,3,4]selenadiazin-2-yliden)amine (3c). Yield: 191.8 $\mathrm{mg}(55 \%)$. Yellowish crystals. M.p. $178-180^{\circ}$ (AcOEt). IR: $3444 m$ (br.), $3125 w, 3047 w, 2908 m$ (br.), $2866 m$ (br.), $1623 m, 1584 \mathrm{vs}, 1568 s, 1491 s, 1473 m, 1444 w, 1403 m, 1297 w, 1277 w, 1214 s, 1178 w, 1172 m$, $1107 w, 1093 m, 1071 w, 1003 w, 888 m, 843 w, 830 m, 796 w, 760 m, 694 m, 683 w, 662 w .{ }^{1} \mathrm{H}-\mathrm{NMR}: 3.95$ (s, CH_{2}) ; 6.80-7.05 (br. $m, 2$ arom. H); 7.45 (d-like, $J=8.4,2$ arom. H); 7.50-7.60 ($m, 3$ arom. H); $7.90-8.05(m, 2$ arom. H); 11.64 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}$-NMR: $15.3\left(t, \mathrm{CH}_{2}\right) ; 126.2$ (d, 2 arom. CH$) ; 128.4$ (d, 2 arom. CH); 128.5 ($d, 3$ arom. CH); 129.3 ($s, 2$ arom. CH); 135.0, 135.3, 147.5, 155.3 ($4 s, 3$ arom. C, C(5)); 163.9 (s, C(2)). CI-MS: 354 (6), 353 (8), 352 (44), 351 (18), $350\left(100,\left[M\left({ }^{80} \mathrm{Se},{ }^{35} \mathrm{Cl}\right)+1\right]^{+}\right), 349$ (15), 348 (48), 347 (17), 346 (17). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{Se}$ (348.69): C 51.67, H 3.47, N 12.05; found: C 51.51, H 3.74, N 11.73.
(3,6-Dihydro-5-phenyl-2H-[1,3,4]selenadiazin-2-ylidene)(4-methoxyphenyl)amine (3d). Yield: 229.3 $\mathrm{mg}(67 \%)$. Yellowish crystals. M.p. $132-134^{\circ}$ (AcOEt). IR: $3439 m$ (br.), $3346 m, 2912 m$ (br.), 2836w, $1654 \mathrm{~s}, 1638 \mathrm{~m}, 1580 \mathrm{vs}, 1544 \mathrm{~s}, 1509 \mathrm{vs}, 1447 \mathrm{w}, 1282 \mathrm{~m}, 1249 \mathrm{~s}, 1211 \mathrm{w}, 1178 \mathrm{w}, 1109 \mathrm{w}, 1077 \mathrm{w}, 1033 \mathrm{w}, 1011 \mathrm{w}$, $892 w, 826 m, 800 w, 757 w, 713 m, 692 w .{ }^{1} \mathrm{H}-\mathrm{NMR}: 3.82(s, \mathrm{MeO}) ; 3.90\left(s, \mathrm{CH}_{2}\right) ; 6.90-7.20$ (br. m, d-like at $6.92, J=8.2,4$ arom. H); 7.30-7.55 ($m, 2$ arom. H); 7.75-8.00 ($m, 2$ arom. H); 11.82 (br. s, NH). ${ }^{13} \mathrm{C}$-NMR: $15.1\left(t, \mathrm{CH}_{2}\right) ; 55.4(q, \mathrm{MeO}) ; 115.6(d, 2$ arom. CH$) ; 124.2(d, 2$ arom. CH$) ; 128.3(d, 2$ arom. CH); 129.2 (d, 2 arom. CH); 131.1 (d, 1 arom. CH); 133.9, 147.8, 153.7, 158.4 ($4 \mathrm{~s}, 3$ arom. C, C(5)); 166.1 ($s, \mathrm{C}(2))$. CI-MS: 350 (8), 349 (12), 348 (65), 347 (21), 346 (100, $\left.\left[M\left({ }^{80} \mathrm{Se}\right)+1\right]^{+}\right), 345$ (19), 344 (52), 343 (15), 342 (14). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OSe}$ (344.28): C 55.82, H 4.39, N 12.21; found: C 55.95, H 4.67, N 12.23.
(4-Bromophenyl)[5-(4-bromophenyl)-3,6-dihydro-2H-[1,3,4]selenadiazin-2-yliden]amine (3e). Yield: $377.6 \mathrm{mg}(80 \%)$. Yellowish crystals. M.p. $176-178^{\circ}$ (AcOEt). IR: 3442 m (br.), $3155 w, 3051 w$, $2920 m$ (br.), $1626 m, 1590 \mathrm{vs}, 1576 s, 1554 m, 1485 m, 1407 w, 1299 w, 1271 w, 1209 m, 1172 m, 1146 w, 1101 w$, $1070 m, 1000 m, 890 w, 828 m, 725 w, 707 w, 653 w, 604 w$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 3.88\left(s, \mathrm{CH}_{2}\right) ; 6.85-7.10$ (br. $m, 2$ arom. H); 7.68 (d-like, $J=8.2,2$ arom. H); 7.80 (d-like, $J=8.2,2$ arom. H); 7.90-8.00 ($\mathrm{m}, 2$ arom. H); 11.79 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 15.0\left(t, \mathrm{CH}_{2}\right) ; 122.8(s, 2$ arom. C); $124.2(d, 2$ arom. CH$) ; 128.1$ (d, 2 arom. CH); 131.3 (d, 2 arom. CH); 131.5 ($d, 2$ arom. CH); 134.5, 147.2, 155.5 ($3 s, 2$ arom. C, C(5)); 162.9 (s, C(2)). CI-MS: 478 (7), 477 (9), 476 (52), 475 (19), $474\left(100,\left[M\left({ }^{80} \mathrm{Se},{ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right]^{+}\right), 473$ (23), 472 (85, $\left.\left[M\left({ }^{80} \mathrm{Se},{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right]^{+}\right), 471$ (19), 470 (35), 469 (8), 468 (9). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{Se}$ (472.05): C 38.17, H 2.35, N 8.90; found: C 38.01, H 2.54, N 8.60.
[5-(4-Bromophenyl)-3,6-dihydro-2H-[1,3,4]selenadiazin-2-ylidene](4-methylphenyl)amine (3f). Yield: 317.5 mg (78%). Yellowish crystals. M.p. $202-204^{\circ}$ (AcOEt). IR: 3441 m (br.), 2919m, 2853 m (br.), $1623 m, 1583 \mathrm{vs}, 1554 m, 1508 w, 1486 w, 1406 w, 1269 w, 1221 m, 1173 m, 1075 m, 999 w, 890 w, 826 m$. ${ }^{1} \mathrm{H}$-NMR: $2.40(s, \mathrm{Me}) ; 3.93\left(s, \mathrm{CH}_{2}\right) ; 6.90-7.20(m, 2$ arom. H); 7.24 (d-like, $J=8.1,2$ arom. H); 7.52 $\left(d\right.$-like, $J=8.1,2$ arom. H); $7.66(d$-like, $J=8.1,2$ arom. H); 11.50 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}$-NMR: $14.8\left(t, \mathrm{CH}_{2}\right)$; $20.3(q, \mathrm{Me}) ; 121.6(s, 1$ arom. C$) ; 122.6(d, 2$ arom. CH$) ; 128.0(d, 2$ arom. CH$) ; 129.0(d, 2$ arom. $\mathrm{CH}) ; 131.4$ ($d, 2$ arom. CH); 134.7, 145.6, 155.0 ($3 \mathrm{~s}, 3$ arom. C, C(5)); 163.2 (C(2)). CI-MS: 412 (13), 411 (15), 410 (77), 409 (33), $408\left(100,\left[M\left({ }^{80} \mathrm{Se},{ }^{79} \mathrm{Br}\right)+1\right]^{+}\right), 407$ (40), 406 (50), 405 (23), 404 (17). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{Se}$ (407.07): C 47.20, H 3.47, N 10.32; found: C 46.72, H 3.51, N 10.15.

Table 2. Crystallographic Data of Compound 3a

Crystallized from	$\mathrm{CHCl}_{3} / \mathrm{MeOH}$
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{Se}$
Formula weight $\left[\mathrm{g} \mathrm{mol}^{-1}\right]$	314.19
Crystal color, habit	pale-yellow, prism
Crystal dimensions [mm]	$0.18 \times 0.23 \times 0.28$
Temp. [K]	160(1)
Crystal system	monoclinic
Space group	$P 2_{1} / n$
Z	4
Reflections for cell determination	27519
2θ Range for cell determination [${ }^{\circ}$]	4-60
Unit cell parameters $a[\AA]$	10.5899(2)
$b[\AA]$	8.7839(1)
$c[\AA]$	15.2309(3)
$\beta\left[{ }^{\circ}\right]$	110.2058(9)
$V\left[\AA^{3}\right]$	1329.60(4)
$D_{x}\left[\mathrm{~g} \mathrm{~cm}^{-3}\right]$	1.569
$\mu\left(\mathrm{MoK}_{\alpha}\right)\left[\mathrm{mm}^{-1}\right]$	2.811
Scan type	ϕ and ω
$2 \theta_{(\text {max }}$ [${ }^{\circ}$]	60
Transmission factors (min; max)	0.510; 0.623
Total reflections measured	37327
Symmetry independent reflections	3883
Reflections with $I>2 \sigma(I)$	3316
Reflections used in refinement	3882
Parameters refined	177
Final $\quad R(F)[I>2 \sigma(I)$ reflections]	0.0297
$w R\left(F^{2}\right)$ (all data)	0.0750
Weights: $\quad w=\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0359 P)^{2}+0.9122 P\right]^{-1}$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$	
Goodness-of-fit	1.033
Secondary extinction coefficient	0.0036(8)
Final $\Delta_{\text {max }} / \sigma$	0.002
$\Delta \rho(\max ; \min)\left[\mathrm{e}^{\AA}{ }^{-3}\right]$	0.64; -0.50

X-Ray Crystal-Structure Determination of 3a (see Table 2 and Figure) ${ }^{2}$). All measurements were performed on a Nonius KappaCCD diffractometer [35] using graphite-monochromated Mo K_{α} radiation (λ $0.71073 \AA$ A) and an Oxford Cryosystems Cryostream 700 cooler. Data reduction was performed with HKL Denzo and Scalepack [36]. The intensities were corrected for Lorentz and polarization effects, and an absorption correction based on the multi-scan method [37] was applied. Equivalent reflections were merged. Data collection and refinement parameters are given in Table 2, and a view of the molecule is shown in the Figure. The structure was solved by direct methods using SIR92 [38], which revealed the positions of all non- H -atoms. The non- H -atoms were refined anisotropically. The amine H -atom was placed in the position indicated by a difference electron-density map, and its position was allowed to refine together with an isotropic displacement parameter. All of the remaining H -atoms were placed in geometrically calculated positions and refined using a riding model where each H -atom was assigned a fixed isotropic displacement parameter with a value equal to $1.2 U_{\text {eq }}$ of its parent C-atom. Refinement of
${ }^{2}$) CCDC-601303 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam. ac.uk/data_request/cif.
the structure was carried out on F^{2} using full-matrix least-squares procedures, which minimized the function $\Sigma w\left(F-F_{\mathrm{c}}^{2}\right)^{2}$. A correction for secondary extinction was applied. One reflection, whose intensity was considered to be an extreme outlier, was omitted from the final refinement. Neutral-atom scattering factors for non-H-atoms were taken from [39a], and the scattering factors for H -atoms were taken from [40]. Anomalous dispersion effects were included in F_{c} [41]; the values for f^{\prime} and $f^{\prime \prime}$ were those of [39b]. The values of the mass attenuation coefficients are those of [39c]. All calculations were performed using the SHELXL97 [42] program.

REFERENCES

[1] M. Koketsu, H. Ishihara, Curr. Org. Chem. 2003, 7, 175.
[2] M. Morvan, G. Nadler, R. G. Zimmermann, J. Heterocycl. Chem. 1991, 28, 1365.
[3] J. Sibor, W.-D. Pfeiffer, A. Hetzheim, P. Pazdera, Scripta Chem. 1998, 27-28, 33 (Chem. Abstr. 1999, 132, 23022).
[4] J. Liebscher, H. Hartmann, Ger. Pat., 1977, DD126309 (Chem. Abstr. 1978, 88, 62425); W.-D. Pfeiffer, H. Rossberg, E. Bulka, Ger. Pat., 1983, DD203541 (Chem. Abstr. 1984, 100, 156644); W.-D. Pfeiffer, E. Bulka, Ger. Pat., 1986, DD234678 (Chem. Abstr. 1986, 105, 226667); W.-D. Pfeiffer, E. Bulka, Ger. Pat., 1991, DD290012; (Chem. Abstr. 1991, 115, 183376).
[5] I. Shibuya, H. Nakanishi, Bull. Chem. Soc. Jpn. 1987, 60, 2686; R. N. Butler, A. Fox, J. Chem. Soc., Perkin Trans. 1 2001, 394.
[6] H. G. Grant, L. A. Summers, Z. Naturforsch., B: Anorg. Chem. 1978, 33, 118.
[7] A. Gieren, V. Lamm, R. C. Haddon, M. L. Kaplan, J. Am. Chem. Soc. 1980, 102, 5070; J. P. Boutique, J. Riga, J. J. Verbist, J. Delhalle, J. G. Fripiat, J. M. Andre, R. C. Haddon, M. L. Kaplan, J. Am. Chem. Soc. 1982, 104, 2691; A. Haas, E. Hoppmann, V. M. Karpov, V. E. Platonov, M. M. Shakirov, J. Fluorine Chem. 2000, 102, 313.
[8] M.-C. Forest, P. Lahouratate, M. Martin, G. Nadler, M. J. Quiniou, R. G. Zimmermann, J. Med. Chem. 1992, 35, 163.
[9] W.-D. Pfeiffer, E. Bulka, Ger. Pat., 1990, DD281582 (Chem. Abstr. 1991, 114, 185571).
[10] I. Shibuya, H. Nakanishi, Jap. Pat., 1987, JP62106088 (Chem. Abstr. 1988, 108, 221705).
[11] E. Bulka, Chem. Scr. 1975, 8A, 39 (Chem. Abstr. 1976, 85, 21162).
[12] B. Marcewicz-Rojewska, S. Bilinski, Acta Pol. Pharm. 1980, 37, 169; S. Bilinski, L. Bielak, J. Chmielewski, B. Marcewicz-Rojewska, I. Musik, Acta Pol. Pharm. 1989, 46, 343.
[13] V. A. Bobylev, M. L. Petrov, V. N. Chistokletov, A. A. Petrov, J. Org. Chem. USSR 1982, 18, 200; M. L. Petrov, M. A. Abramov, V. A. Galishev, A. A. Petrov, J. Org. Chem. USSR 1989, 25, 181.
[14] H. Rossberg, W.-D. Pfeiffer, E. Bulka, Wiss. Z. Ernst-Moritz-Arndt-Univ. Greifswald, Math.-nat.wiss. Reihe, 1985, 34, 75; W.-D. Pfeiffer, J. Buhrow, E. Bulka, Wiss. Z. Ernst-Moritz-Arndt-Univ. Greifswald, Math.-nat.wiss. Reihe, 1988, 37, 38; W.-D. Pfeiffer, E. Bulka, Chem. Ztg. 1991, 115, 361; T. Jira, W.-D. Pfeiffer, K. Lachmann, U. Epperlein, Pharmazie 1994, 49, 401; W.-D. Pfeiffer, H. Rossberg, Pharmazie 1993, 48, 732; T. Jira, A. Stelzer, W.-D. Pfeiffer, C. Schopplich, S. Siegert, M. Kindermann, Pharmazie 1997, 52, 831.
[15] H. Schubert, J. Bleichert, Z. Chem. 1963, 9, 349; K. Szulzewski, W.-D. Pfeiffer, E. Bulka, H. Rossberg, B. Schulz, Acta Chem. Scand. 1993, 47, 302.
[16] Y. V. Zachinyaev, A. I. Bobrov, Ukr. Khim. Zh. 1988, 54, 538 (Chem. Abstr. 1989, 110, 212778); Y. V. Zachinyaev, A. I. Bobrov, A. I. Ginak, Rev. Roum. Chim. 1989, 34, 901 (Chem. Abstr. 1990, 112, 77132).
[17] Y. Zhou, H. Heimgartner, Helv. Chim. Acta 2000, 83, 539.
[18] Y. Zhou, A. Linden, H. Heimgartner, Helv. Chim. Acta 2000, 83, 1576.
[19] P. K. Atanassov, Y. Zhou, A. Linden, H. Heimgartner, Helv. Chim. Acta 2002, 85, 1102.
[20] P. K. Atanassov, A. Linden, H. Heimgartner, Heterocycles 2003, 61, 569.
[21] P. K. Atanassov, A. Linden, H. Heimgartner, Heterocycles 2004, 62, 521.
[22] P. K. Atanassov, A. Linden, H. Heimgartner, Helv. Chim. Acta 2004, 87, 1452.
[23] P. K. Atanassov, A. Linden, H. Heimgartner, Helv. Chim. Acta 2004, 87, 1873.
[24] P. K. Atanassov, A. Linden, H. Heimgartner, J. Sulfur Chem. 2006, 27, 181.
[25] G. L. Sommen, A. Linden, H. Heimgartner, Helv. Chim. Acta 2005, 88, 766
[26] G. L. Sommen, A. Linden, H. Heimgartner, Eur. J. Org. Chem. 2005, 128.
[27] G. L. Sommen, A. Linden, H. Heimgartner, Tetrahedron 2006, 62, 3344.
[28] G. L. Sommen, A. Linden, H. Heimgartner, Tetrahedron Lett. 2005, 46, 6723.
[29] D. H. R. Barton, S. I. Parekh, M. Tajbakhsh, E. A. Theodorakis, C.-L. Tse, Tetrahedron 1994, 50, 639; M. T. Bakhsh, Y. S. Behshtiha, M. M. Heravi J. Chem. Soc. Pakistan 1996, 18, 159.
[30] C. K. Johnson, 'ORTEP II', Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
[31] J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem., Int. Ed. 1995, 34, 1555.
[32] J. E. Baldwin, J. Chem. Soc., Chem. Commun. 1976, 734.
[33] G. L. Sommen, A. Linden, H. Heimgartner, Heterocycles 2005, 65, 1903.
[34] F. Favero, G. L. Sommen, A. Linden, H. Heimgartner, Heterocycles 2006, 67, 749.
[35] R. Hooft, KappaCCD Collect Software, Nonius BV, Delft, The Netherlands, 1999.
[36] Z. Otwinowski, W. Minor, in 'Methods in Enzymology', Vol. 276, 'Macromolecular Crystallography', Part A, Eds. C. W. Carter Jr., R. M. Sweet, Academic Press, New York, 1997, p. 307.
[37] R. H. Blessing, Acta Crystallogr., Sect A 1995, 51, 33.
[38] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, SIR92, J. Appl. Crystallogr. 1994, 27, 435.
[39] a) E. N. Maslen, A. G. Fox, M. A. O'Keefe, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 6.1.1.1, p. 477; b) D. C. Creagh, W. J. McAuley, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 4.2.6.8, p. 219; c) D. C. Creagh, J. H. Hubbell, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 4.2.4.3, p. 200.
[40] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys. 1965, 42, 3175.
[41] J. A. Ibers, W. C. Hamilton, Acta Crystallogr. 1964, 17, 781.
[42] G. M. Sheldrick, 'SHELXL97, Program for the Refinement of Crystal Structures', University of Göttingen, Germany, 1997.

[^0]: ${ }^{1}$) Postdoctoral stay at the University of Zürich (08.2004-08.2005); present address: Lonza $A G$, Walliser Werke, CH-3930 Visp.

