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ABSTRACT: α-Trifluoromethyl-styrenes, trifluoromethyl-
enynes and dienes undergo palladium-catalyzed tri-
methylenemethane cycloadditions under mild reaction conditions. 
The trifluoromethyl group serves as a unique σ-electron-
withdrawing group for the activation of the olefin towards the 
cycloaddition. This method allows for the formation of exo-
methylene cyclopentanes bearing a quaternary center substituted 
by the trifluoromethyl group, compounds of interest for the phar-
maceutical, agrochemical and materials industries. In the diene 
series, the cycloaddition operates in a [3+4] and/or [3+2] manner 
to give rise to 7- and/or 5 membered rings. This transformation 
greatly improves the scope of the TMM cycloaddition technology 
and provides invaluable insights into the reaction mechanism. 

Organofluorine compounds are of significant importance for a 
variety of applications in the pharmaceutical, agrochemical and 
materials industry.1 It is indeed well-established that the strategic 
introduction of fluorine containing functional groups can enhance 
the physico-chemical properties of organic molecules.2 For exam-
ple, the inclusion of the electron-withdrawing CF3 group in drug 
candidates has appeared as a general strategy to increase robust-
ness against metabolic oxidation in the “hit to lead” approach.3 In 
this context, new methods allowing for the selective introduction 
of the trifluoromethyl group at positions susceptible to undergo 
metabolic oxidation will have a significant synthetic utility.  
Figure 1. Trifluoromethylated cyclopentanes with biologi-
cal activity. 

 
Cyclopentanes bearing a quaternary center substituted by the 

trifluoromethyl group have been found to impart benefits in many 
bioactive molecules (Figure 1).4 However, despite these interest-
ing properties, existing methods for their preparation are extreme-
ly limited.5  

Cycloadditions with trifluoromethyl alkenes are particularly at-
tractive in view of the construction of cyclic compounds bearing  
CF3-quaternary centers. Nevertheless, examples of such cycload-
ditions where the trifluoromethyl group serves as the activating 
group are rare and of limited scope. Preliminary work has shown 
that trifluoropropene can serve as a poorly reactive dienophile.6 
Bégué and co-workers have also demonstrated one example of a 
[3+2]-cycloaddition with an azomethine ylide7 or a nitrone8a and 
one example of a thermal [4+2]-Diels-Alder reaction with the 
activated Danishefsky diene.8 In contradistinction, to the best of 
our knowledge, a metal-catalyzed Michael-type cycloaddition 
exploiting the σ-electron-withdrawing character of the CF3 group 
has never been reported.  

As part as our long-standing interest in the palladium-catalyzed 
[3+2]-cycloaddition of trimethylenemethane (TMM) with elec-
tron-deficient olefins,9 we questioned whether the σ-electron-
withdrawing properties of the CF3 group would be sufficient to 
activate a trifluoromethyl olefin towards the cycloaddition pro-
cess. In contrast to previous studies on TMM-cycloadditions, the 
absence of a strong electron-withdrawing π-acceptor (ketone, 
ester, nitro, sulfone etc.) capable of decreasing the olefin’s LUMO 
energy level was expected to dramatically challenge the reactivity 
limits of the TMM-donor. Nevertheless, we recognized that, if 
reactive, trifluoromethyl alkenes would represent unique mecha-
nistic probes into TMM-cycloadditions. In fact, the mechanism of 
the TMM-cycloaddition with respect to its concerted nature is still 
debatable and may strongly depend on the olefinic partner.10 At 
the outset of our study, it was thus unclear whether the cycloaddi-
tion with trifluoromethyl olefins would give rise to the desired 
cycloadduct or be interrupted by a fluoride elimination. Indeed, 
nucleophilic additions to trifluoromethyl alkenes concomitant 
with fluoride eliminations are well-established processes.11 Herein 
we report this unprecedented type of transformation in Pd-
catalyzed TMM-cycloadditions and strong evidence for a non-
concerted pathway.  

With hereabove considerations in mind, we began our investi-
gations by examining the reaction of the unsubstituted TMM-
donor 2a with α-trifluoromethylstyrene 1a. Ligands that proved 
successful in the TMM-cycloadditions such as tri-
isopropylphosphite or dppe led to poor conversion and no desired 
product (Table 1, entries 1 and 2). To the extent that the reactivity 
involves the TMM-complex functioning as a donor interacting 
with a typical Michael-type alkene acceptor, enhancing the donor 
properties of the TMM-PdL2 complex should increase reactivity. 
While the use of phosphorous triamide did not deliver any of the 
desired cycloadduct (Table 1, entry 3), phosphoramidite ligands 
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L1 and L2 gave much more encouraging results (Table 1, entries 
4 and 5).12  Gratifyingly, bidentate diaminophosphite ligand L3 
recently developed in our laboratory,13 delivered the targeted 
cycloadduct 3a in quantitative GC yield and 75% isolated yield 
(Table 1, entry 6). The obtention of the desired cycloadduct unac-
companied by fluoride elimination may be suggestive of a con-
certed mechanism.  
Table 1. Selected Optimization Studies.a 

 

entry ligand solvent T 
(°C) % conv.b % yieldb 

1 P(OiPr)3 dioxane 60 13 0 

2 dppe dioxane 60 18 2 

3 P(NMe2)3 dioxane 60 14 0 

4 L1 dioxane 60 27 6 

5 L2 dioxane 60 98 66 

6 L3 dioxane 60 100 100 (75)c 

7 L2 dioxane 23 85 46 

8 L3 dioxane 23 100 100 (79)c 

9 L3 THF 23 100 69c 

10 L3 toluene 23 100 91 

11 L4 dioxane 23 100 100 (80) c 

a All reactions were conducted on a 0.10 mmol scale at 0.33 M for 
12 h in the indicated solvent with 1.55 equiv. of 2a, 5 mol% of 
PdCp(η3-C3H5) and 10 mol% of ligand L1/L2 or 6 mol% of lig-
and L3/L4. b Conversions and yields were determined by GC 
analysis using dodecane as an internal standard. c Isolated yield.  

 
Efforts turned to optimizing the reaction variables. Decreasing 

the reaction temperature showed that diaminophosphite ligand L3 
is best-suited for this system (Table 1, entries 7 and 8). In addi-
tion, dioxane was found to be the optimum solvent (Table 1, 
entries 8, 9 and 10). Finally ligand L4 was shown to be as effec-
tive as the parent enantioenriched ligand L3 (Table 1, entries 8 
and 11). The singular activating role of the triluoromethyl-group 
is nicely underlined by the fact that α-methylstyrene 4a and sty-
rene 4b are completely inert under the reaction conditions, even 
when run at 60 °C.  

With these optimized conditions in hand, we investigated the 
scope of the new cycloaddition. A variety of arenes with different 
steric and electronic constraints were evaluated (Figure 2). Aro-
matic rings are well tolerated regardless of the position of substi-
tution around the arene ring (3b-g). Noteworthy, electron-
deficient (3c,e,f,i,j), electron-neutral (3a,b) and electron-rich 
(3d,g,h) styrenes are all competent substrates in this transfor-
mation; a feature that further demonstrates the unique role of the 
trifluoromethyl group. Interestingly, aryl bromides (3e) do not 
interfere with the cycloaddition process. Other halides such as 
chlorides (3f and 3j) are also compatible with the mild reaction 

conditions. Likewise, heteroaromatic structures of importance in 
medicinal chemistry such as benzofurans (3h) and pyridines (3i 
and 3j) are well-tolerated. In addition, the reaction allows for the 
introduction of a variety of useful functional groups such as al-
kynes (3g), acetals (3g) and nitriles (3i).  
Scheme 1. Evidence of the activation by the CF3-group. 

 
Figure 2. Palladium-Catalyzed [3+2] Reaction with Tri-
fluomethyl styrenes.a 

 

a All reactions were perfomed at 0.33 M concentration with 0.10 
mmol of substrate. b The reaction was performed on 1 mmol scale.  
c The reaction was performed at 60 °C using 2 equiv. of donor 2a. 

The moderate yield obtained in the case of cycloadduct 3g may 
be due to the formation of significant amounts of vinyldifluoride 
arising from the undesired elimination of a fluoride anion men-
tioned earlier as determined by NMR spectroscopy analysis of the 
crude reaction mixture.14 Notably, the introduction of a bromide 
substituent at the ortho- position of the starting styrene 1b resulted 
in the exclusive formation of the eliminated product 6 (Scheme 2). 
In striking contrast to the earlier comment on concertedness, the 
generation of such an adduct strongly supports the hypothesis of a 
stepwise mechanism. This observation clearly contrasts with the 
high yields obtained for substrates lacking substituents at the 
ortho- position of the arene ring.  
Scheme 2. Competitive fluoride elimination 

 
The generality of the cycloaddition between the standard donor 

2 and α-trifluoromethylstyrenes 1 led us to explore even more 
challenging substrates. Thus, reaction of styrene 1a with the less 
reactive TMM-donor 2b bearing an alkyne substituent stabilizing 
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the negative charge in the palladium-TMM complex,15 gave rise 
to the corresponding exomethylene cyclopentane 7 in 91% isolat-
ed yield (Scheme 3). Gratifyingly, trisubstituted alkene (Z)-8a 
delivered cycloadduct 9a in good yield and as a single diastereoi-
somer. This transformation constitutes the first example of a 
cycloaddition involving a trisubtituted trifluoromethylstyrene 
where activation occurs through the CF3 group. Indeed, the utility 
of these substrates was previously limited to the hydrogenation of 
the trisubstituted alkene.16 In addition, (E)-styrenes are also com-
petent substrates in this transformation as illustrated by the high 
yielding formation of tricycle 9b starting from dihydronaphtha-
lene (E)-8b.  
Scheme 3. Extension of the scope of the cycloaddition.a  

 
a All reactions were performed at 0.33 M concentration with 0.1 
mmol of substrate. b The reaction was performed at 0.4 M with 0.3 
mmol of substrate. 

Figure 3. Cycloaddition with 1,3-enynes.a  

 

a All reactions were perfomed at 0.33 M concentration with 0.10 
mmol of substrate 4.  b The reaction was performed on 6 mmol 
scale using 2.5 mol% of PdCp(η3-C3H5) and 3 mol% of ligand L4. 
c The reaction was performed at 45°C using 2 equiv. of 2. d The 
reaction was performed on a 1 mmol scale. 

The susceptibility of alkynes to transition metal-catalyzed pro-
cesses raises the interesting question of chemoselectivity in the 
use of trifluoromethylenynes. To our delight, 1,3-enynes 10 were 
found to be particularly effective substrates and the [3+2]-
cycloaddition smoothly proceeded (Figure 3).17 This novel reac-
tivity is exciting since alkynes are very useful building blocks in 
numerous reactions and especially in metal-catalyzed processes.18 
Aromatic (11a), heteroaromatic (11b) and even aliphatic R1 sub-

stituents (11c-g) on the alkyne were perfectly tolerated and cyclo-
pentanes 11 were obtained in high yields. Noteworthy, the reac-
tion is compatible with esters (11c), amides (11d), ketones (11e) 
and masked alcohols (11g). In addition, as illustrated by example 
11c, the cycloaddition is efficient on gram scale employing a 
lower catalyst and ligand loading (Figure 3).  

Dienes 12 also successfully reacted. Most interestingly, both 
[3+2]- and [3+4]-products were obtained in this case (Figure 4). 
The involvement of both unsaturations in the cycloaddition is 
noteworthy. In contrast, despite the fact that alkynes are well-
known to react in transition metal-catalyzed cycloadditions, 
enynes only reacted in a [3+2]-fashion. Formation of the [3+2]-
cycloadduct is favored by the use of bidentate ligand L4 (13a and 
13b), while Feringa ligand L2 was found to favor the formation of 
the [3+4]-cycloadduct (14c and 14d).19 We previously noted that 
some dienes may react in both [3+2]- and [3+4]-mode.9b Such 
competitive behavior seems more consistent with a stepwise 
mechanism. Indeed, the evidence herein would seem to be best 
compatible with a short-lived intramolecular ion pair and is work-
ing in the same direction as our earlier observation of fluoride 
elimination (example 3g, Figure 2 and example 6, Scheme 2). 

The new reaction allows an easy access to cycloadducts with a 
unique juxtaposition of functionality. Thus, selective modification 
of the exo-cyclic double bond is straightforward. In particular, 
osmium-catalyzed oxidative cleavage readily delivers the corre-
sponding cyclopentanones 15 (Scheme 4, a)). A complementary 
two-step protocol consists in epoxidizing the exo-methylene 
followed by oxidative cleavage by periodic acid (example 15d, 
Scheme 4, b)). Interestingly, these seemingly simple ketones are 
formal products of 1,4-addition of a CF3 anion onto cyclopente-
nones and were not previously accessible.  Additionally, selective 
functionalization of the alkyne in cycloadduct 11c was achieved 
exploiting our intramolecular ruthemium catalyzed trans-
hydrosilylation (example 17, Scheme 4, c)). This strategy furnish-
es cyclic siloxanes, which we previously demonstrated to be 
useful building blocks for Tamao-Fleming oxidation and Hiyama 
cross-coupling chemistry.20  
Figure 4. [3+2]- versus [3+4]-Cycloadditions with 1,3-
dienes  

 

a The reaction was performed with L4 at 23 °C. b The reaction 
was performed with L2 at 60 °C. 

In summary, we have demonstrated the first example of the cy-
cloaddtion of TMM with olefins activated by a σ-electron with-
drawing substituent: the trifluoromethyl group. Diaminophosphite 
ligand L4 recently reported in our laboratory was instrumental in 
the development of this method. The reaction proceeds well with 
α-styrenes, 1,3-enynes and 1,3-dienes. The availability of the 
cycloadducts derived from enynes and dienes allow entry to alkyl 
substituents too. Further investigations into the full scope of this 
new transformation and towards the development of an enantiose-
lective cyloaddition are ongoing and will be reported in due 
course. The current results provide good evidence for a stepwise 
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mechanism albeit with an especially short-lived zwitterion inter-
mediate. The successful development of these transformations 
allows envisioning the use of new classes of olefins in the TMM 
cycloaddition beyond the typical Michael-type acceptors.  
Scheme 4. Functionalization of the cycloadducts 
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