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Abstract: Syn-and anti-methyl 2-substituted 3-hydroxy-4-pen-
tenoates were efficiently resolved in lipase-catalyzed transesterifi-
cation. This protocol was successfully applied to the synthesis of the
taxol side chain.
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Acyclic 1,2-amino alcohols are not only important con-
stituents of natural products such as sphingosine,1 statine,2

and phenylisoserine3 as the taxol side chain, but also sig-
nificant chiral auxiliaries for diverse asymmetric synthe-
ses.4 Among a number of synthetic methods for acyclic
1,2-amino alcohols reported hitherto, the sequence of
Evans’ asymmetric aldol reaction/the release of a 2-sub-
stituted 3-hydroxycarboxylic acid/Curtius rearrangement5

has been well recognized as a useful method owing to the
reliability of stereochemistry throughout the process. For
these reasons we wanted to devise a more straightforward
access to both syn- and anti-2-substituted 3-hydroxy es-
ters with high optical purities that takes the place of
Evans’ asymmetric aldol reaction.6

To this end, we envisioned to utilize lipase-catalyzed
transesterification7 of 2-substituted 3-hydroxy esters. A
very few related studies were reported so far on lipase-cat-
alyzed transesterifications of 3-hydroxy esters such as cis-

1-ethoxycarbonyl-2-hydroxycyclohexane,8 tert-butyl 3-
hydroxy-4-pentenoate,9 4-aryloxy-3-hydroxy esters,10

and syn- and anti-2-substituted 3-hydroxy esters11 whose
substituents at the C-2 position were severely limited to
Ph-, MeS-, and PhS- groups. To the best of our know-
ledge, there has not been reported to date a general and ef-
ficient lipase-catalyzed transesterification for acyclic 2-
substituted 3-hydroxy esters.12 

In this context, we designed syn- and anti- methyl 2-sub-
stituted 3-hydroxy-4-pentenoates 113 and 413 as enzymati-
cally acceptable substrates of high synthetic flexibility,
disclosing that (3R)-alcohols14 for both isomers were
acetylated with exceedingly high enantioselectivities in li-
pase-catalyzed transesterification as shown in Scheme 1.

The reaction with syn-racemates 1 was executed as fol-
lows. Stirring a solution of 1 (7~38 mmol) and 2-propenyl
acetate (3 equiv) in toluene (1.5 mL per mmol of 1) with
Chirazyme® (Candida antarctica, fraction B, 0.5 g per
g of 1)15 at room temperature ~70 °C for 40~72 hours re-
sulted in the clean acetylation of one enantiomer to give
(2S,3R)-acetates 2.16 The unsolved lipase was filtered off
and the filtrate was concentrated and purified by column
chromatography (SiO2). Gratifyingly, both the enantiose-
lectivity and the chemical yield of the unreacted (2R,3S)-
alcohols 316 were also found to be excellent. Similarly, the
reaction with anti-racemates 4 proceeded quite efficiently
under the same reaction conditions to afford both (2R,3R)-
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acetates 516 and the unreacted (2S,3S)-alcohols 616 in a
highly enantioselective manner, the results being summa-
rized in Tables 1 and Table 2.

To determine the absolute configuration of alcohols 6, 6a
(>99% ee, 4.76 mmol) was transformed into alcohol 9, an
aggregation pheromone of the smaller European elm bark
beetle (Scolytus multistriatus),18 as depicted in Scheme 2.
Hydrogenation of the terminal olefin (HN=NH/MeOH,19

96%) provided saturated alcohol 7. Protection of the hy-
droxyl group (CH2=CHOEt, 93%) followed by reduction
of the methyl ester (LiAlH4, 98%) gave rise to alcohol 8.
Tosylation of 8 (p-TsCl, 91%), reduction (LiAlH4, 92%)
and deprotection (3 M HCl, 82%) afforded 9 {[�]D

24 –22.7
(c 1.00, hexane), Lit.20 [�]D

19 –21.4 (c 1.02, hexane)} in
60% overall yield.

To demonstrate the synthetic utility of our method, we ex-
ecuted the synthesis of the taxol side chain. Anti-aldol iso-
mer 1021 (1.26 g, 5.2 mmol) was subjected to the
transesterification [Chirazyme® (0.6 g), 2-propenyl ace-
tate (1.72 mL, 15.6 mmol), toluene (7.8 mL)], providing
acetate 11 (44%, 98.5%ee) and unreacted alcohol 12
(49%, >99%ee) (Scheme 3).

Compound 12 thus obtained was transformed into cyclic
carbamate 13 in 80% yield via Curtius rearrangement of
the free acid released by palladium-catalyzed
hydrogenolysis22 of the allyl ester. Protection of the nitro-
gen with (Boc)2O and oxidative cleavage (RuO2/NaIO4)

23

of the double bond furnished carboxylic acid 14 in 88%
yield. Ring opening (2 M NaOH/MeOH, r.t., 2 h), depro-
tection of the Boc group, and ensuing benzoylation pro-
vided N-benzoyl-(2R,3S)-3-phenylisoserine (15) in 71%

Table 2 Lipase-catalyzed Kinetic Resolution of anti-Racemate 4

Entry 4: R- Temp. (°C)/Time (h) Yield (%ee)

Acetate 5 Alcohol 6 E value17

1 n-C3H7- 4a 70/72 45 (94): 5a 46 (>99): 6a 170

2 (CH3)2CHCH2- 4b 70/72 43 (96): 5b 45 (>99): 6b 259

3 trans-EtCH=CH- 4c 70/40 48 (96): 5c 46 (97): 6c 207

4 (CH3)2C=CHCH2- 4d 70/72 48 (93): 5d 46 (>96): 6d 145

5 CH2=CH(CH2)7- 4e 70/72 49 (>99): 5e 48 (>99): 6e >1000

6 PhSCH2CH2- 4f 50/40 50 (98): 5f 50 (>99): 6f 525

7 CH3- 4g r.t./72 46 (96): 5g 44 (>99): 6g 259

Table 1 Lipase-catalyzed Kinetic Resolution of syn-Racemate 1

Entry 1: R- Temp. (°C)/Time (h) Yield (%ee)

Acetate 2 Alcohol 3 E value17

1 n-C3H7- 1a 70/72 40 (99): 2a 47 (>99): 3a >1000

2 (CH3)2CHCH2- 1b 70/72 41 (96): 2b 45 (86): 3b 136

3 trans-EtCH=CH- 1c 70/40 48 (99): 2c 49 (99): 3c >1000

4 (CH3)2C=CHCH2- 1d 70/72 49 (>99): 2d 48 (>99): 3d >1000

5 CH2=CH(CH2)7- 1e 70/72 43 (99): 2e 51 (98): 3e 922

6 PhSCH2CH2- 1f 50/40 48 (>99): 2f 50 (>99): 3f >1000

7 CH3- 1g r.t./72 48 (89): 2g 42 (>99): 3g 90

Scheme 2 (a) KO2CN=NCO2K/HOAc/MeOH, 0 °C to r.t., 12 h, 96%; (b) CH2=CHOEt/cat. PPTS/CH2Cl2, r.t., 6 h, 93%; (c) LiAlH4/THF,
0 °C, 0.5 h, 98%; (d) p-TsCl/cat. DMAP/pyridine, r.t., 20 h, 91% (e) LiAlH4/THF, 0 °C to r.t., 12 h, 92%; (f) 3 M HCl/EtOH, r.t., 4 h, 82%
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yield {[�]D
25 –35.3 (c 1.03, EtOH), mp 173.5–176 °C,

Lit.24 [�]D
20 –35.5 (c 1.07, EtOH), mp 175.5–177 °C} as

outlined in Scheme 4.

In summary, we have established a practical method for
obtaining syn- and anti-methyl 2-substituted 3-hydroxy-
4-pentenoates with high optical purities by means of the
lipase-catalyzed transesterification, which would offer ac-
cess to other synthetically useful intermediates involving
1,2-amino alcohols less available from natural amino ac-
ids.
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