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Enantioselective α-Benzylation of Acyclic Esters Using π-
Extended Electrophiles. 
Kevin J. Schwarz, Chao Yang, James W. B. Fyfe and Thomas N. Snaddon[a] 

Dedicated to Dr. Henrik Teller 

ABSTRACT: The first asymmetric cooperative Lewis base/Pd 
catalyzed benzylic alkylation of acyclic esters is reported. This 
reaction proceeds via stereo-defined C1-ammonium enolate 
nucleophiles and critical to its success was the identification of 
benzylic phosphate electrophiles, which were uniquely reactive. 
Alkylated products are obtained with very high levels of 
enantioselectivity and this method has been applied toward the 
synthesis of the thrombin inhibitor DX-9065a. 

Enantioselective Pd-catalyzed allylic alkylation reactions are 
amongst the most versatile and robust methods for the 
construction of C(sp3)–C(sp3) bonds.[1] Under the action of a 
suitable Pd catalyst, carbogenic nucleophiles react efficiently 
with allylic electrophiles. These reactions typically proceed via 
cationic π-(allyl)PdIILn species, the reactivity and stereocontrol 
elements of which can be readily tuned by the supporting  

 

Figure 1. (a) Pd-Catalyzed allylic versus benzylic alkylation; (b) Competent 
prochiral nucleophiles in asymmetric Pd-catalyzed benzylation; (c) Challenging 

acyclic ester nucleophiles; (d) This work: direct enantioselective α-benzylation.  

ligands. Despite possessing iso-structural and iso-electronic 
characteristics asymmetric Pd-catalyzed benzylic alkylation 
reactions using enolate nucleophiles are far less common.[2] This 
is attributable, in part, to the difficulty in forming Pd0/arene 
complexes and the relatively high energy required for 
dearomatizing ionization/oxidative addition (Figure 1a).  

Table 1. Optimization Studies. 

 
[a] Reactions performed on a 0.1 mmol scale. [b] Yields determined by 1H 
NMR by comparison with an internal standard (1,2,4,5-tetramethylbenzene). 
[c] Isolated yield in parentheses. [d] Determined by chiral HPLC analysis. 

Outstanding studies by Fiaud, Kwano and Tunge provide some 
resolution to this restriction;[3] however, the generation of 
enantioenriched products remains a major challenge. Focusing 
on the generation of stereochemistry at the electrophilic carbon, 
noteworthy contributions from Fiaud and Hirano/Murai have 
described the use of secondary benzyl electrophiles and 
proceed via partial kinetic resolution or dynamic kinetic 
asymmetric transformation (DYKAT), respectively.[4,5] To 
address stereochemical induction at the nucleophilic carbon, 
Trost and Czabaniuk reported the highly enantioselective 
benzylation of cyclic prochiral azlactone and 3-aryl-oxindole 
nucleophiles using primary benzylic carbonates and phosphates 
(Figure 1b).[6] Although few in number, these remain the most 

(d) This work: enantioselective ⍺-benzylation of acyclic esters via coooperative catalysis
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effective Pd-catalyzed benzylic alkylation methods available.[7] 
So far the use of acyclic ester nucleophiles has not been 
described despite the clear utility of the products (Figure 1c). 

In response to long-standing challenges associated with the use 
of acyclic prochiral nucleophiles in asymmetric transition metal 
catalyzed transformations, our laboratory has embraced 
cooperative Lewis base/transition metal catalysis as a general 
design principle.[8] Proceeding via C1-ammonium enolate 
nucleophiles, this construct results in a general reaction 
template that accommodates a variety of transition metal 
catalyzed processes.[9] Herein, we further advance our 
cooperative framework by demonstrating, for the first time, that 
C1-ammonium enolates effectively react with putative cationic π-
(benzyl)PdII electrophiles resulting in the highly enantioselective 
benzylic alkylation of aryl and vinyl acetic acid esters using π-
extended benzylic phosphate electrophiles (Figure 1d). 

 

Figure 2. Nucleophile Scope: [a] Reactions performed on a 0.1 mmol scale. 
Yields are isolated following chromatography. er Determined by chiral HPLC 
analysis. 

During their seminal benzylation studies, Trost and Czabaniuk 
described the critical role the nucleofuge plays on both the 
facility of Pd0 oxidative addition and the obtained 
enantioselectivity.[6] Within our cooperative catalysis framework 

we have also observed the drastic effect the nucleofuge plays in 
enantioselection.[8] Mindful of these observations we surveyed a 
range of activated 2-naphthyl alcohol derivatives (Table 1). 
Employing benzotetramisole (BTM)[10,11] as the Lewis base 
catalyst and Buchwald’s XantphosPd G3 precatalyst[12] we 
quickly identified diphenyl phosphate as the only competent 
nucleofuge (Entries 1–5), which furnished the desire product in 
high yield and excellent enantioselectivity (68%, er 97:3). 
Further assessment of the solvent identified toluene which gave 
the product in an enhanced 85% yield and er 99:1. Finally, 
evaluation of various electron-deficient phenyl esters (2–5) 
(Entries 9–12) offered no improvement, although ester 5 did 
function with notable efficiency (Entry 12). Phenyl ester 6 was 
ineffective (Entry 13).[13] 

 

Figure 3. Electrophile Scope: [a] Reactions performed on a 0.1 mmol scale. 
Yields are isolated following chromatography. er Determined by chiral HPLC 
analysis. [b] isolated as corresponding benzylamide (see SI for details). 

With an optimized procedure in hand, we proceeded to evaluate 
the scope of phenyl acetic Pfp-ester nucleophiles (Figure 2). As 
expected a wide variety of aryl acetic esters performed well and 
gave products with excellent levels of enantioselectivity. Notable 
examples include tolerance of o-aryl bromides (13 and 14), the 
performance of 2- and 3-thiophene derived esters (15 and 16), 
and the facility with which arene-rich systems can be 
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constructed (20–23). Evaluation of 2-naphthyl electrophile scope 
(Figure 3) revealed the tolerance of acetylene units (27), 
pinacolboronic esters (28), nitriles (29), acrylates (30) and Lewis 
basic N-heterocycles (31). Extension to 1-naphthyl electrophiles 
(32–34) as well as regioisomeric benzothiophene (35) and 
benzofuran (36) heterobenzylic electrophiles was also 
possible.14 While π-extended electrophiles functioned effectively, 
simple monocyclic benzylic phosphates are unreactive, 
presumably due to the aforementioned energy required for 
dearomatization.[2-6] Pfp-esters derived from alkyl acetic acids 
are also unreactive within this cooperative catalysis framework. 

Our interest in this process stems not only from the well-
documented challenges associated with enantioselective 
catalysis via cationic π-(benzyl)Pd intermediates, but also from 
the potential of such reactions to address the synthesis of 
therapeutically-relevant chiral molecules. Here we demonstrate 
the utility of this method toward the synthesis of the thrombin 
inhibitor DX-9065A (41),[15] a selective inhibitor of the coagulant 
enzyme activated factor X (FXa).[16] Ethyl ester 40 is a key 
intermediate en route to 41 and was previously prepared as a  
1:1 diastereomeric mixture at the ester-bearing stereocenter; 
crystallization provided 41 as a single diastereomer.[14] We 
envisioned the stereocontrolled preparation of 39 (and thence 
40) using the method described here. In the event, direct 
alkylation of ester 37 with benzylic phosphate 38 gave 39 in 83% 
isolated yield as a single diastereomer demonstrating complete 
catalyst-control over stereoinduction (Scheme 1). Thereafter, 
transesterification gave the key ethyl ester 40 in quantitative 
yield. 

 

Scheme 1. Synthesis of DX-9065a. 

In conclusion, we have demonstrated the first example of an 
enantioselective Pd-catalyzed benzylic alkylation of acyclic ester 
nucleophiles. Critical to the success of this reaction was (i) 
identification of the uniquely effective phosphate nucleofuge, 
and (ii) the cooperative action of a Lewis base catalyst, which 
governs the in situ production of stereo-defined C1-ammonium 
enolate nucleophiles as well as the enantioselectivity of the 

reaction. This is complementary to the ligand-centered 
enantiocontrol typical of Pd-catalysis, and further demonstrates 
the potential of cooperative catalysis to address challenges in 
reactivity and stereocontrol that are be beyond single catalysts. 
Our current efforts are directed toward the union of monocyclic 
benzyl electrophiles with C1-ammonium enolates and will be 
reported in due course. 
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